Skip to main content
Top
Published in: Japanese Journal of Radiology 2/2019

01-02-2019 | Original Article

Perfusion contrast-enhanced ultrasound to predict early lymph-node metastasis in breast cancer

Authors: Naoko Mori, Shunji Mugikura, Minoru Miyashita, Yumiko Kudo, Mikiko Suzuki, Li Li, Yu Mori, Shoki Takahashi, Kei Takase

Published in: Japanese Journal of Radiology | Issue 2/2019

Login to get access

Abstract

Purpose

To evaluate whether quantitative analysis of perfusion contrast-enhanced ultrasound (CE-US) could predict early lymph-node (LN) metastasis in clinically node-negative breast cancer.

Materials and methods

In this prospective study, 64 breast cancer patients were selected for perfusion CE-US imaging. Regions of interest were placed where the strongest and weakest signal increases were found to obtain peak intensities (PIs; PImax and PImin, respectively) for time–intensity curve analyzes. The PI difference and PI ratio were calculated as follows: PI difference = PImax−PImin; PI ratio = PImax/PImin.

Results

Forty-seven cases were histologically diagnosed as negative for LN metastasis and 17 were positive. There was a significant difference in PImin and the PI ratio between the LN-negative and -positive metastasis groups (p = 0.0053 and 0.0082, respectively). Receiver-operating curve analysis revealed that the area under the curve of PImin and the PI ratio were 0.73 and 0.72, respectively. The most effective threshold for the PI ratio was 1.52, and the sensitivity, specificity, positive predictive value, and negative predictive value were 59% (10/17), 87% (41/47), 63% (10/16), and 85% (41/48), respectively.

Conclusions

Parameters from the quantitative analysis of perfusion CE-US imaging showed significant differences between the LN-negative and -positive metastasis groups in clinically node-negative breast cancer.
Literature
1.
go back to reference Nemoto T, Vana J, Bedwani RN, Baker HW, McGregor FH, Murphy GP. Management and survival of female breast cancer: results of a national survey by the American College of Surgeons. Cancer. 1980;45(12):2917–24.CrossRefPubMed Nemoto T, Vana J, Bedwani RN, Baker HW, McGregor FH, Murphy GP. Management and survival of female breast cancer: results of a national survey by the American College of Surgeons. Cancer. 1980;45(12):2917–24.CrossRefPubMed
2.
go back to reference Banerjee M, George J, Song EY, et al. Tree-based model for breast cancer prognostication. J Clin Oncol. 2004;22:2567–75.CrossRefPubMed Banerjee M, George J, Song EY, et al. Tree-based model for breast cancer prognostication. J Clin Oncol. 2004;22:2567–75.CrossRefPubMed
3.
go back to reference Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist. 2004;9:606–1.CrossRefPubMed Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist. 2004;9:606–1.CrossRefPubMed
4.
go back to reference Swenson KK. Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer. Ann Surg Oncol. 2002;9:745–53.CrossRefPubMed Swenson KK. Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer. Ann Surg Oncol. 2002;9:745–53.CrossRefPubMed
5.
go back to reference Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.CrossRefPubMedPubMedCentral Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.CrossRefPubMedPubMedCentral
6.
go back to reference Giuliano AE. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569.CrossRefPubMedPubMedCentral Giuliano AE. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569.CrossRefPubMedPubMedCentral
7.
go back to reference Esen G, Gurses B, Yilmaz MH, et al. Gray scale and power Doppler US in the preoperative evaluation of axillary metastases in breast cancer patients with no palpable lymph nodes. Eur Radiol. 2005;15:1215–23.CrossRefPubMed Esen G, Gurses B, Yilmaz MH, et al. Gray scale and power Doppler US in the preoperative evaluation of axillary metastases in breast cancer patients with no palpable lymph nodes. Eur Radiol. 2005;15:1215–23.CrossRefPubMed
8.
go back to reference Abe H, Schmidt RA, Kulkarni K, et al. Axillary lymph nodes suspicious for breast cancer metastasis: sampling with us-guided 14-gauge core-needle biopsy—clinical experience in 100 patients 1. Radiology. 2009;250:41–9.CrossRefPubMed Abe H, Schmidt RA, Kulkarni K, et al. Axillary lymph nodes suspicious for breast cancer metastasis: sampling with us-guided 14-gauge core-needle biopsy—clinical experience in 100 patients 1. Radiology. 2009;250:41–9.CrossRefPubMed
9.
go back to reference Bedi DG, Krishnamurthy R, Krishnamurthy S, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer. in vitro sonographic study. Am J Roentgenol. 2008;191:646–52.CrossRef Bedi DG, Krishnamurthy R, Krishnamurthy S, et al. Cortical morphologic features of axillary lymph nodes as a predictor of metastasis in breast cancer. in vitro sonographic study. Am J Roentgenol. 2008;191:646–52.CrossRef
10.
go back to reference Abe H, Schmidt RA, Sennett CA, et al. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27:S91–S99.CrossRefPubMed Abe H, Schmidt RA, Sennett CA, et al. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27:S91–S99.CrossRefPubMed
11.
go back to reference Scaranelo AM, Eiada R, Jacks LM, et al. Accuracy of unenhanced MR imaging in the detection of axillary lymph node metastasis: study of reproducibility and reliability. Radiology. 2012;262:425–34.CrossRefPubMed Scaranelo AM, Eiada R, Jacks LM, et al. Accuracy of unenhanced MR imaging in the detection of axillary lymph node metastasis: study of reproducibility and reliability. Radiology. 2012;262:425–34.CrossRefPubMed
12.
go back to reference Shien T, Akashi-Tanaka S, Yoshida M, et al. Evaluation of axillary status in patients with breast cancer using thin-section CT. Int J Clin Oncol. 2008;13:314–9.CrossRefPubMed Shien T, Akashi-Tanaka S, Yoshida M, et al. Evaluation of axillary status in patients with breast cancer using thin-section CT. Int J Clin Oncol. 2008;13:314–9.CrossRefPubMed
13.
go back to reference Loveless ME, Li X, Huamani J, et al. A method for assessing the microvasculature in a murine tumor model using contrast-enhanced ultrasonography. J Ultrasound Med. 2008;27:1699–709.CrossRefPubMedPubMedCentral Loveless ME, Li X, Huamani J, et al. A method for assessing the microvasculature in a murine tumor model using contrast-enhanced ultrasonography. J Ultrasound Med. 2008;27:1699–709.CrossRefPubMedPubMedCentral
14.
go back to reference Szabó BK, Saracco A, Tánczos E, et al. Correlation of contrast-enhanced ultrasound kinetics with prognostic factors in invasive breast cancer. Eur Radiol. 2013;23:3228–36.CrossRefPubMed Szabó BK, Saracco A, Tánczos E, et al. Correlation of contrast-enhanced ultrasound kinetics with prognostic factors in invasive breast cancer. Eur Radiol. 2013;23:3228–36.CrossRefPubMed
15.
go back to reference Li L, Mori S, Sakamoto M, et al. Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PLoS One. 2013;8:e55797.CrossRefPubMedPubMedCentral Li L, Mori S, Sakamoto M, et al. Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PLoS One. 2013;8:e55797.CrossRefPubMedPubMedCentral
16.
go back to reference Li L, Mori S, Kodama M, et al. Enhanced sonographic imaging to diagnose lymph node metastasis: importance of blood vessel volume and density. Cancer Res. 2013;73:2082–9.CrossRefPubMed Li L, Mori S, Kodama M, et al. Enhanced sonographic imaging to diagnose lymph node metastasis: importance of blood vessel volume and density. Cancer Res. 2013;73:2082–9.CrossRefPubMed
17.
go back to reference Rubaltelli L, Beltrame V, Tregnaghi A, et al. Contrast-enhanced ultrasound for characterizing lymph nodes with focal cortical thickening in patients with cutaneous melanoma. Am J Roentgenol. 2011;196:W8–W12.CrossRef Rubaltelli L, Beltrame V, Tregnaghi A, et al. Contrast-enhanced ultrasound for characterizing lymph nodes with focal cortical thickening in patients with cutaneous melanoma. Am J Roentgenol. 2011;196:W8–W12.CrossRef
18.
go back to reference Rubaltelli L, Corradin S, Dorigo A, et al. Automated quantitative evaluation of lymph node perfusion on contrast-enhanced sonography. Am J Roentgenol. 2007;188:977–83.CrossRef Rubaltelli L, Corradin S, Dorigo A, et al. Automated quantitative evaluation of lymph node perfusion on contrast-enhanced sonography. Am J Roentgenol. 2007;188:977–83.CrossRef
19.
go back to reference Wan CF, Du J, Fang H, et al. Enhancement patterns and parameters of breast cancers at contrast-enhanced US: correlation with prognostic factors. Radiology. 2012;262:450–9.CrossRefPubMed Wan CF, Du J, Fang H, et al. Enhancement patterns and parameters of breast cancers at contrast-enhanced US: correlation with prognostic factors. Radiology. 2012;262:450–9.CrossRefPubMed
20.
go back to reference Pitre-Champagnat S, Leguerney I, Bosq J, et al. Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. Investig Radiol. 2015;50:212–7.CrossRef Pitre-Champagnat S, Leguerney I, Bosq J, et al. Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. Investig Radiol. 2015;50:212–7.CrossRef
21.
go back to reference Du J, Li F-H, Fang H, et al. Correlation of real-time gray scale contrast-enhanced ultrasonography with microvessel density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med. 2008;27:821–3.CrossRefPubMed Du J, Li F-H, Fang H, et al. Correlation of real-time gray scale contrast-enhanced ultrasonography with microvessel density and vascular endothelial growth factor expression for assessment of angiogenesis in breast lesions. J Ultrasound Med. 2008;27:821–3.CrossRefPubMed
22.
go back to reference Mori N, Mugikura S, Takahashi S, et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol. 2017;43:607–14.CrossRefPubMed Mori N, Mugikura S, Takahashi S, et al. Quantitative analysis of contrast-enhanced ultrasound imaging in invasive breast cancer: a novel technique to obtain histopathologic information of microvessel density. Ultrasound Med Biol. 2017;43:607–14.CrossRefPubMed
23.
go back to reference Ecanow JS, Abe H, Newstead GM, et al. Axillary staging of breast cancer: what the radiologist should know. Radiographics. 2013;33:1589–612.CrossRefPubMed Ecanow JS, Abe H, Newstead GM, et al. Axillary staging of breast cancer: what the radiologist should know. Radiographics. 2013;33:1589–612.CrossRefPubMed
24.
go back to reference Murphy CD, Jones JL, Javid SH, et al. Do sentinel node micrometastases predict recurrence risk in ductal carcinoma in situ and ductal carcinoma in situ with microinvasion? Am J Surg. 2008;196:566–8.CrossRefPubMed Murphy CD, Jones JL, Javid SH, et al. Do sentinel node micrometastases predict recurrence risk in ductal carcinoma in situ and ductal carcinoma in situ with microinvasion? Am J Surg. 2008;196:566–8.CrossRefPubMed
25.
go back to reference American College of Radiology. Breast imaging reporting and data system (BI-RADS). 5th ed. Reston: Reston American College of Radiology; 2013. American College of Radiology. Breast imaging reporting and data system (BI-RADS). 5th ed. Reston: Reston American College of Radiology; 2013.
27.
go back to reference Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159.CrossRefPubMed Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159.CrossRefPubMed
28.
go back to reference Ignee A, Jedrejczyk M, Schuessler G, et al. Quantitative contrast enhanced ultrasound of the liver for time intensity curves—reliability and potential sources of errors. Eur J Radiol. 2010;73:153–8.CrossRefPubMed Ignee A, Jedrejczyk M, Schuessler G, et al. Quantitative contrast enhanced ultrasound of the liver for time intensity curves—reliability and potential sources of errors. Eur J Radiol. 2010;73:153–8.CrossRefPubMed
29.
go back to reference Gadre A, Briner W, O’Leary M. A scanning electron microscope study of the human cervical lymph node. Acta Otolaryngol (Stockh.). 1994;114:87–90.CrossRef Gadre A, Briner W, O’Leary M. A scanning electron microscope study of the human cervical lymph node. Acta Otolaryngol (Stockh.). 1994;114:87–90.CrossRef
30.
31.
go back to reference Ohta T, Nishioka M, Nakata N, et al. Five cases of axillary lymph node metastatic breast cancer on contrast-enhanced sonography. J Ultrasound Med. 2015;34:1131–7.CrossRefPubMed Ohta T, Nishioka M, Nakata N, et al. Five cases of axillary lymph node metastatic breast cancer on contrast-enhanced sonography. J Ultrasound Med. 2015;34:1131–7.CrossRefPubMed
32.
go back to reference Goldberg BB, Merton DA, Liu J-B, et al. Contrast-enhanced sonographic imaging of lymphatic channels and sentinel lymph nodes. J Ultrasound Med. 2005;24:953–65.CrossRefPubMed Goldberg BB, Merton DA, Liu J-B, et al. Contrast-enhanced sonographic imaging of lymphatic channels and sentinel lymph nodes. J Ultrasound Med. 2005;24:953–65.CrossRefPubMed
33.
go back to reference Omoto K, Matsunaga H, Take N, et al. Sentinel node detection method using contrast-enhanced ultrasonography with sonazoid in breast cancer: preliminary clinical study. Ultrasound Med Biol. 2009;35:1249–56.CrossRefPubMed Omoto K, Matsunaga H, Take N, et al. Sentinel node detection method using contrast-enhanced ultrasonography with sonazoid in breast cancer: preliminary clinical study. Ultrasound Med Biol. 2009;35:1249–56.CrossRefPubMed
34.
go back to reference Cox K, Taylor-Phillips S, Sharma N, et al. Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: a potential replacement for axillary surgery. Br J Radiol. 2018;91(1082):20170626.PubMedPubMedCentral Cox K, Taylor-Phillips S, Sharma N, et al. Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: a potential replacement for axillary surgery. Br J Radiol. 2018;91(1082):20170626.PubMedPubMedCentral
35.
go back to reference Zhao J, Zhang J, Zhu Q-L, et al. The value of contrast-enhanced ultrasound for sentinel lymph node identification and characterisation in pre-operative breast cancer patients: a prospective study. Eur Radiol. 2018;28(4):1654–61.CrossRefPubMed Zhao J, Zhang J, Zhu Q-L, et al. The value of contrast-enhanced ultrasound for sentinel lymph node identification and characterisation in pre-operative breast cancer patients: a prospective study. Eur Radiol. 2018;28(4):1654–61.CrossRefPubMed
36.
go back to reference Veronesi U, De Cicco C, Galimberti V, et al. A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol. 2006;18:473–8.CrossRefPubMed Veronesi U, De Cicco C, Galimberti V, et al. A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases. Ann Oncol. 2006;18:473–8.CrossRefPubMed
Metadata
Title
Perfusion contrast-enhanced ultrasound to predict early lymph-node metastasis in breast cancer
Authors
Naoko Mori
Shunji Mugikura
Minoru Miyashita
Yumiko Kudo
Mikiko Suzuki
Li Li
Yu Mori
Shoki Takahashi
Kei Takase
Publication date
01-02-2019
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 2/2019
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0792-6

Other articles of this Issue 2/2019

Japanese Journal of Radiology 2/2019 Go to the issue