Skip to main content
Top
Published in: Archives of Osteoporosis 1/2022

01-12-2022 | Cannabinoid | Review

Examining the role of cannabinoids on osteoporosis: a review

Authors: Grace Clouse, Samantha Penman, Michael Hadjiargyrou, David E. Komatsu, Panayotis K. Thanos

Published in: Archives of Osteoporosis | Issue 1/2022

Login to get access

Abstract

Purpose

Prior research studies have shown that the endocannabinoid system, influenced by CBD and THC, plays a role in bone remodeling. As both the research on cannabis and use of cannabis continue to grow, novel medicinal uses of both its constituents as well as the whole plant are being discovered. This review examines the role of cannabinoids on osteoporosis, more specifically, the endocannabinoid system and its role in bone remodeling and the involvement of the cannabinoid receptors 1 and 2 in bone health, as well as the effects of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and synthetic cannabinoids on bone.

Methods

A comprehensive literature search of online databases including PUBMED was utilized.

Results

A total of 29 studies investigating the effects of cannabis and/or its constituents as well as the activation or inactivation of cannabinoid receptors 1 and 2 were included and discussed.

Conclusion

While many of the mechanisms are still not yet fully understood, both preclinical and clinical studies show that the effects of cannabis mediated through the endocannabinoid system may prove to be an effective treatment option for individuals with osteoporosis.
Literature
4.
go back to reference Belendiuk KA, Baldini LL, Bonn-Miller MO (2015) Narrative review of the safety and efficacy of marijuana for the treatment of commonly state-approved medical and psychiatric disorders. Addict Sci Clin Pract 10:10PubMedPubMedCentralCrossRef Belendiuk KA, Baldini LL, Bonn-Miller MO (2015) Narrative review of the safety and efficacy of marijuana for the treatment of commonly state-approved medical and psychiatric disorders. Addict Sci Clin Pract 10:10PubMedPubMedCentralCrossRef
5.
go back to reference Chayasirisobhon S (2019) Cannabis and neuropsychiatric disorders: an updated review. Acta Neurol Taiwan 28(2):27–39 Chayasirisobhon S (2019) Cannabis and neuropsychiatric disorders: an updated review. Acta Neurol Taiwan 28(2):27–39
6.
go back to reference Gaston TE, Szaflarski JP (2018) Cannabis for the treatment of epilepsy: an update. Curr Neurol Neurosci Rep 18:73PubMedCrossRef Gaston TE, Szaflarski JP (2018) Cannabis for the treatment of epilepsy: an update. Curr Neurol Neurosci Rep 18:73PubMedCrossRef
7.
go back to reference Wang L, Hong PJ, May C et al (2021) Medical cannabis or cannabinoids for chronic non-cancer and cancer related pain: a systematic review and meta-analysis of randomised clinical trials. BMJ 374:n1034PubMedCrossRef Wang L, Hong PJ, May C et al (2021) Medical cannabis or cannabinoids for chronic non-cancer and cancer related pain: a systematic review and meta-analysis of randomised clinical trials. BMJ 374:n1034PubMedCrossRef
8.
go back to reference Meng H, Dai T, Hanlon JG, Downar J, Alibhai SMH, Clarke H (2020) Cannabis and cannabinoids in cancer pain management. Curr Opin Support Palliat Care 14:87–93PubMedCrossRef Meng H, Dai T, Hanlon JG, Downar J, Alibhai SMH, Clarke H (2020) Cannabis and cannabinoids in cancer pain management. Curr Opin Support Palliat Care 14:87–93PubMedCrossRef
9.
go back to reference Hauser W, Fitzcharles MA, Radbruch L, Petzke F (2017) Cannabinoids in pain management and palliative medicine. Dtsch Arztebl Int 114:627–634PubMedPubMedCentral Hauser W, Fitzcharles MA, Radbruch L, Petzke F (2017) Cannabinoids in pain management and palliative medicine. Dtsch Arztebl Int 114:627–634PubMedPubMedCentral
10.
go back to reference Ellis RJ, Wilson N, Peterson S (2021) Cannabis and inflammation in HIV: a review of human and animal studies. Viruses 13: Ellis RJ, Wilson N, Peterson S (2021) Cannabis and inflammation in HIV: a review of human and animal studies. Viruses 13:
11.
go back to reference Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29PubMedCrossRef Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29PubMedCrossRef
12.
go back to reference Naftali T (2020) An overview of cannabis based treatment in Crohn’s disease. Expert Rev Gastroenterol Hepatol 14:253–257PubMedCrossRef Naftali T (2020) An overview of cannabis based treatment in Crohn’s disease. Expert Rev Gastroenterol Hepatol 14:253–257PubMedCrossRef
13.
go back to reference Santos ME, Protopopescu C, Zucman D, Marcellin F, Wittkop L, Miailhes P, Sogni P, Carrieri MP (2020) Benefits of cannabis use for metabolic disorders and survival in people living with HIV with or without hepatitis C co-infection. AIDS 34:953–954PubMedCrossRef Santos ME, Protopopescu C, Zucman D, Marcellin F, Wittkop L, Miailhes P, Sogni P, Carrieri MP (2020) Benefits of cannabis use for metabolic disorders and survival in people living with HIV with or without hepatitis C co-infection. AIDS 34:953–954PubMedCrossRef
15.
go back to reference Fishbein-Kaminietsky M, Gafni M, Sarne Y (2014) Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage. J Neurosci Res 92:1669–1677PubMedCrossRef Fishbein-Kaminietsky M, Gafni M, Sarne Y (2014) Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage. J Neurosci Res 92:1669–1677PubMedCrossRef
16.
go back to reference Fragoso YD, Carra A, Macias MA (2020) Cannabis and multiple sclerosis. Expert Rev Neurother 20:849–854PubMedCrossRef Fragoso YD, Carra A, Macias MA (2020) Cannabis and multiple sclerosis. Expert Rev Neurother 20:849–854PubMedCrossRef
17.
go back to reference Orsolini L, Chiappini S, Volpe U, Berardis D, Latini R, Papanti GD, Corkery AJM (2019) Use of medicinal cannabis and synthetic cannabinoids in post-traumatic stress disorder (PTSD): a systematic review. Medicina (Kaunas) 55: Orsolini L, Chiappini S, Volpe U, Berardis D, Latini R, Papanti GD, Corkery AJM (2019) Use of medicinal cannabis and synthetic cannabinoids in post-traumatic stress disorder (PTSD): a systematic review. Medicina (Kaunas) 55:
18.
19.
go back to reference Hammond S, Erridge S, Mangal N, Pacchetti B, Sodergren MH (2021) The effect of cannabis-based medicine in the treatment of cachexia: a systematic review and meta-analysis. Cannabis Cannabinoid Res 6:474–487PubMedPubMedCentralCrossRef Hammond S, Erridge S, Mangal N, Pacchetti B, Sodergren MH (2021) The effect of cannabis-based medicine in the treatment of cachexia: a systematic review and meta-analysis. Cannabis Cannabinoid Res 6:474–487PubMedPubMedCentralCrossRef
20.
go back to reference Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746PubMedPubMedCentralCrossRef Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746PubMedPubMedCentralCrossRef
21.
go back to reference Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486PubMedCrossRef Armas LA, Recker RR (2012) Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am 41:475–486PubMedCrossRef
22.
23.
go back to reference Srivastava M, Deal C (2002) Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med 18:529–555PubMedCrossRef Srivastava M, Deal C (2002) Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med 18:529–555PubMedCrossRef
24.
go back to reference Dou ZJ, Gao XL, Jia YL et al (2020) CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced bone metabolism disorder and destruction in rats. Sleep Breath 24:1441–1449PubMedPubMedCentralCrossRef Dou ZJ, Gao XL, Jia YL et al (2020) CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced bone metabolism disorder and destruction in rats. Sleep Breath 24:1441–1449PubMedPubMedCentralCrossRef
25.
go back to reference Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH (2017) Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med 130:214–221PubMedCrossRef Sophocleous A, Robertson R, Ferreira NB, McKenzie J, Fraser WD, Ralston SH (2017) Heavy cannabis use is associated with low bone mineral density and an increased risk of fractures. Am J Med 130:214–221PubMedCrossRef
26.
go back to reference Ehrenkranz J, Levine MA (2019) Bones and joints: the effects of cannabinoids on the skeleton. J Clin Endocrinol Metab 104:4683–4694PubMedCrossRef Ehrenkranz J, Levine MA (2019) Bones and joints: the effects of cannabinoids on the skeleton. J Clin Endocrinol Metab 104:4683–4694PubMedCrossRef
27.
go back to reference Raphael-Mizrahi B, Gabet Y (2020) The cannabinoids effect on bone formation and bone healing. Curr Osteoporos Rep 18:433–438PubMedCrossRef Raphael-Mizrahi B, Gabet Y (2020) The cannabinoids effect on bone formation and bone healing. Curr Osteoporos Rep 18:433–438PubMedCrossRef
28.
go back to reference Apostu D, Lucaciu O, Mester A, Benea H, Oltean-Dan D, Onisor F, Baciut M, Bran S (2019) Cannabinoids and bone regeneration. Drug Metab Rev 51:65–75PubMedCrossRef Apostu D, Lucaciu O, Mester A, Benea H, Oltean-Dan D, Onisor F, Baciut M, Bran S (2019) Cannabinoids and bone regeneration. Drug Metab Rev 51:65–75PubMedCrossRef
29.
go back to reference Sozen T, Ozisik L, Basaran NC (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56PubMedCrossRef Sozen T, Ozisik L, Basaran NC (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46–56PubMedCrossRef
30.
go back to reference Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–S11PubMedCrossRef Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–S11PubMedCrossRef
31.
go back to reference Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3-11PubMedCrossRef Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3-11PubMedCrossRef
32.
go back to reference Cappariello A, Maurizi A, Veeriah V, Teti A (2014) The great beauty of the osteoclast. Arch Biochem Biophys 558:70–78PubMedCrossRef Cappariello A, Maurizi A, Veeriah V, Teti A (2014) The great beauty of the osteoclast. Arch Biochem Biophys 558:70–78PubMedCrossRef
33.
35.
go back to reference Jiao L, Machuki JO, Wu Q et al (2020) Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 318:H820–H829PubMedCrossRef Jiao L, Machuki JO, Wu Q et al (2020) Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 318:H820–H829PubMedCrossRef
36.
go back to reference Heaney RP (1990) Estrogen-calcium interactions in the postmenopause: a quantitative description. Bone Miner 11:67–84PubMedCrossRef Heaney RP (1990) Estrogen-calcium interactions in the postmenopause: a quantitative description. Bone Miner 11:67–84PubMedCrossRef
39.
40.
go back to reference Zimmerman L, McKeon B (2020) Osteomalacia. StatPearls. Treasure Island (FL) Zimmerman L, McKeon B (2020) Osteomalacia. StatPearls. Treasure Island (FL)
41.
go back to reference Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9: Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells 9:
42.
go back to reference Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289PubMedCrossRef Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, Black DM (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289PubMedCrossRef
43.
go back to reference Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal Osteoporosis N Engl J Med 374:254–262PubMedCrossRef Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal Osteoporosis N Engl J Med 374:254–262PubMedCrossRef
47.
go back to reference Langdahl B (2020) Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: combined and sequential approaches. Bone 139:115516PubMedCrossRef Langdahl B (2020) Treatment of postmenopausal osteoporosis with bone-forming and antiresorptive treatments: combined and sequential approaches. Bone 139:115516PubMedCrossRef
48.
go back to reference Reid IR, Billington EO (2022) Drug therapy for osteoporosis in older adults. Lancet 399:1080–1092PubMedCrossRef Reid IR, Billington EO (2022) Drug therapy for osteoporosis in older adults. Lancet 399:1080–1092PubMedCrossRef
49.
go back to reference D’Amelio P, Isaia GC (2013) The use of raloxifene in osteoporosis treatment. Expert Opin Pharmacother 14:949–956PubMedCrossRef D’Amelio P, Isaia GC (2013) The use of raloxifene in osteoporosis treatment. Expert Opin Pharmacother 14:949–956PubMedCrossRef
50.
go back to reference Lu HF, Chou PH, Lin GH, Chou WH, Wang ST, Adikusuma W, Mugiyanto E, Hung KS, Chang WC (2020) Pharmacogenomics study for raloxifene in postmenopausal female with osteoporosis. Dis Markers 2020:8855423PubMedPubMedCentralCrossRef Lu HF, Chou PH, Lin GH, Chou WH, Wang ST, Adikusuma W, Mugiyanto E, Hung KS, Chang WC (2020) Pharmacogenomics study for raloxifene in postmenopausal female with osteoporosis. Dis Markers 2020:8855423PubMedPubMedCentralCrossRef
51.
go back to reference Clemett D, Spencer CM (2000) Raloxifene: a review of its use in postmenopausal osteoporosis. Drugs 60:379–411PubMedCrossRef Clemett D, Spencer CM (2000) Raloxifene: a review of its use in postmenopausal osteoporosis. Drugs 60:379–411PubMedCrossRef
52.
go back to reference Tanski W, Kosiorowska J, Szymanska-Chabowska A (2021) Osteoporosis - risk factors, pharmaceutical and non-pharmaceutical treatment. Eur Rev Med Pharmacol Sci 25:3557–3566PubMed Tanski W, Kosiorowska J, Szymanska-Chabowska A (2021) Osteoporosis - risk factors, pharmaceutical and non-pharmaceutical treatment. Eur Rev Med Pharmacol Sci 25:3557–3566PubMed
53.
go back to reference (2020) Drugs for postmenopausal osteoporosis. Med Lett Drugs Ther 62:105–112 (2020) Drugs for postmenopausal osteoporosis. Med Lett Drugs Ther 62:105–112
54.
go back to reference Yavropoulou MP, Makras P, Anastasilakis AD (2019) Bazedoxifene for the treatment of osteoporosis. Expert Opin Pharmacother 20:1201–1210PubMedCrossRef Yavropoulou MP, Makras P, Anastasilakis AD (2019) Bazedoxifene for the treatment of osteoporosis. Expert Opin Pharmacother 20:1201–1210PubMedCrossRef
55.
go back to reference Levin VA, Jiang X, Kagan R (2018) Estrogen therapy for osteoporosis in the modern era. Osteoporos Int 29:1049–1055PubMedCrossRef Levin VA, Jiang X, Kagan R (2018) Estrogen therapy for osteoporosis in the modern era. Osteoporos Int 29:1049–1055PubMedCrossRef
56.
go back to reference Yuan F, Peng W, Yang C, Zheng J (2019) Teriparatide versus bisphosphonates for treatment of postmenopausal osteoporosis: A meta-analysis. Int J Surg 66:1–11PubMedCrossRef Yuan F, Peng W, Yang C, Zheng J (2019) Teriparatide versus bisphosphonates for treatment of postmenopausal osteoporosis: A meta-analysis. Int J Surg 66:1–11PubMedCrossRef
57.
58.
go back to reference Sleeman A, Clements JN (2019) Abaloparatide: a new pharmacological option for osteoporosis. Am J Health Syst Pharm 76:130–135PubMedCrossRef Sleeman A, Clements JN (2019) Abaloparatide: a new pharmacological option for osteoporosis. Am J Health Syst Pharm 76:130–135PubMedCrossRef
59.
go back to reference Pietrogrande L, Raimondo E (2018) Abaloparatide for the treatment of postmenopausal osteoporosis. Drugs Today (Barc) 54:293–303PubMedCrossRef Pietrogrande L, Raimondo E (2018) Abaloparatide for the treatment of postmenopausal osteoporosis. Drugs Today (Barc) 54:293–303PubMedCrossRef
60.
go back to reference Paik J, Scott LJ (2020) Romosozumab: a review in postmenopausal osteoporosis. Drugs Aging 37:845–855PubMedCrossRef Paik J, Scott LJ (2020) Romosozumab: a review in postmenopausal osteoporosis. Drugs Aging 37:845–855PubMedCrossRef
61.
go back to reference Ishibashi H, Crittenden DB, Miyauchi A, Libanati C, Maddox J, Fan M, Chen L, Grauer A (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 103:209–215PubMedCrossRef Ishibashi H, Crittenden DB, Miyauchi A, Libanati C, Maddox J, Fan M, Chen L, Grauer A (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 103:209–215PubMedCrossRef
62.
go back to reference McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420PubMedCrossRef McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420PubMedCrossRef
63.
go back to reference Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17:255–263PubMedCrossRef Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17:255–263PubMedCrossRef
64.
go back to reference Kobza AO, Papaioannou A, Lau AN, Adachi JD (2020) Romosozumab in the treatment of osteoporosis. Immunotherapy 12:965–981PubMedCrossRef Kobza AO, Papaioannou A, Lau AN, Adachi JD (2020) Romosozumab in the treatment of osteoporosis. Immunotherapy 12:965–981PubMedCrossRef
65.
go back to reference Lu HC, Mackie K (2020) Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging Lu HC, Mackie K (2020) Review of the endocannabinoid system. Biol Psychiatry Cogn Neurosci Neuroimaging
66.
go back to reference Reddy V, Grogan D, Ahluwalia M et al (2020) Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 11:217–250PubMedPubMedCentralCrossRef Reddy V, Grogan D, Ahluwalia M et al (2020) Targeting the endocannabinoid system: a predictive, preventive, and personalized medicine-directed approach to the management of brain pathologies. EPMA J 11:217–250PubMedPubMedCentralCrossRef
67.
go back to reference Bricaire L, Brue T (2007) Endocannabinoid system: from metabolic to neuroendocrine effects. Ann Endocrinol (Paris) 68(Suppl 1):12–17PubMedCrossRef Bricaire L, Brue T (2007) Endocannabinoid system: from metabolic to neuroendocrine effects. Ann Endocrinol (Paris) 68(Suppl 1):12–17PubMedCrossRef
68.
go back to reference Li X, Shen L, Hua T, Liu ZJ (2020) Structural and functional insights into cannabinoid receptors. Trends Pharmacol Sci 41:665–677PubMedCrossRef Li X, Shen L, Hua T, Liu ZJ (2020) Structural and functional insights into cannabinoid receptors. Trends Pharmacol Sci 41:665–677PubMedCrossRef
70.
go back to reference Stanke-Labesque F, Mallaret M, Lefebvre B, Hardy G, Caron F, Bessard G (2004) 2-Arachidonoyl glycerol induces contraction of isolated rat aorta: role of cyclooxygenase-derived products. Cardiovasc Res 63:155–160PubMedCrossRef Stanke-Labesque F, Mallaret M, Lefebvre B, Hardy G, Caron F, Bessard G (2004) 2-Arachidonoyl glycerol induces contraction of isolated rat aorta: role of cyclooxygenase-derived products. Cardiovasc Res 63:155–160PubMedCrossRef
71.
go back to reference Wang SL, Qian WJ, Wang XH, Wang SY, Yang W, Zhang CQ, Wang ZF (2017) Cannabinoid receptor system regulates ion channels and synaptic transmission in retinal cells. Sheng Li Xue Bao 69:685–692PubMed Wang SL, Qian WJ, Wang XH, Wang SY, Yang W, Zhang CQ, Wang ZF (2017) Cannabinoid receptor system regulates ion channels and synaptic transmission in retinal cells. Sheng Li Xue Bao 69:685–692PubMed
72.
go back to reference Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkotter J, Hellmich M, Koethe D (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94PubMedPubMedCentralCrossRef Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkotter J, Hellmich M, Koethe D (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94PubMedPubMedCentralCrossRef
73.
go back to reference Di Scala C, Fantini J, Yahi N, Barrantes FJ, Chahinian H (2018) Anandamide revisited: how cholesterol and ceramides control receptor-dependent and receptor-independent signal transmission pathways of a lipid neurotransmitter. Biomolecules 8: Di Scala C, Fantini J, Yahi N, Barrantes FJ, Chahinian H (2018) Anandamide revisited: how cholesterol and ceramides control receptor-dependent and receptor-independent signal transmission pathways of a lipid neurotransmitter. Biomolecules 8:
74.
go back to reference Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G (2019) Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 40:309–323PubMedCrossRef Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G (2019) Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 40:309–323PubMedCrossRef
75.
go back to reference Bab I, Zimmer A (2008) Cannabinoid receptors and the regulation of bone mass. Br J Pharmacol 153:182–188PubMedCrossRef Bab I, Zimmer A (2008) Cannabinoid receptors and the regulation of bone mass. Br J Pharmacol 153:182–188PubMedCrossRef
76.
go back to reference Al-Zoubi R, Morales P, Reggio PH (2019) Structural insights into CB1 receptor biased signaling. Int J Mol Sci 20: Al-Zoubi R, Morales P, Reggio PH (2019) Structural insights into CB1 receptor biased signaling. Int J Mol Sci 20:
77.
78.
go back to reference Bab I, Zimmer A, Melamed E (2009) Cannabinoids and the skeleton: from marijuana to reversal of bone loss. Ann Med 41:560–567PubMedCrossRef Bab I, Zimmer A, Melamed E (2009) Cannabinoids and the skeleton: from marijuana to reversal of bone loss. Ann Med 41:560–567PubMedCrossRef
79.
go back to reference Tam J, Ofek O, Fride E et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792PubMedCrossRef Tam J, Ofek O, Fride E et al (2006) Involvement of neuronal cannabinoid receptor CB1 in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792PubMedCrossRef
80.
go back to reference Tam J, Trembovler V, Di Marzo V et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294PubMedCrossRef Tam J, Trembovler V, Di Marzo V et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285–294PubMedCrossRef
81.
go back to reference Li X, Hua T, Vemuri K et al (2019) Crystal Structure of the human cannabinoid receptor CB2. Cell 176(459–467):e413 Li X, Hua T, Vemuri K et al (2019) Crystal Structure of the human cannabinoid receptor CB2. Cell 176(459–467):e413
83.
go back to reference Morales P, Hernandez-Folgado L, Goya P, Jagerovic N (2016) Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin Ther Pat 26:843–856PubMedCrossRef Morales P, Hernandez-Folgado L, Goya P, Jagerovic N (2016) Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert Opin Ther Pat 26:843–856PubMedCrossRef
84.
go back to reference Atwood BK, Straiker A, Mackie K (2012) CB(2): therapeutic target-in-waiting. Prog Neuropsychopharmacol Biol Psychiatry 38:16–20PubMedCrossRef Atwood BK, Straiker A, Mackie K (2012) CB(2): therapeutic target-in-waiting. Prog Neuropsychopharmacol Biol Psychiatry 38:16–20PubMedCrossRef
86.
go back to reference Karsak M, Cohen-Solal M, Freudenberg J et al (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396PubMedCrossRef Karsak M, Cohen-Solal M, Freudenberg J et al (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396PubMedCrossRef
88.
go back to reference ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36PubMed ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Prog Chem Org Nat Prod 103:1–36PubMed
89.
90.
91.
go back to reference Blake A, Wan BA, Malek L, DeAngelis C, Diaz P, Lao N, Chow E, O’Hearn S (2017) A selective review of medical cannabis in cancer pain management. Ann Palliat Med 6:S215–S222PubMedCrossRef Blake A, Wan BA, Malek L, DeAngelis C, Diaz P, Lao N, Chow E, O’Hearn S (2017) A selective review of medical cannabis in cancer pain management. Ann Palliat Med 6:S215–S222PubMedCrossRef
92.
go back to reference Aly E, Masocha W (2021) Targeting the endocannabinoid system for management of HIV-associated neuropathic pain: a systematic review. IBRO Neurosci Rep 10:109–118PubMedPubMedCentralCrossRef Aly E, Masocha W (2021) Targeting the endocannabinoid system for management of HIV-associated neuropathic pain: a systematic review. IBRO Neurosci Rep 10:109–118PubMedPubMedCentralCrossRef
93.
go back to reference Meissner H, Cascella M (2020) Cannabidiol (CBD). StatPearls. Treasure Island (FL) Meissner H, Cascella M (2020) Cannabidiol (CBD). StatPearls. Treasure Island (FL)
95.
go back to reference Urits I, Gress K, Charipova K et al (2020) Use of cannabidiol (CBD) for the treatment of chronic pain. Best Pract Res Clin Anaesthesiol 34:463–477PubMedCrossRef Urits I, Gress K, Charipova K et al (2020) Use of cannabidiol (CBD) for the treatment of chronic pain. Best Pract Res Clin Anaesthesiol 34:463–477PubMedCrossRef
96.
go back to reference Burstein S (2015) Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem 23:1377–1385PubMedCrossRef Burstein S (2015) Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem 23:1377–1385PubMedCrossRef
97.
go back to reference Mlost J, Bryk M, Starowicz K (2020) Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. Int J Mol Sci 21: Mlost J, Bryk M, Starowicz K (2020) Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. Int J Mol Sci 21:
98.
go back to reference Bourne D, Plinke W, Hooker ER, Nielson CM (2017) Cannabis use and bone mineral density: NHANES 2007–2010. Arch Osteoporos 12:29PubMedCrossRef Bourne D, Plinke W, Hooker ER, Nielson CM (2017) Cannabis use and bone mineral density: NHANES 2007–2010. Arch Osteoporos 12:29PubMedCrossRef
99.
go back to reference Reece AS (2009) Severe multisystem dysfunction in a case of high level exposure to smoked cannabis. BMJ Case Rep 2009: Reece AS (2009) Severe multisystem dysfunction in a case of high level exposure to smoked cannabis. BMJ Case Rep 2009:
100.
go back to reference Nogueira-Filho Gda R, Cadide T, Rosa BT, Neiva TG, Tunes R, Peruzzo D, Nociti FH Jr, Cesar-Neto JB (2008) Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implant Dent 17:461–470PubMedCrossRef Nogueira-Filho Gda R, Cadide T, Rosa BT, Neiva TG, Tunes R, Peruzzo D, Nociti FH Jr, Cesar-Neto JB (2008) Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats. Implant Dent 17:461–470PubMedCrossRef
101.
go back to reference Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, van’t Hof RJ, Ralston SH (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10:139–147PubMedCrossRef Idris AI, Sophocleous A, Landao-Bassonga E, Canals M, Milligan G, Baker D, van’t Hof RJ, Ralston SH (2009) Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells. Cell Metab 10:139–147PubMedCrossRef
102.
go back to reference Idris AI, van ’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779PubMedPubMedCentralCrossRef Idris AI, van ’t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779PubMedPubMedCentralCrossRef
103.
go back to reference Rossi F, Siniscalco D, Luongo L et al (2009) The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44:476–484PubMedCrossRef Rossi F, Siniscalco D, Luongo L et al (2009) The endovanilloid/endocannabinoid system in human osteoclasts: possible involvement in bone formation and resorption. Bone 44:476–484PubMedCrossRef
104.
105.
106.
go back to reference Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, Frenkel B, Shohami E, Bab I (2011) CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26:308–316PubMedCrossRef Ofek O, Attar-Namdar M, Kram V, Dvir-Ginzberg M, Mechoulam R, Zimmer A, Frenkel B, Shohami E, Bab I (2011) CB2 cannabinoid receptor targets mitogenic Gi protein-cyclin D1 axis in osteoblasts. J Bone Miner Res 26:308–316PubMedCrossRef
107.
go back to reference Rossi F, Bellini G, Luongo L et al (2013) The 17-beta-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol Res 68:7–15PubMedCrossRef Rossi F, Bellini G, Luongo L et al (2013) The 17-beta-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol Res 68:7–15PubMedCrossRef
108.
go back to reference Qian H, Zhao Y, Peng Y, Han C, Li S, Huo N, Ding Y, Duan Y, Xiong L, Sang H (2010) Activation of cannabinoid receptor CB2 regulates osteogenic and osteoclastogenic gene expression in human periodontal ligament cells. J Periodontal Res 45:504–511PubMed Qian H, Zhao Y, Peng Y, Han C, Li S, Huo N, Ding Y, Duan Y, Xiong L, Sang H (2010) Activation of cannabinoid receptor CB2 regulates osteogenic and osteoclastogenic gene expression in human periodontal ligament cells. J Periodontal Res 45:504–511PubMed
109.
go back to reference Kose S, Aerts-Kaya F, Kopru CZ, Nemutlu E, Kuskonmaz B, Karaosmanoglu B, Taskiran EZ, Altun B, Uckan Cetinkaya D, Korkusuz P (2018) Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation. Exp Hematol 57(30–41):e31 Kose S, Aerts-Kaya F, Kopru CZ, Nemutlu E, Kuskonmaz B, Karaosmanoglu B, Taskiran EZ, Altun B, Uckan Cetinkaya D, Korkusuz P (2018) Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation. Exp Hematol 57(30–41):e31
110.
go back to reference Sophocleous A, Marino S, Logan JG, Mollat P, Ralston SH, Idris AI (2015) Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer-induced osteolysis. J Biol Chem 290:22049–22060PubMedPubMedCentralCrossRef Sophocleous A, Marino S, Logan JG, Mollat P, Ralston SH, Idris AI (2015) Bone cell-autonomous contribution of type 2 cannabinoid receptor to breast cancer-induced osteolysis. J Biol Chem 290:22049–22060PubMedPubMedCentralCrossRef
111.
go back to reference Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19:791–801PubMed Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19:791–801PubMed
112.
go back to reference Idris AI, Sophocleous A, Landao-Bassonga E, van’t Hof RJ, Ralston SH (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626PubMedCrossRef Idris AI, Sophocleous A, Landao-Bassonga E, van’t Hof RJ, Ralston SH (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149:5619–5626PubMedCrossRef
113.
go back to reference Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A (2008) Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol 20(Suppl 1):69–74PubMedCrossRef Bab I, Ofek O, Tam J, Rehnelt J, Zimmer A (2008) Endocannabinoids and the regulation of bone metabolism. J Neuroendocrinol 20(Suppl 1):69–74PubMedCrossRef
114.
go back to reference Whyte LS, Ford L, Ridge SA, Cameron GA, Rogers MJ, Ross RA (2012) Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. Br J Pharmacol 165:2584–2597PubMedPubMedCentralCrossRef Whyte LS, Ford L, Ridge SA, Cameron GA, Rogers MJ, Ross RA (2012) Cannabinoids and bone: endocannabinoids modulate human osteoclast function in vitro. Br J Pharmacol 165:2584–2597PubMedPubMedCentralCrossRef
115.
go back to reference Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516PubMedPubMedCentralCrossRef Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ, Ross RA, Rogers MJ (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516PubMedPubMedCentralCrossRef
116.
go back to reference Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI (2017) Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 16:1051–1061PubMedPubMedCentralCrossRef Sophocleous A, Marino S, Kabir D, Ralston SH, Idris AI (2017) Combined deficiency of the Cnr1 and Cnr2 receptors protects against age-related bone loss by osteoclast inhibition. Aging Cell 16:1051–1061PubMedPubMedCentralCrossRef
117.
go back to reference Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Idris AI, Ralston SH (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152:2141–2149PubMedCrossRef Sophocleous A, Landao-Bassonga E, Van’t Hof RJ, Idris AI, Ralston SH (2011) The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation. Endocrinology 152:2141–2149PubMedCrossRef
118.
go back to reference Raphael B, Gabet Y (2016) The skeletal endocannabinoid system: clinical and experimental insights. J Basic Clin Physiol Pharmacol 27:237–245PubMedCrossRef Raphael B, Gabet Y (2016) The skeletal endocannabinoid system: clinical and experimental insights. J Basic Clin Physiol Pharmacol 27:237–245PubMedCrossRef
119.
go back to reference Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRef Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRef
120.
go back to reference Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, Trembovler V, Csernus V, Shohami E, Bab I (2006) Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 103:16876–16881PubMedPubMedCentralCrossRef Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, Trembovler V, Csernus V, Shohami E, Bab I (2006) Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 103:16876–16881PubMedPubMedCentralCrossRef
121.
go back to reference Gowran A, McKayed K, Campbell VA (2013) The cannabinoid receptor type 1 is essential for mesenchymal stem cell survival and differentiation: implications for bone health. Stem Cells Int 2013:796715PubMedPubMedCentralCrossRef Gowran A, McKayed K, Campbell VA (2013) The cannabinoid receptor type 1 is essential for mesenchymal stem cell survival and differentiation: implications for bone health. Stem Cells Int 2013:796715PubMedPubMedCentralCrossRef
122.
123.
go back to reference Wasserman E, Tam J, Mechoulam R, Zimmer A, Maor G, Bab I (2015) CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Delta9-tetrahydrocannabinol. Ann N Y Acad Sci 1335:110–119PubMedCrossRef Wasserman E, Tam J, Mechoulam R, Zimmer A, Maor G, Bab I (2015) CB1 cannabinoid receptors mediate endochondral skeletal growth attenuation by Delta9-tetrahydrocannabinol. Ann N Y Acad Sci 1335:110–119PubMedCrossRef
124.
go back to reference Idris AI, Ralston SH (2012) Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 3:136PubMedCrossRef Idris AI, Ralston SH (2012) Role of cannabinoids in the regulation of bone remodeling. Front Endocrinol (Lausanne) 3:136PubMedCrossRef
125.
127.
go back to reference Park S, Lee LR, Seo JH, Kang S (2016) Curcumin and tetrahydrocurcumin both prevent osteoarthritis symptoms and decrease the expressions of pro-inflammatory cytokines in estrogen-deficient rats. Genes Nutr 11:2PubMedPubMedCentralCrossRef Park S, Lee LR, Seo JH, Kang S (2016) Curcumin and tetrahydrocurcumin both prevent osteoarthritis symptoms and decrease the expressions of pro-inflammatory cytokines in estrogen-deficient rats. Genes Nutr 11:2PubMedPubMedCentralCrossRef
128.
go back to reference Kogan NM, Melamed E, Wasserman E et al (2015) Cannabidiol, a Major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res 30:1905–1913PubMedCrossRef Kogan NM, Melamed E, Wasserman E et al (2015) Cannabidiol, a Major non-psychotropic cannabis constituent enhances fracture healing and stimulates lysyl hydroxylase activity in osteoblasts. J Bone Miner Res 30:1905–1913PubMedCrossRef
129.
go back to reference Klein KP, Guastaldi FPS, Pereira HSG, He Y, Lukas SE (2022) Dronabinol inhibits alveolar bone remodeling in tooth movement of rats. Am J Orthod Dentofacial Orthop 161:e215–e222PubMedCrossRef Klein KP, Guastaldi FPS, Pereira HSG, He Y, Lukas SE (2022) Dronabinol inhibits alveolar bone remodeling in tooth movement of rats. Am J Orthod Dentofacial Orthop 161:e215–e222PubMedCrossRef
130.
go back to reference Li D, Lin Z, Meng Q, Wang K, Wu J, Yan H (2017) Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol 809:13–19PubMedCrossRef Li D, Lin Z, Meng Q, Wang K, Wu J, Yan H (2017) Cannabidiol administration reduces sublesional cancellous bone loss in rats with severe spinal cord injury. Eur J Pharmacol 809:13–19PubMedCrossRef
131.
go back to reference Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, Baharvand H (2019) Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl 101:64–75PubMedCrossRef Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, Baharvand H (2019) Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl 101:64–75PubMedCrossRef
132.
go back to reference Napimoga MH, Benatti BB, Lima FO, Alves PM, Campos AC, Pena-Dos-Santos DR, Severino FP, Cunha FQ, Guimaraes FS (2009) Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol 9:216–222PubMedCrossRef Napimoga MH, Benatti BB, Lima FO, Alves PM, Campos AC, Pena-Dos-Santos DR, Severino FP, Cunha FQ, Guimaraes FS (2009) Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. Int Immunopharmacol 9:216–222PubMedCrossRef
133.
go back to reference Kang MA, Lee J, Park SH (2020) Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ Toxicol 35:1318–1325PubMedCrossRef Kang MA, Lee J, Park SH (2020) Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK. Environ Toxicol 35:1318–1325PubMedCrossRef
134.
go back to reference Petrescu NB, Jurj A, Soritau O, et al. (2020) Cannabidiol and vitamin D3 impact on osteogenic differentiation of human dental mesenchymal stem cells. Medicina (Kaunas) 56: Petrescu NB, Jurj A, Soritau O, et al. (2020) Cannabidiol and vitamin D3 impact on osteogenic differentiation of human dental mesenchymal stem cells. Medicina (Kaunas) 56:
137.
go back to reference George KL, Saltman LH, Stein GS, Lian JB, Zurier RB (2008) Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells. J Cell Physiol 214:714–720PubMedCrossRef George KL, Saltman LH, Stein GS, Lian JB, Zurier RB (2008) Ajulemic acid, a nonpsychoactive cannabinoid acid, suppresses osteoclastogenesis in mononuclear precursor cells and induces apoptosis in mature osteoclast-like cells. J Cell Physiol 214:714–720PubMedCrossRef
138.
go back to reference Burstein SH (2000) Ajulemic acid (CT3): a potent analog of the acid metabolites of THC. Curr Pharm Des 6:1339–1345PubMedCrossRef Burstein SH (2000) Ajulemic acid (CT3): a potent analog of the acid metabolites of THC. Curr Pharm Des 6:1339–1345PubMedCrossRef
139.
go back to reference Nogueira-Filho GR, Todescan S, Shah A, Rosa BT, Tunes Uda R, Cesar Neto JB (2011) Impact of Cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats. J Periodontol 82:1602–1607PubMedCrossRef Nogueira-Filho GR, Todescan S, Shah A, Rosa BT, Tunes Uda R, Cesar Neto JB (2011) Impact of Cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats. J Periodontol 82:1602–1607PubMedCrossRef
140.
go back to reference Rossi F, Bellini G, Torella M et al (2014) The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice. Br J Pharmacol 171:2621–2630PubMedPubMedCentralCrossRef Rossi F, Bellini G, Torella M et al (2014) The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice. Br J Pharmacol 171:2621–2630PubMedPubMedCentralCrossRef
Metadata
Title
Examining the role of cannabinoids on osteoporosis: a review
Authors
Grace Clouse
Samantha Penman
Michael Hadjiargyrou
David E. Komatsu
Panayotis K. Thanos
Publication date
01-12-2022
Publisher
Springer London
Published in
Archives of Osteoporosis / Issue 1/2022
Print ISSN: 1862-3522
Electronic ISSN: 1862-3514
DOI
https://doi.org/10.1007/s11657-022-01190-x

Other articles of this Issue 1/2022

Archives of Osteoporosis 1/2022 Go to the issue