Skip to main content
Top
Published in: Obesity Surgery 12/2016

01-12-2016 | Review Article

The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes

Author: Claudio Blasi

Published in: Obesity Surgery | Issue 12/2016

Login to get access

Abstract

The current treatment for obesity-related type 2 diabetes is not able to achieve sufficient metabolic control. New remission prospects have been offered through bariatric surgery and other interventional therapies. The aim of the study is to illustrate the mechanism by which such therapies affect the autonomic system, in particular the afferent vagal activity. The first and most important terminal of this activity is the brainstem vagal nucleus tractus solitarius. Its function, on which the vagal efferent inputs that control the splanchnic organs depend, is conditioned by the level of synaptic transmission within it. In conclusion, on the basis of such a view, a selective pharmacological modulation of such transmission as the target for future medical treatment of obesity and related type 2 diabetes is proposed.
Literature
1.
go back to reference Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.PubMedPubMedCentralCrossRef Ikramuddin S, Korner J, Lee WJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.PubMedPubMedCentralCrossRef
2.
go back to reference Sjöström L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.PubMedCrossRef Sjöström L, Peltonen M, Jacobson P, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.PubMedCrossRef
3.
go back to reference Scott JD, Johnson BL, Blackhurst DW, et al. Does bariatric surgery reduce the risk of major cardiovascular events? A retrospective cohort study of morbidly obese surgical patients. Surg Obes Relat Dis. 2013;9(1):32–9.PubMedCrossRef Scott JD, Johnson BL, Blackhurst DW, et al. Does bariatric surgery reduce the risk of major cardiovascular events? A retrospective cohort study of morbidly obese surgical patients. Surg Obes Relat Dis. 2013;9(1):32–9.PubMedCrossRef
4.
go back to reference Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. 2009;32(3):375–80.PubMedPubMedCentralCrossRef Salinari S, Bertuzzi A, Asnaghi S, et al. First-phase insulin secretion restoration and differential response to glucose load depending on the route of administration in type 2 diabetic subjects after bariatric surgery. Diabetes Care. 2009;32(3):375–80.PubMedPubMedCentralCrossRef
6.
go back to reference Canales BK, Gonzalez RD. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Urol Androl. 2014;3(3):242–9. Canales BK, Gonzalez RD. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Urol Androl. 2014;3(3):242–9.
7.
go back to reference Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64.PubMedCrossRef Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2(2):152–64.PubMedCrossRef
8.
go back to reference Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28(4):741–9.PubMedCrossRef Tack J, Deloose E. Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol. 2014;28(4):741–9.PubMedCrossRef
9.
go back to reference Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes. 2013;37(5):625–33.CrossRef Hussain SS, Bloom SR. The regulation of food intake by the gut-brain axis: implications for obesity. Int J Obes. 2013;37(5):625–33.CrossRef
10.
go back to reference Stefater MA, Wilson-Pérez HE, Chambers AP, et al. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622.PubMedPubMedCentralCrossRef Stefater MA, Wilson-Pérez HE, Chambers AP, et al. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev. 2012;33(4):595–622.PubMedPubMedCentralCrossRef
11.
go back to reference Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1275–91.PubMedPubMedCentralCrossRef Lutz TA, Bueter M. The physiology underlying Roux-en-Y gastric bypass: a status report. Am J Physiol Regul Integr Comp Physiol. 2014;307(11):R1275–91.PubMedPubMedCentralCrossRef
12.
go back to reference Blasi C. Can diabetes heal?—from observations to perspectives. Curr Diabetes Rev. 2016;12(3):184–98.PubMedCrossRef Blasi C. Can diabetes heal?—from observations to perspectives. Curr Diabetes Rev. 2016;12(3):184–98.PubMedCrossRef
13.
go back to reference Berthoud HR, Zheng H, Shin AC. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann N Y Acad Sci. 2012;1264:36–48.PubMedPubMedCentralCrossRef Berthoud HR, Zheng H, Shin AC. Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann N Y Acad Sci. 2012;1264:36–48.PubMedPubMedCentralCrossRef
14.
go back to reference Bach EC, Halmos KC, Smith BN. Enhanced NMDA receptor-mediated modulation of excitatory neurotransmission in the dorsal vagal complex of streptozotocin-treated, chronically hyperglycemic mice. PLoS One. 2015;10(3):e0121022.PubMedPubMedCentralCrossRef Bach EC, Halmos KC, Smith BN. Enhanced NMDA receptor-mediated modulation of excitatory neurotransmission in the dorsal vagal complex of streptozotocin-treated, chronically hyperglycemic mice. PLoS One. 2015;10(3):e0121022.PubMedPubMedCentralCrossRef
15.
go back to reference Zhao K, Ao Y, Harper RM, et al. Food-intake dysregulation in type 2 diabetic goto-kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience. 2013;247:43–54.PubMedPubMedCentralCrossRef Zhao K, Ao Y, Harper RM, et al. Food-intake dysregulation in type 2 diabetic goto-kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience. 2013;247:43–54.PubMedPubMedCentralCrossRef
16.
go back to reference Browning KR, Travagli RA. Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci. 2011;161(1–2):6–13.PubMedCrossRef Browning KR, Travagli RA. Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci. 2011;161(1–2):6–13.PubMedCrossRef
17.
go back to reference Powley TL. Vagal circuitry mediating cephalic-phase responses to food. Appetite. 2000;34(2):184–8.PubMedCrossRef Powley TL. Vagal circuitry mediating cephalic-phase responses to food. Appetite. 2000;34(2):184–8.PubMedCrossRef
19.
go back to reference de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;9. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;9.
20.
go back to reference Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7(4):471–8.PubMedCrossRef Thorens B, Larsen PJ. Gut-derived signaling molecules and vagal afferents in the control of glucose and energy homeostasis. Curr Opin Clin Nutr Metab Care. 2004;7(4):471–8.PubMedCrossRef
23.
24.
go back to reference Rasoamanana R, Darcel N, Fromentin G, et al. Nutrient sensing and signaling by the gut. Proc Nutr Soc. 2012;71(4):446–55.PubMedCrossRef Rasoamanana R, Darcel N, Fromentin G, et al. Nutrient sensing and signaling by the gut. Proc Nutr Soc. 2012;71(4):446–55.PubMedCrossRef
25.
go back to reference Punjabi M, Arnold M, Geary N, et al. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav. 2011;105(1):71–6.PubMedCrossRef Punjabi M, Arnold M, Geary N, et al. Peripheral glucagon-like peptide-1 (GLP-1) and satiation. Physiol Behav. 2011;105(1):71–6.PubMedCrossRef
26.
go back to reference Hayes MR, Kanoski SE, De Jonghe BC, et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1479–85.PubMedPubMedCentralCrossRef Hayes MR, Kanoski SE, De Jonghe BC, et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am J Physiol Regul Integr Comp Physiol. 2011;301(5):R1479–85.PubMedPubMedCentralCrossRef
27.
go back to reference Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab. 2010;36(Suppl 3):S54–8.PubMedCrossRef Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab. 2010;36(Suppl 3):S54–8.PubMedCrossRef
28.
go back to reference Covasa M. CCK- and leptin-induced vagal afferent activation: a model for organ-specific endocrine modulation of visceral sensory information. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1542–3.PubMedCrossRef Covasa M. CCK- and leptin-induced vagal afferent activation: a model for organ-specific endocrine modulation of visceral sensory information. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1542–3.PubMedCrossRef
30.
go back to reference Ritter RC. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals. Physiol Behav. 2011;105(1):94–9.PubMedPubMedCentralCrossRef Ritter RC. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals. Physiol Behav. 2011;105(1):94–9.PubMedPubMedCentralCrossRef
31.
go back to reference Haines DE. Neuroanatomy. An atlas of structures, sections, and systems. Lippincott Williams & Wilkins; 2004. Haines DE. Neuroanatomy. An atlas of structures, sections, and systems. Lippincott Williams & Wilkins; 2004.
32.
go back to reference Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220(2):T25–46.PubMedCrossRef Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014;220(2):T25–46.PubMedCrossRef
33.
go back to reference Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol. 2013;591(9):2357–72.PubMedPubMedCentralCrossRef Browning KN, Fortna SR, Hajnal A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J Physiol. 2013;591(9):2357–72.PubMedPubMedCentralCrossRef
34.
go back to reference Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97(6):1611–26.PubMedCrossRef Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem. 2006;97(6):1611–26.PubMedCrossRef
35.
go back to reference Browning KN, Babic T, Toti L, et al. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J Physiol. 2014;592(20):4591–605.PubMedPubMedCentralCrossRef Browning KN, Babic T, Toti L, et al. Plasticity in the brainstem vagal circuits controlling gastric motor function triggered by corticotropin releasing factor. J Physiol. 2014;592(20):4591–605.PubMedPubMedCentralCrossRef
36.
go back to reference Meyer D, Bonhoeffer T, Scheuss V. Balance and stability of synaptic structures during synaptic plasticity. Neuron. 2014;82(2):430–43.PubMedCrossRef Meyer D, Bonhoeffer T, Scheuss V. Balance and stability of synaptic structures during synaptic plasticity. Neuron. 2014;82(2):430–43.PubMedCrossRef
37.
go back to reference Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010;20(5):631–9.PubMedCrossRef Gerrow K, Triller A. Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol. 2010;20(5):631–9.PubMedCrossRef
38.
go back to reference Shouval HZ, Castellani GC, Blais BS, et al. Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern. 2002;87(5–6):383–91.PubMedCrossRef Shouval HZ, Castellani GC, Blais BS, et al. Converging evidence for a simplified biophysical model of synaptic plasticity. Biol Cybern. 2002;87(5–6):383–91.PubMedCrossRef
39.
go back to reference Wu SW, Fenwick AJ, Peters JH. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol Behav. 2014;136:179–84.PubMedPubMedCentralCrossRef Wu SW, Fenwick AJ, Peters JH. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol Behav. 2014;136:179–84.PubMedPubMedCentralCrossRef
40.
go back to reference Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007S–15S.PubMed Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007S–15S.PubMed
41.
go back to reference Baude A, Strube C, Tell F, et al. Glutamatergic neurotransmission in the nucleus tractus solitary: structural and functional characteristics. J Chem Neuroanat. 2009;38(3):145–53.PubMedCrossRef Baude A, Strube C, Tell F, et al. Glutamatergic neurotransmission in the nucleus tractus solitary: structural and functional characteristics. J Chem Neuroanat. 2009;38(3):145–53.PubMedCrossRef
42.
go back to reference Gao H, Smith BN. Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol. 2010;103(2):904–14.PubMedCrossRef Gao H, Smith BN. Tonic GABAA receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus. J Neurophysiol. 2010;103(2):904–14.PubMedCrossRef
43.
go back to reference Davis SF, Derbenev AV, Williams KW, et al. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius. Brain Res. 2004;1017(1–2):208–17.PubMedPubMedCentralCrossRef Davis SF, Derbenev AV, Williams KW, et al. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius. Brain Res. 2004;1017(1–2):208–17.PubMedPubMedCentralCrossRef
44.
go back to reference Travagli RA, Rogers RC. Receptors and transmission in the brain-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G595–601.PubMedPubMedCentral Travagli RA, Rogers RC. Receptors and transmission in the brain-gut axis: potential for novel therapies. V. Fast and slow extrinsic modulation of dorsal vagal complex circuits. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G595–601.PubMedPubMedCentral
45.
go back to reference Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000;108(Suppl 4a):79S–86S.PubMedCrossRef Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000;108(Suppl 4a):79S–86S.PubMedCrossRef
46.
go back to reference Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–68.PubMedPubMedCentralCrossRef Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol. 2014;4(4):1339–68.PubMedPubMedCentralCrossRef
47.
go back to reference Blake CB, Smith BN. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R711–20.PubMedPubMedCentralCrossRef Blake CB, Smith BN. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am J Physiol Regul Integr Comp Physiol. 2014;307(6):R711–20.PubMedPubMedCentralCrossRef
48.
go back to reference Ballsmider LA, Vaughn AC, David M, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. 2015;2015:601985.PubMedPubMedCentral Ballsmider LA, Vaughn AC, David M, et al. Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. 2015;2015:601985.PubMedPubMedCentral
49.
go back to reference Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol. 2015;593(4):775–86.PubMedCrossRef Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol. 2015;593(4):775–86.PubMedCrossRef
50.
51.
go back to reference Daly DM, Park SJ, Valinsky WC, et al. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011;589(PT 11):2857–70.PubMedPubMedCentralCrossRef Daly DM, Park SJ, Valinsky WC, et al. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol. 2011;589(PT 11):2857–70.PubMedPubMedCentralCrossRef
54.
go back to reference Furnes MW, Zhao CM, Chen D. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg. 2009;19(10):1430–8.PubMedCrossRef Furnes MW, Zhao CM, Chen D. Development of obesity is associated with increased calories per meal rather than per day. A study of high-fat diet-induced obesity in young rats. Obes Surg. 2009;19(10):1430–8.PubMedCrossRef
55.
go back to reference Dockray GJ, Burdyga G. Plasticity in vagal afferent neurons during feeding and fasting: mechanisms and significance. Acta Physiol (Oxf). 2011;201(3):313–21.CrossRef Dockray GJ, Burdyga G. Plasticity in vagal afferent neurons during feeding and fasting: mechanisms and significance. Acta Physiol (Oxf). 2011;201(3):313–21.CrossRef
56.
57.
go back to reference Kral JG, Paez W, Wolfe BM. Vagal nerve function in obesity: therapeutic implications. World J Surg. 2009;33(10):1995–2006.PubMedCrossRef Kral JG, Paez W, Wolfe BM. Vagal nerve function in obesity: therapeutic implications. World J Surg. 2009;33(10):1995–2006.PubMedCrossRef
58.
go back to reference Stearns AT, Balakrishnan A, Radmanesh A, et al. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci. 2012;57(5):1281–90.PubMedCrossRef Stearns AT, Balakrishnan A, Radmanesh A, et al. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci. 2012;57(5):1281–90.PubMedCrossRef
59.
go back to reference Leung FW. Capsaicin as an anti-obesity drug. Prog Drug Res. 2014;68:171–9.PubMed Leung FW. Capsaicin as an anti-obesity drug. Prog Drug Res. 2014;68:171–9.PubMed
60.
go back to reference Westerterp-Plantenga MS, Smeets A, Lejeune MP. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes. 2005;29(6):682–8.CrossRef Westerterp-Plantenga MS, Smeets A, Lejeune MP. Sensory and gastrointestinal satiety effects of capsaicin on food intake. Int J Obes. 2005;29(6):682–8.CrossRef
61.
go back to reference Faris PL, Kim SW, Meller WH, et al. Effect of decreasing afferent vagal activity with ondansetron on symptoms of bulimia nervosa: a randomised, double-blind trial. Lancet. 2000;355(9206):792–7.PubMedCrossRef Faris PL, Kim SW, Meller WH, et al. Effect of decreasing afferent vagal activity with ondansetron on symptoms of bulimia nervosa: a randomised, double-blind trial. Lancet. 2000;355(9206):792–7.PubMedCrossRef
62.
go back to reference Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45(1):41–50.PubMedCrossRef Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45(1):41–50.PubMedCrossRef
64.
go back to reference Bonham AC, Chen CY, Sekizawa S, et al. Plasticity in the nucleus tractus solitarius and its influence on lung and airway reflexes. J Appl Physiol. 2006;101(1):322–7.PubMedCrossRef Bonham AC, Chen CY, Sekizawa S, et al. Plasticity in the nucleus tractus solitarius and its influence on lung and airway reflexes. J Appl Physiol. 2006;101(1):322–7.PubMedCrossRef
65.
go back to reference Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.PubMedPubMedCentralCrossRef Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.PubMedPubMedCentralCrossRef
66.
go back to reference Donovan MJ, Paulino G, Raybould HE. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol Behav. 2007;92(5):969–74.PubMedPubMedCentralCrossRef Donovan MJ, Paulino G, Raybould HE. CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol Behav. 2007;92(5):969–74.PubMedPubMedCentralCrossRef
67.
go back to reference Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed
68.
go back to reference Zsombok A, Bhaskaran MD, Gao H, et al. Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci. 2011;31(39):14024–31.PubMedPubMedCentralCrossRef Zsombok A, Bhaskaran MD, Gao H, et al. Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci. 2011;31(39):14024–31.PubMedPubMedCentralCrossRef
69.
go back to reference Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978;153(1):1–26.PubMedCrossRef Ricardo JA, Koh ET. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 1978;153(1):1–26.PubMedCrossRef
70.
go back to reference Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.PubMedPubMedCentralCrossRef Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.PubMedPubMedCentralCrossRef
71.
go back to reference Ter Horst GJ, de Boer P, Luiten PG, et al. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience. 1989;31(3):785–97.PubMedCrossRef Ter Horst GJ, de Boer P, Luiten PG, et al. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience. 1989;31(3):785–97.PubMedCrossRef
72.
go back to reference Jean A. Le noyau du faisceau solitaire: aspects neuroanatomiques, neurochimiques et fonctionnels. Arch Int Physiol Bioch Biophys. 1991;99:A3–A52. Jean A. Le noyau du faisceau solitaire: aspects neuroanatomiques, neurochimiques et fonctionnels. Arch Int Physiol Bioch Biophys. 1991;99:A3–A52.
73.
go back to reference Van den Oever MC, Spijker S, Smit AB. The synaptic pathology of drug addiction. Adv Exp Med Biol. 2012;970:469–91.PubMedCrossRef Van den Oever MC, Spijker S, Smit AB. The synaptic pathology of drug addiction. Adv Exp Med Biol. 2012;970:469–91.PubMedCrossRef
75.
go back to reference Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76 Pt B:276–86.PubMedCrossRef Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76 Pt B:276–86.PubMedCrossRef
77.
go back to reference Peters JH, Gallaher ZR, et al. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol. 2013;521(15):3584–99.PubMedPubMedCentralCrossRef Peters JH, Gallaher ZR, et al. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy. J Comp Neurol. 2013;521(15):3584–99.PubMedPubMedCentralCrossRef
78.
go back to reference Gallaher ZR, Ryu V, Herzog T, et al. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett. 2012;513(1):31–6.PubMedPubMedCentralCrossRef Gallaher ZR, Ryu V, Herzog T, et al. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci Lett. 2012;513(1):31–6.PubMedPubMedCentralCrossRef
79.
go back to reference Andreelli F, Amouyal C, Magnan C, et al. What can bariatric surgery teach us about the pathophysiology of type 2 diabetes? Diabetes Metab. 2009;35(6 Pt 2):499–507.PubMedCrossRef Andreelli F, Amouyal C, Magnan C, et al. What can bariatric surgery teach us about the pathophysiology of type 2 diabetes? Diabetes Metab. 2009;35(6 Pt 2):499–507.PubMedCrossRef
80.
81.
go back to reference Sussman S, Lisha N, Griffiths M. Prevalence of the addictions: a problem of the majority or the minority? Eval Health Prof. 2011;34(1):3–56.PubMedCrossRef Sussman S, Lisha N, Griffiths M. Prevalence of the addictions: a problem of the majority or the minority? Eval Health Prof. 2011;34(1):3–56.PubMedCrossRef
82.
go back to reference Pang ZP, Han W. Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci Rep. 2012;32(5):423–32.PubMedPubMedCentralCrossRef Pang ZP, Han W. Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci Rep. 2012;32(5):423–32.PubMedPubMedCentralCrossRef
83.
go back to reference Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.PubMedPubMedCentralCrossRef Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.PubMedPubMedCentralCrossRef
84.
85.
go back to reference Kullmann S, Heni M, Veit R, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50.PubMedCrossRef Kullmann S, Heni M, Veit R, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50.PubMedCrossRef
86.
go back to reference Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125(3):939–48.PubMedPubMedCentralCrossRef Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125(3):939–48.PubMedPubMedCentralCrossRef
87.
go back to reference le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.PubMedCrossRef le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246(5):780–5.PubMedCrossRef
88.
go back to reference Larder R, O’Rahilly S. Shedding pounds after going under the knife: guts over glory-why diets fail. Nat Med. 2012;18(5):666–7.PubMedCrossRef Larder R, O’Rahilly S. Shedding pounds after going under the knife: guts over glory-why diets fail. Nat Med. 2012;18(5):666–7.PubMedCrossRef
89.
go back to reference Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.PubMedCrossRef Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.PubMedCrossRef
90.
go back to reference Scott WR, Batterham RL. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: understanding weight loss and improvements in type 2 diabetes after bariatric surgery. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R15–27.PubMedCrossRef Scott WR, Batterham RL. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: understanding weight loss and improvements in type 2 diabetes after bariatric surgery. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R15–27.PubMedCrossRef
91.
go back to reference Bueter M, Löwenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138(5):1845–53.PubMedCrossRef Bueter M, Löwenstein C, Olbers T, et al. Gastric bypass increases energy expenditure in rats. Gastroenterology. 2010;138(5):1845–53.PubMedCrossRef
92.
go back to reference Schultes B, Ernst B, Wilms B, et al. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010;92(2):277–83.PubMedCrossRef Schultes B, Ernst B, Wilms B, et al. Hedonic hunger is increased in severely obese patients and is reduced after gastric bypass surgery. Am J Clin Nutr. 2010;92(2):277–83.PubMedCrossRef
93.
go back to reference Flancbaum L, Choban PS, Bradley LR, et al. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122(5):943–9.PubMedCrossRef Flancbaum L, Choban PS, Bradley LR, et al. Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery. 1997;122(5):943–9.PubMedCrossRef
94.
go back to reference Delin CR, Watts JM, Saebel JL, et al. Eating behavior and the experience of hunger following gastric bypass surgery for morbid obesity. Obes Surg. 1997;7(5):405–13.PubMedCrossRef Delin CR, Watts JM, Saebel JL, et al. Eating behavior and the experience of hunger following gastric bypass surgery for morbid obesity. Obes Surg. 1997;7(5):405–13.PubMedCrossRef
95.
go back to reference Chambers AP, Wilson-Perez HE, McGrath S, et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab. 2012;303(8):E1076–84.PubMedPubMedCentralCrossRef Chambers AP, Wilson-Perez HE, McGrath S, et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab. 2012;303(8):E1076–84.PubMedPubMedCentralCrossRef
96.
go back to reference Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.PubMedCrossRef Steele KE, Prokopowicz GP, Schweitzer MA, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.PubMedCrossRef
97.
go back to reference Hao Z, Townsend RL, Mumphrey MB, et al. Vagal innervation of the intestine contributes to weight loss after Roux-e-Y gastric bypass surgery in rats. Obes Surg. 2014;24(12):2145–51.PubMedPubMedCentralCrossRef Hao Z, Townsend RL, Mumphrey MB, et al. Vagal innervation of the intestine contributes to weight loss after Roux-e-Y gastric bypass surgery in rats. Obes Surg. 2014;24(12):2145–51.PubMedPubMedCentralCrossRef
98.
go back to reference Gautron L, Zechner J, Aguirre V. Vagal innervation patterns following roux-en-Y gastric bypass in the mouse. Int J Obes. 2013;37(12):1603–7.CrossRef Gautron L, Zechner J, Aguirre V. Vagal innervation patterns following roux-en-Y gastric bypass in the mouse. Int J Obes. 2013;37(12):1603–7.CrossRef
99.
go back to reference Yamazaki H, Tsuboya T, Tsuji K, et al. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care. 2015;38(9):1673–9.PubMedCrossRef Yamazaki H, Tsuboya T, Tsuji K, et al. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care. 2015;38(9):1673–9.PubMedCrossRef
100.
go back to reference Yki-Järvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis. 2010;28(1):203–9.PubMedCrossRef Yki-Järvinen H. Liver fat in the pathogenesis of insulin resistance and type 2 diabetes. Dig Dis. 2010;28(1):203–9.PubMedCrossRef
101.
go back to reference Immonen H, Hannukainen JC, Iozzo P, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol. 2014;60(2):377–83.PubMedCrossRef Immonen H, Hannukainen JC, Iozzo P, et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J Hepatol. 2014;60(2):377–83.PubMedCrossRef
102.
go back to reference Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.PubMedCrossRef Quercia I, Dutia R, Kotler DP, et al. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40(2):87–94.PubMedCrossRef
103.
go back to reference He B, Piao D, Yu C, et al. Amelioration in hepatic insulin sensitivity by reduced hepatic lipid accumulation at short-term after Roux-en-Y gastric bypass surgery in type 2 diabetic rats. Obes Surg. 2013;23(12):2033–41.PubMedCrossRef He B, Piao D, Yu C, et al. Amelioration in hepatic insulin sensitivity by reduced hepatic lipid accumulation at short-term after Roux-en-Y gastric bypass surgery in type 2 diabetic rats. Obes Surg. 2013;23(12):2033–41.PubMedCrossRef
104.
go back to reference Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–9.PubMedCrossRef Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–9.PubMedCrossRef
105.
go back to reference Yue JT, Abraham MA, LaPierre MP, et al. A fatty acid-dependent hypothalamic-DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun. 2015;6:5970.PubMedCrossRef Yue JT, Abraham MA, LaPierre MP, et al. A fatty acid-dependent hypothalamic-DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun. 2015;6:5970.PubMedCrossRef
106.
go back to reference Lam CK, Chari M, Rutter GA, et al. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes. 2011;60(1):107–13.PubMedCrossRef Lam CK, Chari M, Rutter GA, et al. Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes. 2011;60(1):107–13.PubMedCrossRef
107.
go back to reference Cohen R, le Roux CW, Papamargaritis D, et al. Role of proximal gut exclusion from food on glucose homeostasis in patients with type 2 diabetes. Diabet Med. 2013;30(12):1482–6.PubMedCrossRef Cohen R, le Roux CW, Papamargaritis D, et al. Role of proximal gut exclusion from food on glucose homeostasis in patients with type 2 diabetes. Diabet Med. 2013;30(12):1482–6.PubMedCrossRef
108.
go back to reference de Jonge C, Rensen SS, Verdam FJ, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013;23(9):1354–60.PubMedCrossRef de Jonge C, Rensen SS, Verdam FJ, et al. Endoscopic duodenal-jejunal bypass liner rapidly improves type 2 diabetes. Obes Surg. 2013;23(9):1354–60.PubMedCrossRef
109.
go back to reference Fractyl Labs. Positive clinical data for first procedural therapy to treat type 2 diabetes. In: Abstracts from the 19th world congress of the international federation for the surgery of obesity & metabolic disorders (IFSO). Obes Surg. 2014;24(8):1170. Fractyl Labs. Positive clinical data for first procedural therapy to treat type 2 diabetes. In: Abstracts from the 19th world congress of the international federation for the surgery of obesity & metabolic disorders (IFSO). Obes Surg. 2014;24(8):1170.
110.
go back to reference Kamvissi V, Salerno A, Bornstein SR, et al. Incretins or anti-incretins? A new model for the “entero-pancreatic axis”. Horm Metab Res. 2015;47(1):84–7.PubMed Kamvissi V, Salerno A, Bornstein SR, et al. Incretins or anti-incretins? A new model for the “entero-pancreatic axis”. Horm Metab Res. 2015;47(1):84–7.PubMed
111.
go back to reference Farré R, Tack J. Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol. 2013;108(5):698–706.PubMedCrossRef Farré R, Tack J. Food and symptom generation in functional gastrointestinal disorders: physiological aspects. Am J Gastroenterol. 2013;108(5):698–706.PubMedCrossRef
112.
go back to reference Berthoud HR, Kressel M, Raybould HE, et al. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl). 1995;191(3):203–12.CrossRef Berthoud HR, Kressel M, Raybould HE, et al. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl). 1995;191(3):203–12.CrossRef
113.
go back to reference Kressel M, Berthoud HR, Neuhuber WL. Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res. 1994;275(1):109–23.PubMedCrossRef Kressel M, Berthoud HR, Neuhuber WL. Vagal innervation of the rat pylorus: an anterograde tracing study using carbocyanine dyes and laser scanning confocal microscopy. Cell Tissue Res. 1994;275(1):109–23.PubMedCrossRef
114.
go back to reference Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.PubMedCrossRef Holst JJ. Enteroendocrine secretion of gut hormones in diabetes, obesity and after bariatric surgery. Curr Opin Pharmacol. 2013;13(6):983–8.PubMedCrossRef
115.
go back to reference Daniel EE, Wiebe GE. Transmission of reflexes arising on both sides of the gastroduodenal junction. Am J Phys. 1966;211(3):634–42. Daniel EE, Wiebe GE. Transmission of reflexes arising on both sides of the gastroduodenal junction. Am J Phys. 1966;211(3):634–42.
116.
go back to reference Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:245683.PubMedPubMedCentralCrossRef Shikora S, Toouli J, Herrera MF, et al. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J Obes. 2013;2013:245683.PubMedPubMedCentralCrossRef
117.
go back to reference Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in obese adult minipigs. Appetite. 2010;55(2):245–52.PubMedCrossRef Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in obese adult minipigs. Appetite. 2010;55(2):245–52.PubMedCrossRef
118.
go back to reference Smith DK, Sarfeh J, Howard L. Truncal vagotomy in hypothalamic obesity. Lancet. 1983;1(8337):1330–1.PubMedCrossRef Smith DK, Sarfeh J, Howard L. Truncal vagotomy in hypothalamic obesity. Lancet. 1983;1(8337):1330–1.PubMedCrossRef
119.
go back to reference Lebovitz HE, Ludvik B, Yaniv I, et al. Gutterman DD; Metacure Investigators. Treatment of patients with obese type 2 diabetes with Tantalus-DIAMOND® gastric electrical stimulation: normal triglycerides predict durable effects for at least 3 years. Horm Metab Res. 2015;47(6):456–62.PubMedCrossRef Lebovitz HE, Ludvik B, Yaniv I, et al. Gutterman DD; Metacure Investigators. Treatment of patients with obese type 2 diabetes with Tantalus-DIAMOND® gastric electrical stimulation: normal triglycerides predict durable effects for at least 3 years. Horm Metab Res. 2015;47(6):456–62.PubMedCrossRef
120.
go back to reference Peles S, Petersen J, Aviv R, et al. Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G577–85.PubMedCrossRef Peles S, Petersen J, Aviv R, et al. Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation. Am J Physiol Gastrointest Liver Physiol. 2003;285(3):G577–85.PubMedCrossRef
121.
go back to reference Goldman JM, Wheeler MF. Remission of diabetes after irradiation of head and neck. Diabetes Care. 1987;10(1):137–8.PubMedCrossRef Goldman JM, Wheeler MF. Remission of diabetes after irradiation of head and neck. Diabetes Care. 1987;10(1):137–8.PubMedCrossRef
122.
go back to reference Raheja BS, Motwani BT, Mehta AR, et al. Remission of NIDDM after irradiation of metastatic cervical lymph nodes. Diabetes Care. 1986;9(1):101–3.PubMedCrossRef Raheja BS, Motwani BT, Mehta AR, et al. Remission of NIDDM after irradiation of metastatic cervical lymph nodes. Diabetes Care. 1986;9(1):101–3.PubMedCrossRef
123.
go back to reference Rex D, Duckworth WC. Remission of overt diabetes mellitus after removal of an oral epidermoid carcinoma. Am J Med Sci. 1984;287(3):43–5.PubMedCrossRef Rex D, Duckworth WC. Remission of overt diabetes mellitus after removal of an oral epidermoid carcinoma. Am J Med Sci. 1984;287(3):43–5.PubMedCrossRef
124.
go back to reference Ricard D, Soussain C, Psimaras D. Neurotoxicity of the CNS: diagnosis, treatment and prevention. Rev Neurol (Paris). 2011;167(10):737–45.CrossRef Ricard D, Soussain C, Psimaras D. Neurotoxicity of the CNS: diagnosis, treatment and prevention. Rev Neurol (Paris). 2011;167(10):737–45.CrossRef
125.
go back to reference Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol. 1984;222(4):560–77.PubMedCrossRef Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol. 1984;222(4):560–77.PubMedCrossRef
126.
go back to reference Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74.PubMedPubMedCentralCrossRef Jang HJ, Kokrashvili Z, Theodorakis MJ, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74.PubMedPubMedCentralCrossRef
127.
go back to reference Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol. 2013;48(4):442–51.PubMedPubMedCentralCrossRef Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol. 2013;48(4):442–51.PubMedPubMedCentralCrossRef
128.
go back to reference Niijima A. Effect of umami taste stimulations on vagal efferent activity in the rat. Brain Res Bull. 1991;27(3–4):393–6.PubMedCrossRef Niijima A. Effect of umami taste stimulations on vagal efferent activity in the rat. Brain Res Bull. 1991;27(3–4):393–6.PubMedCrossRef
129.
go back to reference Schier LA, Davidson TL, Powley TL. Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1351–63.PubMedPubMedCentralCrossRef Schier LA, Davidson TL, Powley TL. Rapid stimulus-bound suppression of intake in response to an intraduodenal nonnutritive sweetener after training with nutritive sugars predicting malaise. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1351–63.PubMedPubMedCentralCrossRef
130.
go back to reference Freeman AJ, Cunningham KT, Tyers MB. Selectivity of 5-HT3 antagonists and anti-emetic mechanisms of action. Anti-Cancer Drugs. 1992;3(2):79–85.PubMedCrossRef Freeman AJ, Cunningham KT, Tyers MB. Selectivity of 5-HT3 antagonists and anti-emetic mechanisms of action. Anti-Cancer Drugs. 1992;3(2):79–85.PubMedCrossRef
131.
go back to reference Wood PL. The NMDA receptor complex: a long and winding road to therapeutics. IDrugs. 2005;8(3):229–35.PubMed Wood PL. The NMDA receptor complex: a long and winding road to therapeutics. IDrugs. 2005;8(3):229–35.PubMed
132.
go back to reference Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203.PubMed Vyklicky V, Korinek M, Smejkalova T, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63(Suppl 1):S191–203.PubMed
133.
Metadata
Title
The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes
Author
Claudio Blasi
Publication date
01-12-2016
Publisher
Springer US
Published in
Obesity Surgery / Issue 12/2016
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-016-2419-2

Other articles of this Issue 12/2016

Obesity Surgery 12/2016 Go to the issue