Skip to main content
Top
Published in: Journal of Gastroenterology 4/2013

Open Access 01-04-2013 | Review

Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption

Authors: Kunio Torii, Hisayuki Uneyama, Eiji Nakamura

Published in: Journal of Gastroenterology | Issue 4/2013

Login to get access

Abstract

Dietary glutamate (Glu) stimulates to evoke the umami taste, one of the five basic tastes, enhancing food palatability. But it is also the main gut energy source for the absorption and metabolism for each nutrient, thus, only a trace amount of Glu reaches the general circulation. Recently, we demonstrated a unique gut sensing system for free Glu (glutamate signaling). Glu is the only nutrient among amino acids, sugars and electrolytes that activates rat gastric vagal afferents from the luminal side specifically via metabotropic Glu receptors type 1 on mucosal cells releasing mucin and nitrite mono-oxide (NO), then NO stimulates serotonin (5HT) release at the enterochromaffin cell. Finally released 5HT stimulates 5HT3 receptor at the nerve end of the vagal afferent fiber. Functional magnetic resonance imaging (f-MRI, 4.7 T) analysis revealed that luminal sensing with 1 % (w/v) monosodium l-glutamate (MSG) in rat stomach activates both the medial preoptic area (body temperature controller) and the dorsomedial hypothalamus (basic metabolic regulator), resulting in diet-induced thermogenesis during mealing without changes of appetite for food. Interestingly, rats were forced to eat a high fat and high sugar diet with free access to 1 % (w/w) MSG and water in a choice paradigm and showed the strong preference for the MSG solution and subsequently, they displayed lower fat deposition, weight gain and blood leptin. On the other hand, these brain functional changes by the f-MRI signal after 60 mM MSG intubation into the stomach was abolished in the case of total vagotomized rats, suggesting that luminal glutamate signaling contributes to control digestion and thermogenesis without obesity.
Literature
1.
go back to reference Giacometti T. Free and bound glutamate in natural products. In: Filer Jr LJ, Garattini MR, Kare MR, Reynolds WA, Wurtman RJ, editors. Glutamic acid: advances in biochemistry and physiology. New York: Raven Press; 1979. p. 25–34. Giacometti T. Free and bound glutamate in natural products. In: Filer Jr LJ, Garattini MR, Kare MR, Reynolds WA, Wurtman RJ, editors. Glutamic acid: advances in biochemistry and physiology. New York: Raven Press; 1979. p. 25–34.
2.
go back to reference Young VR, Ajami AM. Glutamate: an amino acid of particular distribution. J Nutr. 2000;130(Suppl 4S):892S–900S.PubMed Young VR, Ajami AM. Glutamate: an amino acid of particular distribution. J Nutr. 2000;130(Suppl 4S):892S–900S.PubMed
3.
go back to reference Uematsu A, Tsurugizawa T, Kondoh T, Torii K. Conditioned flavor preference learning by intragastric administration of l-glutamate in rats. Neurosci Lett. 2009;451:190–3.PubMedCrossRef Uematsu A, Tsurugizawa T, Kondoh T, Torii K. Conditioned flavor preference learning by intragastric administration of l-glutamate in rats. Neurosci Lett. 2009;451:190–3.PubMedCrossRef
4.
go back to reference Uematsu A, Tsurugizawa T, Uneyama H, Torii K. Brain–gut communication via vagus nerve modulates conditioned flavor preference. Eur J Neurosci. 2010;31:1136–43.PubMedCrossRef Uematsu A, Tsurugizawa T, Uneyama H, Torii K. Brain–gut communication via vagus nerve modulates conditioned flavor preference. Eur J Neurosci. 2010;31:1136–43.PubMedCrossRef
5.
go back to reference Hector MP. Reflexes of salivary secretion. In: Garrett JR, Ekström J, Anderson LC, editors. Neural mechanisms of salivary gland secretion. Basel: Karger; 1999. p. 196–217.CrossRef Hector MP. Reflexes of salivary secretion. In: Garrett JR, Ekström J, Anderson LC, editors. Neural mechanisms of salivary gland secretion. Basel: Karger; 1999. p. 196–217.CrossRef
6.
go back to reference Hodson NA, Linden RWA. The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes. Physiol Behav. 2006;89:711–7.PubMedCrossRef Hodson NA, Linden RWA. The effect of monosodium glutamate on parotid salivary flow in comparison to the response to representatives of the other four basic tastes. Physiol Behav. 2006;89:711–7.PubMedCrossRef
7.
go back to reference Niijima A. Control of liver function and neuroendocrine regulation of blood glucose levels. In: Brooks CMcC, Koizumi K, Sato A, editors. Integrative functions of the autonomic nervous system. Tokyo/Elsevier: University of Tokyo Press and Amsterdam/North-Holland Biomedical Press; 1979. p. 68–83. Niijima A. Control of liver function and neuroendocrine regulation of blood glucose levels. In: Brooks CMcC, Koizumi K, Sato A, editors. Integrative functions of the autonomic nervous system. Tokyo/Elsevier: University of Tokyo Press and Amsterdam/North-Holland Biomedical Press; 1979. p. 68–83.
8.
go back to reference Niijima A. Effects of taste stimulation on the efferent activity of the pancreatic vagus nerve in the rat. Brain Res Bull. 1991;26:161–4.PubMedCrossRef Niijima A. Effects of taste stimulation on the efferent activity of the pancreatic vagus nerve in the rat. Brain Res Bull. 1991;26:161–4.PubMedCrossRef
9.
go back to reference Niijima A. Effects of taste stimulation on the efferent activity of the autonomic nerves in the rat. Brain Res Bull. 1991;26:165–7.PubMedCrossRef Niijima A. Effects of taste stimulation on the efferent activity of the autonomic nerves in the rat. Brain Res Bull. 1991;26:165–7.PubMedCrossRef
10.
go back to reference Niijima A. Effect of umami taste stimulations on vagal efferent activity in the rat. Brain Res Bull. 1991;27:393–6.PubMedCrossRef Niijima A. Effect of umami taste stimulations on vagal efferent activity in the rat. Brain Res Bull. 1991;27:393–6.PubMedCrossRef
11.
go back to reference Louis-Sylvestre J. Preabsorptive insulin release and hypoglycemia in rats. Am J Physiol. 1976;230:56–60.PubMed Louis-Sylvestre J. Preabsorptive insulin release and hypoglycemia in rats. Am J Physiol. 1976;230:56–60.PubMed
12.
go back to reference Steffens AB. Influence of the oral cavity on insulin release in the rat. Am J Physiol. 1976;230:1411–5.PubMed Steffens AB. Influence of the oral cavity on insulin release in the rat. Am J Physiol. 1976;230:1411–5.PubMed
13.
go back to reference Strubbe JH, Steffens AB. Rapid insulin release after ingestion of a meal in the unanesthetized rat. Am J Physiol. 1975;229:1019–22.PubMed Strubbe JH, Steffens AB. Rapid insulin release after ingestion of a meal in the unanesthetized rat. Am J Physiol. 1975;229:1019–22.PubMed
14.
go back to reference Jiang ZY, Niijima A. Effects of taste stimuli on the efferent activity of the gastric vagus nerve in rats. Neurosci Lett. 1986;69:42–6.PubMedCrossRef Jiang ZY, Niijima A. Effects of taste stimuli on the efferent activity of the gastric vagus nerve in rats. Neurosci Lett. 1986;69:42–6.PubMedCrossRef
15.
go back to reference Ikuno H, Sakaguchi T. Gastric vagal functional distribution in the secretion of gastric acid produced by sweet taste. Brain Res Bull. 1990;25:429–31.PubMedCrossRef Ikuno H, Sakaguchi T. Gastric vagal functional distribution in the secretion of gastric acid produced by sweet taste. Brain Res Bull. 1990;25:429–31.PubMedCrossRef
16.
go back to reference Niijima A. Effects of oral and intestinal stimulation with umami substance on gastric vagus activity. Physiol Behav. 1991;49:1025–8.PubMedCrossRef Niijima A. Effects of oral and intestinal stimulation with umami substance on gastric vagus activity. Physiol Behav. 1991;49:1025–8.PubMedCrossRef
17.
go back to reference Niijima A. Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J Nutr. 2000;130:971S–3S.PubMed Niijima A. Reflex effects of oral, gastrointestinal and hepatoportal glutamate sensors on vagal nerve activity. J Nutr. 2000;130:971S–3S.PubMed
18.
go back to reference Niijima A, Togiyama T, Adachi A. Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiol Behav. 1990;48:905–8.PubMedCrossRef Niijima A, Togiyama T, Adachi A. Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiol Behav. 1990;48:905–8.PubMedCrossRef
19.
go back to reference Tonosaki K, Hori Y, Shimizu Y, Tonosaki K. Relationships between insulin release and taste. Biomed Res. 2007;28:79–83.PubMedCrossRef Tonosaki K, Hori Y, Shimizu Y, Tonosaki K. Relationships between insulin release and taste. Biomed Res. 2007;28:79–83.PubMedCrossRef
20.
21.
go back to reference Kitamura A, Niijima A, Torii K, Uneyama H. Amino acid-sensing by the abdominal vagus. In: Costa A, Villalba E (eds) Horizons in neuroscience research, vol. 1. New York: Nova Science Publishers, Inc.; 2010. p. 367–77. Kitamura A, Niijima A, Torii K, Uneyama H. Amino acid-sensing by the abdominal vagus. In: Costa A, Villalba E (eds) Horizons in neuroscience research, vol. 1. New York: Nova Science Publishers, Inc.; 2010. p. 367–77.
22.
go back to reference Raybould HE, Glatzle J, Freeman SL, Whited K, Dracel N, Liou A, Bohan D. Detection of macronutrients in the intestinal wall. Auton Neurosci. 2006;125:28–33.PubMedCrossRef Raybould HE, Glatzle J, Freeman SL, Whited K, Dracel N, Liou A, Bohan D. Detection of macronutrients in the intestinal wall. Auton Neurosci. 2006;125:28–33.PubMedCrossRef
23.
go back to reference Rozengurt E, Sternini C. Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol. 2007;7:557–62.PubMedCrossRef Rozengurt E, Sternini C. Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol. 2007;7:557–62.PubMedCrossRef
24.
go back to reference Uneyama H, Niijima A, San Gabriel A, Torii K. Luminal amino acid sensing in the rat gastric mucosa. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1163–70.PubMedCrossRef Uneyama H, Niijima A, San Gabriel A, Torii K. Luminal amino acid sensing in the rat gastric mucosa. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1163–70.PubMedCrossRef
25.
go back to reference Fujita T, Kobayashi S, Yui R. Paraneuron concept and its current implications. Adv Biochem Psychopharmacol. 1980;25:321–5.PubMed Fujita T, Kobayashi S, Yui R. Paraneuron concept and its current implications. Adv Biochem Psychopharmacol. 1980;25:321–5.PubMed
26.
go back to reference Höfer D, Püschel B, Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA. 1996;93:6631–4.PubMedCrossRef Höfer D, Püschel B, Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA. 1996;93:6631–4.PubMedCrossRef
27.
go back to reference Kitamura A, Sato W, Uneyama H, Torii K, Niijima A. Effects of the intragastric infusion of inosine monophosphate and l-glutamate on the vagal gastric afferent activity and subsequent autonomic reflexes. J Physiol Sci. 2011;61(1):65–71.PubMedCrossRef Kitamura A, Sato W, Uneyama H, Torii K, Niijima A. Effects of the intragastric infusion of inosine monophosphate and l-glutamate on the vagal gastric afferent activity and subsequent autonomic reflexes. J Physiol Sci. 2011;61(1):65–71.PubMedCrossRef
28.
go back to reference Sharma KN, Nasset ES. Electrical activity in mesenteric nerves after perfusion of gut lumen. Am J Physiol. 1962;202:725–30.PubMed Sharma KN, Nasset ES. Electrical activity in mesenteric nerves after perfusion of gut lumen. Am J Physiol. 1962;202:725–30.PubMed
29.
go back to reference Jeanningros R, Mei N. Données préliminaires sur la réponse des chémorécepteurs intestinaux acides aminés. Reprod Nutr Dév. 1980;20:1615–9.PubMedCrossRef Jeanningros R, Mei N. Données préliminaires sur la réponse des chémorécepteurs intestinaux acides aminés. Reprod Nutr Dév. 1980;20:1615–9.PubMedCrossRef
30.
go back to reference Jeanningros R. Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: a putative signal for protein induced satiety. Physiol Behav. 1982;28:9–21.PubMedCrossRef Jeanningros R. Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: a putative signal for protein induced satiety. Physiol Behav. 1982;28:9–21.PubMedCrossRef
31.
go back to reference Niijima A, Torii K, Uneyama H. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal: an electrophysiological study. Chem Senses. 2005;30(Suppl 1):i178–9.PubMedCrossRef Niijima A, Torii K, Uneyama H. Role played by vagal chemical sensors in the hepato-portal region and duodeno-intestinal canal: an electrophysiological study. Chem Senses. 2005;30(Suppl 1):i178–9.PubMedCrossRef
32.
go back to reference Eastwood C, Maubach K, Kirkup AJ, Grundy D. The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci Lett. 1998;254:145–8.PubMedCrossRef Eastwood C, Maubach K, Kirkup AJ, Grundy D. The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci Lett. 1998;254:145–8.PubMedCrossRef
33.
go back to reference Schwartz GJ, Moran TH. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat. Am J Physiol Regul Integr Comp Physiol. 1998;274:R1236–42. Schwartz GJ, Moran TH. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat. Am J Physiol Regul Integr Comp Physiol. 1998;274:R1236–42.
34.
35.
36.
go back to reference Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition. 2000;16:866–73.PubMedCrossRef Schwartz GJ. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Nutrition. 2000;16:866–73.PubMedCrossRef
37.
go back to reference Tsurugizawa T, Kondoh T, Torii K. Forebrain activation induced by postoral nutritive substances in rats. NeuroReport. 2008;19:1111–5.PubMedCrossRef Tsurugizawa T, Kondoh T, Torii K. Forebrain activation induced by postoral nutritive substances in rats. NeuroReport. 2008;19:1111–5.PubMedCrossRef
38.
go back to reference Tsurugizawa T, Uematsu A, Nakamura E, Hasumura M, Hirota M, Kondoh T, Uneyama H, Torii K. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut–brain axis. Gastroenterology. 2009;137:262–73.PubMedCrossRef Tsurugizawa T, Uematsu A, Nakamura E, Hasumura M, Hirota M, Kondoh T, Uneyama H, Torii K. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut–brain axis. Gastroenterology. 2009;137:262–73.PubMedCrossRef
39.
go back to reference Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Blood oxygenation level-dependent response to intragastric load of corn oil emulsion in conscious rats. NeuroReport. 2009;20:1625–9.PubMedCrossRef Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Blood oxygenation level-dependent response to intragastric load of corn oil emulsion in conscious rats. NeuroReport. 2009;20:1625–9.PubMedCrossRef
40.
go back to reference Kondoh T, Torii K. MSG intake suppresses weight gain, fat deposition and plasma leptin levels in male Sprague-Dawley rats. Physiol Behav. 2008;95:135–44.PubMedCrossRef Kondoh T, Torii K. MSG intake suppresses weight gain, fat deposition and plasma leptin levels in male Sprague-Dawley rats. Physiol Behav. 2008;95:135–44.PubMedCrossRef
41.
go back to reference Sclafani A. Fat and sugar flavor preference and acceptance in C57BL/6J and 129 mice: experience attenuates strain differences. Physiol Behav. 2007;90:602–11.PubMedCrossRef Sclafani A. Fat and sugar flavor preference and acceptance in C57BL/6J and 129 mice: experience attenuates strain differences. Physiol Behav. 2007;90:602–11.PubMedCrossRef
42.
go back to reference Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric infusion of ethanol in rats. Pharmacol Biochem Behav. 2001;68:327–38.PubMedCrossRef Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric infusion of ethanol in rats. Pharmacol Biochem Behav. 2001;68:327–38.PubMedCrossRef
43.
go back to reference Touzani K, Sclafani A. Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur J Neurosci. 2002;16:2425–33.PubMedCrossRef Touzani K, Sclafani A. Lateral hypothalamic lesions impair flavour-nutrient and flavour-toxin trace learning in rats. Eur J Neurosci. 2002;16:2425–33.PubMedCrossRef
44.
go back to reference Mark GP, Smith SE, Rada PV, Hoebel BG. An appetitively conditioned taste elicits a preferential increase in mesolimbic dopamine release. Pharmacol Biochem Behav. 1994;48:651–60.PubMedCrossRef Mark GP, Smith SE, Rada PV, Hoebel BG. An appetitively conditioned taste elicits a preferential increase in mesolimbic dopamine release. Pharmacol Biochem Behav. 1994;48:651–60.PubMedCrossRef
45.
go back to reference Shibata R, Kameishi M, Kondoh T, Torii K. Bilateral dopaminergic lesions in the ventral tegmental area of rats influence sucrose intake, but not umami and amino acid intake. Physiol Behav. 2009;96:667–74.PubMedCrossRef Shibata R, Kameishi M, Kondoh T, Torii K. Bilateral dopaminergic lesions in the ventral tegmental area of rats influence sucrose intake, but not umami and amino acid intake. Physiol Behav. 2009;96:667–74.PubMedCrossRef
46.
go back to reference Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol. 2006;291:G171–7.PubMedCrossRef Rozengurt E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am J Physiol Gastrointest Liver Physiol. 2006;291:G171–7.PubMedCrossRef
47.
go back to reference Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 2005;33:302–5.PubMedCrossRef Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans. 2005;33:302–5.PubMedCrossRef
48.
go back to reference Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.PubMedCrossRef Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.PubMedCrossRef
49.
go back to reference Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fuji R, Fukusumi S, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173–6.PubMedCrossRef Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fuji R, Fukusumi S, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature. 2003;422:173–6.PubMedCrossRef
50.
go back to reference Beardshall K, Frost G, Morarji Y, Domin J, Bloom SR, Calam J. Saturation of fat and cholecystokinin release: implications for pancreatic carcinogenesis. Lancet. 1989;2:1008–10.PubMedCrossRef Beardshall K, Frost G, Morarji Y, Domin J, Bloom SR, Calam J. Saturation of fat and cholecystokinin release: implications for pancreatic carcinogenesis. Lancet. 1989;2:1008–10.PubMedCrossRef
51.
go back to reference Viltart O, Sartor DM, Verberne AJ. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdale and periaqueductal grey. Brain Res Bull. 2006;71:51–9.PubMedCrossRef Viltart O, Sartor DM, Verberne AJ. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdale and periaqueductal grey. Brain Res Bull. 2006;71:51–9.PubMedCrossRef
52.
go back to reference Wang L, Martinez V, Barrachina MD, Tache Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res. 1998;791:157–66.PubMedCrossRef Wang L, Martinez V, Barrachina MD, Tache Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res. 1998;791:157–66.PubMedCrossRef
53.
go back to reference Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes. 2004;53:2492–500.PubMedCrossRef Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes. 2004;53:2492–500.PubMedCrossRef
54.
go back to reference Mei N, Garnier L. Osmosensitive vagal receptors in the small intestine of the cat. J Auton Nerv Syst. 1986;16:159–70.PubMedCrossRef Mei N, Garnier L. Osmosensitive vagal receptors in the small intestine of the cat. J Auton Nerv Syst. 1986;16:159–70.PubMedCrossRef
55.
go back to reference Randich A, Tyler WJ, Cox JE, Meller ST, Kelm GR, Bharaj SS. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat. Am J Physiol Regul Integr Comp Physiol. 2000;278:R34–43.PubMed Randich A, Tyler WJ, Cox JE, Meller ST, Kelm GR, Bharaj SS. Responses of celiac and cervical vagal afferents to infusions of lipids in the jejunum or ileum of the rat. Am J Physiol Regul Integr Comp Physiol. 2000;278:R34–43.PubMed
56.
go back to reference Niijima A, Meguid MM. An electrophysiological study on amino acid sensors in the hepato-portal system in the rat. Obes Res. 1995;3(Suppl 5):741S–5S.PubMed Niijima A, Meguid MM. An electrophysiological study on amino acid sensors in the hepato-portal system in the rat. Obes Res. 1995;3(Suppl 5):741S–5S.PubMed
57.
go back to reference Sclafani A, Lucas F. Abdominal vagotomy does not block carbohydrate-conditioned flavor preferences in rats. Physiol Behav. 1996;60:447–53.PubMedCrossRef Sclafani A, Lucas F. Abdominal vagotomy does not block carbohydrate-conditioned flavor preferences in rats. Physiol Behav. 1996;60:447–53.PubMedCrossRef
58.
go back to reference Otsubo H, Kondoh T, Shibata M, Torii K, Ueta Y. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium l-glutamate, glucose and NaCl. Neuroscience. 2011;196:97–103.PubMedCrossRef Otsubo H, Kondoh T, Shibata M, Torii K, Ueta Y. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium l-glutamate, glucose and NaCl. Neuroscience. 2011;196:97–103.PubMedCrossRef
59.
go back to reference Murayama A, Uehara A, Yatsushiro S, Echigo N, Morimoto R, Morita M, et al. A novel variant of ionotropic glutamate receptor regulates somatostatin secretion from g-cell of islets of Langerhans. Diabetes. 2004;53:1743–53.CrossRef Murayama A, Uehara A, Yatsushiro S, Echigo N, Morimoto R, Morita M, et al. A novel variant of ionotropic glutamate receptor regulates somatostatin secretion from g-cell of islets of Langerhans. Diabetes. 2004;53:1743–53.CrossRef
60.
go back to reference Yamamoto S, Tomoe M, Toyama K, Kawai M, Uneyama H. Can dietary supplementation of monosodium glutamate improve the health of the elderly? Am J Clin Nutr. 2009;90(3):97–103.CrossRef Yamamoto S, Tomoe M, Toyama K, Kawai M, Uneyama H. Can dietary supplementation of monosodium glutamate improve the health of the elderly? Am J Clin Nutr. 2009;90(3):97–103.CrossRef
Metadata
Title
Physiological roles of dietary glutamate signaling via gut–brain axis due to efficient digestion and absorption
Authors
Kunio Torii
Hisayuki Uneyama
Eiji Nakamura
Publication date
01-04-2013
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 4/2013
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-013-0778-1

Other articles of this Issue 4/2013

Journal of Gastroenterology 4/2013 Go to the issue