Skip to main content
Top
Published in: Japanese Journal of Radiology 2/2019

01-02-2019 | Original Article

Potential value of the PixelShine deep learning algorithm for increasing quality of 70 kVp+ASiR-V reconstruction pelvic arterial phase CT images

Authors: Shi-feng Tian, Ai-lian Liu, Jing-hong Liu, Yi-jun Liu, Ju-dong Pan

Published in: Japanese Journal of Radiology | Issue 2/2019

Login to get access

Abstract

Objective

To investigate the effect of a deep learning-based denoising algorithm, PixelShine (PS), on the quality of 70 kVp pelvic arterial phase CT images.

Materials and methods

A retrospective analysis was performed on arterial phase pelvic CT images from 33 patients (body-mass index ≤ 20 kg/m2) obtained with a GE Revolution CT (70 kVp tube voltage; adaptive statistical iterative reconstruction-Veo-filtered back projection, 50% blending) and designated group A. Group B images were then obtained by applying PS to group A image datasets. Subjective image quality was evaluated by two radiologists with a 5-point scoring system; the scores of the groups were compared. Image signal was assessed using CT values of the urinary bladder. CT and standard deviation (SD) values of the gluteus maximus were measured, and SD values of the gluteus maximus were used to represent image noise. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the bladder were calculated. Image noise, SNR, and CNR of two groups were compared using paired t-tests.

Results

The subjective visual image quality scores of groups A and B, respectively, were 3.11 ± 0.30 vs. 3.82 ± 0.57; image noise was 15.79 ± 2.05 Hounsfield units (HU) vs. 11.06 ± 2.22 HU; SNRs of bladder were 0.50 ± 0.23 vs. 0.79 ± 0.39; and CNRs of bladder were 3.72 ± 0.85 vs. 5.14 ± 1.27. Group B showed better subjective image quality, lower image noise, and improved SNR and CNR, compared to group A; these differences were statistically significant (P < 0.05). The noise of group B was approximately 30% lower than that of group A; the SNR and CNR values of group B were improved by approximately 58% and 38%, respectively.

Conclusion

Using 70 kVp +ASiR-V, PS can improve the image quality of pelvic arterial phase CT images, significantly reduce the image noise, and improve the SNR and CNR.
Literature
1.
go back to reference Schreiner MM, Platzgummer H, Unterhumer S, et al. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries-Image quality, diagnostic accuracy and radiation exposure. Eur J Radiol. 2017;93:149–56.CrossRef Schreiner MM, Platzgummer H, Unterhumer S, et al. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries-Image quality, diagnostic accuracy and radiation exposure. Eur J Radiol. 2017;93:149–56.CrossRef
2.
go back to reference Benz MR, Szucs-Farkas Z, Froehlich JM, et al. Scan time adapted contrast agent injection protocols with low volume for low-tube voltage CT angiography: An in vitro study. Eur J Radiol. 2017;93:65–9.CrossRef Benz MR, Szucs-Farkas Z, Froehlich JM, et al. Scan time adapted contrast agent injection protocols with low volume for low-tube voltage CT angiography: An in vitro study. Eur J Radiol. 2017;93:65–9.CrossRef
3.
go back to reference Lim K, Kwon H, Cho J, et al. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v. J Comput Assist Tomogr. 2015;39(3):443–8.PubMed Lim K, Kwon H, Cho J, et al. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v. J Comput Assist Tomogr. 2015;39(3):443–8.PubMed
4.
go back to reference Hasegawa A. “Noise reduction processing by AI—PixelShine”, Innervision, vol. 32, pp 31–34 (in Japanese). Hasegawa A. “Noise reduction processing by AI—PixelShine”, Innervision, vol. 32, pp 31–34 (in Japanese).
5.
go back to reference Cross NM, DeBerry J, Ortiz D, Kemp J, Morey J. “Diagnostic quality of machine learning algorithm for optimization of low-dose computed tomography data”, Society For Imaging Informatics in Medicine (SIIM; June 1–3. PA): Pittsburgh; 2017. Cross NM, DeBerry J, Ortiz D, Kemp J, Morey J. “Diagnostic quality of machine learning algorithm for optimization of low-dose computed tomography data”, Society For Imaging Informatics in Medicine (SIIM; June 1–3. PA): Pittsburgh; 2017.
6.
go back to reference Nagaraj Y, van Den Oever LB, Guo J, Oudkerk M, van Ooijen PM. Perceived quality measurement of low-dose lung CT after retrospective neural network image enhancement. European Society of Thoracic Imaging, ESCR, May 24-26, Geneva, Switzerland; 2018. Nagaraj Y, van Den Oever LB, Guo J, Oudkerk M, van Ooijen PM. Perceived quality measurement of low-dose lung CT after retrospective neural network image enhancement. European Society of Thoracic Imaging, ESCR, May 24-26, Geneva, Switzerland; 2018.
7.
go back to reference Pinho DF, Kulkarni NM, Krishnaraj A, et al. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol. 2013;23(2):351–9.CrossRef Pinho DF, Kulkarni NM, Krishnaraj A, et al. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol. 2013;23(2):351–9.CrossRef
8.
go back to reference André F, Fortner P, Vembar M, et al. Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting. J Cardiovasc Comput Tomogr. 2017;11(3):213–20.CrossRef André F, Fortner P, Vembar M, et al. Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting. J Cardiovasc Comput Tomogr. 2017;11(3):213–20.CrossRef
9.
go back to reference Katsura M, Sato J, Akahane M, et al. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease. Eur J Radiol. 2017;93:243–51.CrossRef Katsura M, Sato J, Akahane M, et al. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease. Eur J Radiol. 2017;93:243–51.CrossRef
10.
go back to reference Higaki T, Tatsugami F, Fujioka C, et al. Visualization of simulated small vessels on computed tomography using a model-based iterative reconstruction technique. Data Brief. 2017;13:437–43.CrossRef Higaki T, Tatsugami F, Fujioka C, et al. Visualization of simulated small vessels on computed tomography using a model-based iterative reconstruction technique. Data Brief. 2017;13:437–43.CrossRef
11.
go back to reference Benz DC, Gräni C, Mikulicic F, et al. Adaptive statistical iterative reconstruction-V: impact on image quality in ultralow-dose coronary computed tomography angiography. J Comput Assist Tomogr. 2016;40(6):958–63.CrossRef Benz DC, Gräni C, Mikulicic F, et al. Adaptive statistical iterative reconstruction-V: impact on image quality in ultralow-dose coronary computed tomography angiography. J Comput Assist Tomogr. 2016;40(6):958–63.CrossRef
12.
go back to reference Kim HG, Lee HJ, Lee SK, et al. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children. Eur Radiol. 2017;27(9):3609–17.CrossRef Kim HG, Lee HJ, Lee SK, et al. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children. Eur Radiol. 2017;27(9):3609–17.CrossRef
13.
go back to reference Yijun LIU, Ailian LIU, Xin FANG, et al. Feasibility of low radiation dose and iodine contrast medium in 70kVp abdominal CTA in low body mass index patients. Chin J Med Imaging Technol. 2017;33(3):473–7. Yijun LIU, Ailian LIU, Xin FANG, et al. Feasibility of low radiation dose and iodine contrast medium in 70kVp abdominal CTA in low body mass index patients. Chin J Med Imaging Technol. 2017;33(3):473–7.
14.
go back to reference Kwon H, Cho J, Oh J, et al. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique. Br J Radiol. 2015;88(1054):20150463.CrossRef Kwon H, Cho J, Oh J, et al. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique. Br J Radiol. 2015;88(1054):20150463.CrossRef
Metadata
Title
Potential value of the PixelShine deep learning algorithm for increasing quality of 70 kVp+ASiR-V reconstruction pelvic arterial phase CT images
Authors
Shi-feng Tian
Ai-lian Liu
Jing-hong Liu
Yi-jun Liu
Ju-dong Pan
Publication date
01-02-2019
Publisher
Springer Japan
Published in
Japanese Journal of Radiology / Issue 2/2019
Print ISSN: 1867-1071
Electronic ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0798-0

Other articles of this Issue 2/2019

Japanese Journal of Radiology 2/2019 Go to the issue