Skip to main content
Top
Published in: Current Diabetes Reports 9/2019

01-09-2019 | Diabetic Retinopathy | Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)

Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application

Authors: Valentina Bellemo, Gilbert Lim, Tyler Hyungtaek Rim, Gavin S. W. Tan, Carol Y. Cheung, SriniVas Sadda, Ming-guang He, Adnan Tufail, Mong Li Lee, Wynne Hsu, Daniel Shu Wei Ting

Published in: Current Diabetes Reports | Issue 9/2019

Login to get access

Abstract

Purpose of Review

This paper systematically reviews the recent progress in diabetic retinopathy screening. It provides an integrated overview of the current state of knowledge of emerging techniques using artificial intelligence integration in national screening programs around the world. Existing methodological approaches and research insights are evaluated. An understanding of existing gaps and future directions is created.

Recent Findings

Over the past decades, artificial intelligence has emerged into the scientific consciousness with breakthroughs that are sparking increasing interest among computer science and medical communities. Specifically, machine learning and deep learning (a subtype of machine learning) applications of artificial intelligence are spreading into areas that previously were thought to be only the purview of humans, and a number of applications in ophthalmology field have been explored. Multiple studies all around the world have demonstrated that such systems can behave on par with clinical experts with robust diagnostic performance in diabetic retinopathy diagnosis. However, only few tools have been evaluated in clinical prospective studies.

Summary

Given the rapid and impressive progress of artificial intelligence technologies, the implementation of deep learning systems into routinely practiced diabetic retinopathy screening could represent a cost-effective alternative to help reduce the incidence of preventable blindness around the world.
Literature
1.
go back to reference Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care. 2016;39(9):1643–9.PubMedCrossRef Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care. 2016;39(9):1643–9.PubMedCrossRef
2.
go back to reference YauJW, RogersSL, KawasakiR, LamoureuxEL, KowalskiJW, BekT, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012:DC_111909. YauJW, RogersSL, KawasakiR, LamoureuxEL, KowalskiJW, BekT, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012:DC_111909.
3.
go back to reference Cheung N, Mitchell P. Wong TY. Diabetic retinopathy. 2010;376:13. Cheung N, Mitchell P. Wong TY. Diabetic retinopathy. 2010;376:13.
4.
go back to reference SabanayagamC, BanuR, CheeML, LeeR, WangYX, TanG, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol2018. SabanayagamC, BanuR, CheeML, LeeR, WangYX, TanG, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol2018.
5.
go back to reference Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77.PubMedCrossRef Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77.PubMedCrossRef
6.
go back to reference Klein R, Klein BE. Screening for diabetic retinopathy, revisited. Am J Ophthalmol. 2002;134(2):261–3.PubMedCrossRef Klein R, Klein BE. Screening for diabetic retinopathy, revisited. Am J Ophthalmol. 2002;134(2):261–3.PubMedCrossRef
7.
go back to reference Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology. 2018;125:1608–22.PubMedCrossRef Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology. 2018;125:1608–22.PubMedCrossRef
8.
go back to reference Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nature Reviews Disease Primers. 2016;2:16012.PubMedCrossRef Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nature Reviews Disease Primers. 2016;2:16012.PubMedCrossRef
9.
go back to reference Huang OS, Zheng Y, Tay WT, Chiang PP-C, Lamoureux EL, Wong TY. Lack of awareness of common eye conditions in the community. Ophthalmic Epidemiol. 2013;20(1):52–60.PubMedCrossRef Huang OS, Zheng Y, Tay WT, Chiang PP-C, Lamoureux EL, Wong TY. Lack of awareness of common eye conditions in the community. Ophthalmic Epidemiol. 2013;20(1):52–60.PubMedCrossRef
10.
go back to reference Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018;2(10):719–31.PubMedCrossRef Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018;2(10):719–31.PubMedCrossRef
11.
go back to reference Lee A, Taylor P, Kalpathy-Cramer J, Tufail A. Machine learning has arrived! Ophthalmology. 2017;124(12):1726–8.PubMedCrossRef Lee A, Taylor P, Kalpathy-Cramer J, Tufail A. Machine learning has arrived! Ophthalmology. 2017;124(12):1726–8.PubMedCrossRef
13.
go back to reference Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.PubMedCrossRef Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9.PubMedCrossRef
14.
go back to reference FogelAL, KvedarJC. Artificial intelligence powers digital medicine. npj Digital Medicine. 2018;1(1):5. FogelAL, KvedarJC. Artificial intelligence powers digital medicine. npj Digital Medicine. 2018;1(1):5.
15.
go back to reference Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.PubMedCrossRef Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284(2):574–82.PubMedCrossRef
16.
go back to reference Ting DS, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology. 2018;286(2):729–31.PubMedCrossRef Ting DS, Yi PH, Hui F. Clinical applicability of deep learning system in detecting tuberculosis with chest radiography. Radiology. 2018;286(2):729–31.PubMedCrossRef
17.
go back to reference HwangEJ, ParkS, JinK-N, Kim JI, Choi SY, Lee JH, et al. Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis. 2018. HwangEJ, ParkS, JinK-N, Kim JI, Choi SY, Lee JH, et al. Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis. 2018.
18.
go back to reference Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.PubMedCrossRef Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.PubMedCrossRef
19.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedCrossRefPubMedCentral Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.PubMedCrossRefPubMedCentral
20.
go back to reference •• Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23. Findings from this study suggest that deep learning systems can be generalised on different patient cohorts under different settings and conditions.PubMedPubMedCentralCrossRef •• Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23. Findings from this study suggest that deep learning systems can be generalised on different patient cohorts under different settings and conditions.PubMedPubMedCentralCrossRef
21.
go back to reference •• Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402. Findings from this study suggest that deep learning can represent a suitable tool with clinical acceptable sensitivity and specificity for detecting referable diabetic retinopathy.PubMedCrossRef •• Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402. Findings from this study suggest that deep learning can represent a suitable tool with clinical acceptable sensitivity and specificity for detecting referable diabetic retinopathy.PubMedCrossRef
22.
go back to reference Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.CrossRef Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–210.CrossRef
23.
go back to reference Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25(3):433–8.PubMedCrossRef Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25(3):433–8.PubMedCrossRef
24.
go back to reference Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.PubMedCrossRef Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.PubMedCrossRef
25.
go back to reference Nsoesie EO. Evaluating artificial intelligence applications in clinical settings. JAMA Netw Open. 2018;1(5):e182658.PubMedCrossRef Nsoesie EO. Evaluating artificial intelligence applications in clinical settings. JAMA Netw Open. 2018;1(5):e182658.PubMedCrossRef
26.
go back to reference He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.PubMedCrossRefPubMedCentral He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30–6.PubMedCrossRefPubMedCentral
27.
go back to reference Beam AL, Kohane IS. Translating artificial intelligence into clinical care. JAMA. 2016;316(22):2368–9.PubMedCrossRef Beam AL, Kohane IS. Translating artificial intelligence into clinical care. JAMA. 2016;316(22):2368–9.PubMedCrossRef
28.
29.
go back to reference Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.PubMedCrossRef Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.PubMedCrossRef
30.
go back to reference Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75.PubMedCrossRef Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–75.PubMedCrossRef
31.
go back to reference Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125(9):1410–20.PubMedCrossRef Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018;125(9):1410–20.PubMedCrossRef
32.
go back to reference Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA ophthalmology. 2017;135(11):1170–6.PubMedPubMedCentralCrossRef Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA ophthalmology. 2017;135(11):1170–6.PubMedPubMedCentralCrossRef
33.
go back to reference Burlina PM, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA ophthalmology. 2018;136(12):1359–66.PubMedPubMedCentralCrossRef Burlina PM, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA ophthalmology. 2018;136(12):1359–66.PubMedPubMedCentralCrossRef
34.
go back to reference Hood DC, De Moraes CG. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1207–8.PubMedCrossRef Hood DC, De Moraes CG. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018;125(8):1207–8.PubMedCrossRef
35.
go back to reference Lim G, Cheng Y, Hsu W, Lee ML, editors. Integrated optic disc and cup segmentation with deep learning. 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI); 2015: IEEE. Lim G, Cheng Y, Hsu W, Lee ML, editors. Integrated optic disc and cup segmentation with deep learning. 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI); 2015: IEEE.
36.
go back to reference Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA ophthalmology. 2018;136(7):803–10.PubMedPubMedCentralCrossRef Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RVP, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA ophthalmology. 2018;136(7):803–10.PubMedPubMedCentralCrossRef
37.
go back to reference TingDSW, WuW-C, TothC. Deep learning for retinopathy of prematurity screening. Br J Ophthalmol. 2018:bjophthalmol-2018-313290. TingDSW, WuW-C, TothC. Deep learning for retinopathy of prematurity screening. Br J Ophthalmol. 2018:bjophthalmol-2018-313290.
38.
go back to reference Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Opthalmology & Visual Science. 2016;57(13):5200.CrossRef Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Investigative Opthalmology & Visual Science. 2016;57(13):5200.CrossRef
39.
go back to reference AbràmoffMD, LavinPT, BirchM, ShahN, FolkJC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine. 2018;1(1). AbràmoffMD, LavinPT, BirchM, ShahN, FolkJC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Medicine. 2018;1(1).
40.
go back to reference Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9.PubMedCrossRef Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124(7):962–9.PubMedCrossRef
41.
go back to reference Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying Normal versus age-related macular degeneration OCT images. Ophthalmology Retina. 2017;1(4):322–7.PubMedPubMedCentralCrossRef Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying Normal versus age-related macular degeneration OCT images. Ophthalmology Retina. 2017;1(4):322–7.PubMedPubMedCentralCrossRef
42.
go back to reference Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 2018;256(2):259–65.PubMedCrossRef Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 2018;256(2):259–65.PubMedCrossRef
43.
go back to reference Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122–31.e9.PubMedCrossRef Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;172(5):1122–31.e9.PubMedCrossRef
44.
go back to reference Kihara Y, Heeren TF, Lee CS, Wu Y, Xiao S, Tzaridis S, et al. Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2. JAMA Netw Open. 2019;2(2):e188029–e.PubMedPubMedCentralCrossRef Kihara Y, Heeren TF, Lee CS, Wu Y, Xiao S, Tzaridis S, et al. Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2. JAMA Netw Open. 2019;2(2):e188029–e.PubMedPubMedCentralCrossRef
45.
go back to reference Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, Schlegl T, Langs G, Gerendas BS, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in Neovascular age-related macular degeneration. Ophthalmology Retina. 2018;2(1):24–30.PubMedCrossRef Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, Schlegl T, Langs G, Gerendas BS, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in Neovascular age-related macular degeneration. Ophthalmology Retina. 2018;2(1):24–30.PubMedCrossRef
46.
go back to reference LeeCS, TyringAJ, DeruyterNP, WuY, RokemA, LeeAY. Deep-Learning Based, Automated Segmentation Of Macular Edema In Optical Coherence Tomography. bioRxiv. 2017:135640. LeeCS, TyringAJ, DeruyterNP, WuY, RokemA, LeeAY. Deep-Learning Based, Automated Segmentation Of Macular Edema In Optical Coherence Tomography. bioRxiv. 2017:135640.
47.
go back to reference Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125(4):549–58.PubMedCrossRef Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125(4):549–58.PubMedCrossRef
48.
go back to reference • De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50. Findings from this study suggest that deep learning in making referral recommendations can reach or exceed that of human experts on a range of sight-threatening retinal diseases.PubMedCrossRef • De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50. Findings from this study suggest that deep learning in making referral recommendations can reach or exceed that of human experts on a range of sight-threatening retinal diseases.PubMedCrossRef
49.
go back to reference Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci. 2018;59(7):2861–8.PubMedCrossRef Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R, et al. Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci. 2018;59(7):2861–8.PubMedCrossRef
50.
go back to reference Xiao S, Rokem A, Lee CS, Wilson L, Pepple K, Sabesan R, et al. Fully automated quantification of retinal cones and anterior chamber cells using deep learning. Invest Ophthalmol Vis Sci. 2018;59(9):1222. Xiao S, Rokem A, Lee CS, Wilson L, Pepple K, Sabesan R, et al. Fully automated quantification of retinal cones and anterior chamber cells using deep learning. Invest Ophthalmol Vis Sci. 2018;59(9):1222.
51.
go back to reference Wen JC, Lee CS, Keane PA, Xiao S, Wu Y, Rokem A, et al. Forecasting Future Humphrey Visual Fields Using Deep Learning. arXiv preprint arXiv:180404543. 2018. Wen JC, Lee CS, Keane PA, Xiao S, Wu Y, Rokem A, et al. Forecasting Future Humphrey Visual Fields Using Deep Learning. arXiv preprint arXiv:180404543. 2018.
52.
go back to reference Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158–64.PubMedCrossRef Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158–64.PubMedCrossRef
53.
go back to reference Ting DSW, Wong TY. Eyeing cardiovascular risk factors. Nature Biomedical Engineering. 2018;2(3):140–1.PubMedCrossRef Ting DSW, Wong TY. Eyeing cardiovascular risk factors. Nature Biomedical Engineering. 2018;2(3):140–1.PubMedCrossRef
54.
go back to reference TingDS, CheungCY, NguyenQ, SabanayagamC, LimG, LimZW, et al. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. npj Digital Medicine. 2019;2(1):24. TingDS, CheungCY, NguyenQ, SabanayagamC, LimG, LimZW, et al. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. npj Digital Medicine. 2019;2(1):24.
55.
go back to reference Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA. 2016;316(22):2366–7.PubMedCrossRef Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA. 2016;316(22):2366–7.PubMedCrossRef
56.
go back to reference Niemeijer M, Abramoff MD, van Ginneken B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal. 2006;10(6):888–98.PubMedCrossRef Niemeijer M, Abramoff MD, van Ginneken B. Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal. 2006;10(6):888–98.PubMedCrossRef
57.
go back to reference Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD, editors. Comparative study of retinal vessel segmentation methods on a new publicly available database. Medical imaging 2004: image processing; 2004: International Society for Optics and Photonics. Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD, editors. Comparative study of retinal vessel segmentation methods on a new publicly available database. Medical imaging 2004: image processing; 2004: International Society for Optics and Photonics.
58.
go back to reference Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.PubMedCrossRef Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.PubMedCrossRef
59.
go back to reference AbramoffMD, NiemeijerM, editors. The automatic detection of the optic disc location in retinal images using optic disc location regression. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; 2006: IEEE. AbramoffMD, NiemeijerM, editors. The automatic detection of the optic disc location in retinal images using optic disc location regression. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; 2006: IEEE.
60.
go back to reference Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.PubMedCrossRef Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging. 2005;24(5):584–92.PubMedCrossRef
61.
go back to reference Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7.PubMedCrossRef Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Invest Ophthalmol Vis Sci. 2007;48(5):2260–7.PubMedCrossRef
62.
go back to reference Abràmoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, Van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31(2):193–8.PubMedCrossRef Abràmoff MD, Niemeijer M, Suttorp-Schulten MS, Viergever MA, Russell SR, Van Ginneken B. Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care. 2008;31(2):193–8.PubMedCrossRef
63.
go back to reference Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.PubMedCrossRef Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.PubMedCrossRef
64.
go back to reference Group ETDRSR. Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology. 1991;98(5):823–33.CrossRef Group ETDRSR. Fundus photographic risk factors for progression of diabetic retinopathy: ETDRS report number 12. Ophthalmology. 1991;98(5):823–33.CrossRef
65.
go back to reference Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018;125(8):1264–72.PubMedCrossRef Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology. 2018;125(8):1264–72.PubMedCrossRef
66.
go back to reference Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.PubMedCrossRef Nguyen HV, Tan GSW, Tapp RJ, Mital S, Ting DSW, Wong HT, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore. Ophthalmology. 2016;123(12):2571–80.PubMedCrossRef
67.
go back to reference Peto T, Tadros C. Screening for diabetic retinopathy and diabetic macular edema in the United Kingdom. Current diabetes reports. 2012;12(4):338–45.PubMedCrossRef Peto T, Tadros C. Screening for diabetic retinopathy and diabetic macular edema in the United Kingdom. Current diabetes reports. 2012;12(4):338–45.PubMedCrossRef
68.
go back to reference SayresR, TalyA, RahimyE, BlumerK, CozD, Hammel N, et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2018. SayresR, TalyA, RahimyE, BlumerK, CozD, Hammel N, et al. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology. 2018.
69.
go back to reference Scotland GS, McNamee P, Philip S, Fleming AD, Goatman KA, Prescott GJ, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.PubMedPubMedCentralCrossRef Scotland GS, McNamee P, Philip S, Fleming AD, Goatman KA, Prescott GJ, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.PubMedPubMedCentralCrossRef
70.
go back to reference Scotland GS, McNamee P, Fleming AD, Goatman KA, Philip S, Prescott GJ, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9.PubMedCrossRef Scotland GS, McNamee P, Fleming AD, Goatman KA, Philip S, Prescott GJ, et al. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. Br J Ophthalmol. 2010;94(6):712–9.PubMedCrossRef
71.
go back to reference Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91(11):1512–7.PubMedPubMedCentralCrossRef Philip S, Fleming AD, Goatman KA, Fonseca S, Mcnamee P, Scotland GS, et al. The efficacy of automated “disease/no disease” grading for diabetic retinopathy in a systematic screening programme. Br J Ophthalmol. 2007;91(11):1512–7.PubMedPubMedCentralCrossRef
72.
go back to reference Kapetanakis VV, Rudnicka AR, Liew G, Owen CG, Lee A, Louw V, et al. A study of whether automated diabetic retinopathy image assessment could replace manual grading steps in the English national screening Programme. J Med Screen. 2015;22(3):112–8.PubMedCrossRef Kapetanakis VV, Rudnicka AR, Liew G, Owen CG, Lee A, Louw V, et al. A study of whether automated diabetic retinopathy image assessment could replace manual grading steps in the English national screening Programme. J Med Screen. 2015;22(3):112–8.PubMedCrossRef
73.
go back to reference Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51.PubMedCrossRef Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51.PubMedCrossRef
74.
go back to reference Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res Care. 2014;2(1):e000005.PubMedPubMedCentralCrossRef Raman R, Ganesan S, Pal SS, Kulothungan V, Sharma T. Prevalence and risk factors for diabetic retinopathy in rural India. Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetic Study III (SN-DREAMS III), report no 2. BMJ Open Diabetes Res Care. 2014;2(1):e000005.PubMedPubMedCentralCrossRef
75.
go back to reference Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of diabetic retinopathy in urban India: the Chennai urban rural epidemiology study (CURES) eye study. I Invest Ophthalmol Vis Sci. 2005;46(7):2328–33.PubMedCrossRef Rema M, Premkumar S, Anitha B, Deepa R, Pradeepa R, Mohan V. Prevalence of diabetic retinopathy in urban India: the Chennai urban rural epidemiology study (CURES) eye study. I Invest Ophthalmol Vis Sci. 2005;46(7):2328–33.PubMedCrossRef
76.
go back to reference Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, et al. Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One. 2015;10(9):e0138285e.CrossRef Rajalakshmi R, Arulmalar S, Usha M, Prathiba V, Kareemuddin KS, Anjana RM, et al. Validation of smartphone based retinal photography for diabetic retinopathy screening. PLoS One. 2015;10(9):e0138285e.CrossRef
77.
go back to reference Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.PubMedPubMedCentralCrossRef Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138–44.PubMedPubMedCentralCrossRef
78.
go back to reference SundararajanM, TalyA, YanQ, editors. Axiomatic attribution for deep networks. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org. SundararajanM, TalyA, YanQ, editors. Axiomatic attribution for deep networks. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org.
79.
go back to reference Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, et al. Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program. arXiv preprint arXiv:181008290. 2018. Raumviboonsuk P, Krause J, Chotcomwongse P, Sayres R, Raman R, Widner K, et al. Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program. arXiv preprint arXiv:181008290. 2018.
80.
go back to reference Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 2015;10(7):e0130140.PubMedPubMedCentralCrossRef Bach S, Binder A, Montavon G, Klauschen F, Müller K-R, Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS One. 2015;10(7):e0130140.PubMedPubMedCentralCrossRef
82.
go back to reference Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:13126034. 2013. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:13126034. 2013.
83.
go back to reference Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv:160501713. 2016. Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv:160501713. 2016.
84.
go back to reference Keel S, Wu J, Lee PY, Scheetz J, He M. Visualizing deep learning models for the detection of referable diabetic retinopathy and Glaucoma. JAMA ophthalmology. 2019;137(3):288–92.PubMedCrossRef Keel S, Wu J, Lee PY, Scheetz J, He M. Visualizing deep learning models for the detection of referable diabetic retinopathy and Glaucoma. JAMA ophthalmology. 2019;137(3):288–92.PubMedCrossRef
85.
go back to reference KeelS, LeePY, ScheetzJ, LiZ, KotowiczMA, MacIsaacRJ, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep. 2018;8(1). KeelS, LeePY, ScheetzJ, LiZ, KotowiczMA, MacIsaacRJ, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Sci Rep. 2018;8(1).
86.
go back to reference Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665.PubMedPubMedCentralCrossRef Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of artificial intelligence–based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1(5):e182665.PubMedPubMedCentralCrossRef
87.
go back to reference Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. PloS one. 2015;10(10):e0139148.PubMedPubMedCentralCrossRef Hansen MB, Abràmoff MD, Folk JC, Mathenge W, Bastawrous A, Peto T. Results of automated retinal image analysis for detection of diabetic retinopathy from the Nakuru study, Kenya. PloS one. 2015;10(10):e0139148.PubMedPubMedCentralCrossRef
88.
go back to reference Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117(6):1147–54.PubMedCrossRef Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, et al. Automated early detection of diabetic retinopathy. Ophthalmology. 2010;117(6):1147–54.PubMedCrossRef
89.
go back to reference Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health. 2019;1(1):e35–44.CrossRefPubMed Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health. 2019;1(1):e35–44.CrossRefPubMed
90.
go back to reference Naylor CD. On the prospects for a (deep) learning health care system. JAMA. 2018;320(11):1099–100.PubMedCrossRef Naylor CD. On the prospects for a (deep) learning health care system. JAMA. 2018;320(11):1099–100.PubMedCrossRef
91.
go back to reference Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8(4):303–20.PubMedCrossRef Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8(4):303–20.PubMedCrossRef
92.
go back to reference Miller RA, Pople HE Jr, Myers JD. Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–76.PubMedCrossRef Miller RA, Pople HE Jr, Myers JD. Internist-I, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–76.PubMedCrossRef
93.
go back to reference Yu VL, Fagan LM, Wraith SM, Clancey WJ, Scott AC, Hannigan J, et al. Antimicrobial selection by a computer: ablinded evaluation by infectious diseases experts. JAMA. 1979;242(12):1279–82.PubMedCrossRef Yu VL, Fagan LM, Wraith SM, Clancey WJ, Scott AC, Hannigan J, et al. Antimicrobial selection by a computer: ablinded evaluation by infectious diseases experts. JAMA. 1979;242(12):1279–82.PubMedCrossRef
94.
go back to reference Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial IntelligenceClinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200.PubMedCrossRef Shortliffe EH, Sepúlveda MJ. Clinical decision support in the era of artificial IntelligenceClinical decision support in the era of artificial intelligence. JAMA. 2018;320(21):2199–200.PubMedCrossRef
95.
go back to reference Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N, editors. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015: ACM. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N, editors. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015: ACM.
96.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, editors. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision; 2017. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, editors. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision; 2017.
97.
go back to reference Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA ophthalmology. 2019;137(3):258–64.PubMedCrossRefPubMedCentral Burlina PM, Joshi N, Pacheco KD, Liu TYA, Bressler NM. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA ophthalmology. 2019;137(3):258–64.PubMedCrossRefPubMedCentral
98.
go back to reference Shrikumar A, Greenside P, Kundaje A, editors. Learning important features through propagating activation differences. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org. Shrikumar A, Greenside P, Kundaje A, editors. Learning important features through propagating activation differences. Proceedings of the 34th International Conference on Machine Learning-Volume 70; 2017: JMLR. org.
100.
go back to reference Sullivan HR, Schweikart SJ. Are current tort liability doctrines adequate for addressing injury caused by AI? AMA J Ethics. 2019;21(2):160–6.CrossRef Sullivan HR, Schweikart SJ. Are current tort liability doctrines adequate for addressing injury caused by AI? AMA J Ethics. 2019;21(2):160–6.CrossRef
101.
go back to reference Goh JKH, Cheung CY, Sim SS, Tan PC, Tan GSW, Wong TY. Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):282–94.PubMedPubMedCentralCrossRef Goh JKH, Cheung CY, Sim SS, Tan PC, Tan GSW, Wong TY. Retinal imaging techniques for diabetic retinopathy screening. J Diabetes Sci Technol. 2016;10(2):282–94.PubMedPubMedCentralCrossRef
102.
go back to reference Liew CJ, Krishnaswamy P, Cheng L, Tan CH, Poh A, Lim T. Artificial intelligence and radiology in Singapore: championing a new age of augmented imaging for unsurpassed patient care. Ann Acad Med Singap. 2019;48:16–24.PubMed Liew CJ, Krishnaswamy P, Cheng L, Tan CH, Poh A, Lim T. Artificial intelligence and radiology in Singapore: championing a new age of augmented imaging for unsurpassed patient care. Ann Acad Med Singap. 2019;48:16–24.PubMed
103.
go back to reference LimG, LeeML, HsuW. Intermediate goals in deep learning for retinal image analysis. ACCV Workshop on AI for Retinal Image Analysis, ACCV2018, 2019. LimG, LeeML, HsuW. Intermediate goals in deep learning for retinal image analysis. ACCV Workshop on AI for Retinal Image Analysis, ACCV2018, 2019.
104.
go back to reference LimG, LimZW, DejiangX, TingDSW, WongTY, LeeML, et al.Feature isolation for hypothesis testing in retinal imaging: an ischemic stroke prediction case study. Innovative Applications of Artificial Intelligence 2019. LimG, LimZW, DejiangX, TingDSW, WongTY, LeeML, et al.Feature isolation for hypothesis testing in retinal imaging: an ischemic stroke prediction case study. Innovative Applications of Artificial Intelligence 2019.
Metadata
Title
Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application
Authors
Valentina Bellemo
Gilbert Lim
Tyler Hyungtaek Rim
Gavin S. W. Tan
Carol Y. Cheung
SriniVas Sadda
Ming-guang He
Adnan Tufail
Mong Li Lee
Wynne Hsu
Daniel Shu Wei Ting
Publication date
01-09-2019
Publisher
Springer US
Published in
Current Diabetes Reports / Issue 9/2019
Print ISSN: 1534-4827
Electronic ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-019-1189-3

Other articles of this Issue 9/2019

Current Diabetes Reports 9/2019 Go to the issue

Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)

Liver to Pancreas Transdifferentiation

Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)

Klinefelter Syndrome and Diabetes

Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)

Treatment of Diabetic Macular Edema