Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 12/2016

01-12-2016 | Original Article

Automatic labeling of portal and hepatic veins from MR images prior to liver transplantation

Author: Evgin Goceri

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 12/2016

Login to get access

Abstract

Purpose

Living donated liver transplantation is an important task since a person (healthy donor) donates some part of her/his liver to a person in this surgery operation. The success of this operation mainly depends on the sufficiency of vessels and volume of the liver. Accurate labeling of portal and hepatic veins of donors reduces the incidence of complications during and after transplantation. Therefore, prior to the hepatic surgery, automatic analysis and labeling of vasculature structures in the liver are vital to see whether liver is suitable or not for transplantation. However, automatic labeling of veins in the liver is challenging because of partial volume effects, noise and image resolution, which causes wrong connections between vessels. The goal of this paper is to propose an automatic labeling approach for vessels.

Methods

The proposed automated labeling method is based on gray-level values in the MR images and anatomical information. In this work, detection and segmentation of vascular structures in the liver is performed automatically with clustering-based segmentation and refinement stages.

Results

The accuracy of the automatic labeling approach is 85 %. Required processing time for the proposed method (average 6 s) is shorter than manual approach (average 295 s) for labeling of hepatic and portal veins from segmented vessels.

Conclusion

The proposed approach is efficient in terms of both computational cost and accuracy of labeling and segmentation of hepatic and portal veins.
Literature
2.
go back to reference Agopian VG, Petrowsky H, Kaldas FM, Zarrinpar A, Farmer DG, Yersiz H, Holt C, Harlander-Locke M, Hong JC, Rana AR, Venick R, McDiarmid SV, Goldstein LI, Durazo F, Saab S, Han S, Xia V, Hiatt JR, Busuttil RW (2013) The evolution of liver transplantation during 3 decades: analysis of 5347 consecutive liver transplants at a single center. Ann Surg 258:409–421CrossRefPubMed Agopian VG, Petrowsky H, Kaldas FM, Zarrinpar A, Farmer DG, Yersiz H, Holt C, Harlander-Locke M, Hong JC, Rana AR, Venick R, McDiarmid SV, Goldstein LI, Durazo F, Saab S, Han S, Xia V, Hiatt JR, Busuttil RW (2013) The evolution of liver transplantation during 3 decades: analysis of 5347 consecutive liver transplants at a single center. Ann Surg 258:409–421CrossRefPubMed
4.
go back to reference Adam R, Karam V, Delvart V, Klempnauer J, Castaing D, Neuhaus P, Jamieson N, Salizzoni M, Pollard S, Lerut J, Paul A, Garcia-Valdecasas JC, Rodríguez FS, Burroughs A (2012) Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J Hepatol 57:675–688CrossRefPubMed Adam R, Karam V, Delvart V, Klempnauer J, Castaing D, Neuhaus P, Jamieson N, Salizzoni M, Pollard S, Lerut J, Paul A, Garcia-Valdecasas JC, Rodríguez FS, Burroughs A (2012) Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J Hepatol 57:675–688CrossRefPubMed
5.
go back to reference Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R (2003) Model for end stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124:91–96CrossRefPubMed Wiesner R, Edwards E, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R (2003) Model for end stage liver disease (MELD) and allocation of donor livers. Gastroenterology 124:91–96CrossRefPubMed
6.
7.
go back to reference Dutkowski P, Oberkofler CE, Bechir M, Müllhaupt B, Geier A, Raptis DA, Clavien PA (2011) The model for end-stage liver disease allocation system for liver transplantation saves lives, but increases morbidity and cost: a prospective outcome analysis. Liver Transpl 17:674–684CrossRefPubMed Dutkowski P, Oberkofler CE, Bechir M, Müllhaupt B, Geier A, Raptis DA, Clavien PA (2011) The model for end-stage liver disease allocation system for liver transplantation saves lives, but increases morbidity and cost: a prospective outcome analysis. Liver Transpl 17:674–684CrossRefPubMed
8.
go back to reference Chen CL, Kabiling CS, Concejero AM (2013) Why does living donor liver transplantation flourish in Asia? Nat Rev Gastroenterol Hepatol 10:746–751CrossRefPubMed Chen CL, Kabiling CS, Concejero AM (2013) Why does living donor liver transplantation flourish in Asia? Nat Rev Gastroenterol Hepatol 10:746–751CrossRefPubMed
9.
go back to reference Schroeder T, Radtke A, Kuehl H, Debatin JF, Malagó M, Ruehm SG (2006) Evaluation of living liver donors with an all-inclusive 3D multi-detector row CT protocol. Radiology 238(3):900–910CrossRefPubMed Schroeder T, Radtke A, Kuehl H, Debatin JF, Malagó M, Ruehm SG (2006) Evaluation of living liver donors with an all-inclusive 3D multi-detector row CT protocol. Radiology 238(3):900–910CrossRefPubMed
10.
go back to reference Radtke A, Sotiropoulos GC, Nadalin S, Molmenti EP, Schroeder T, Saner FH, Sgourakis G, Cicinnati VR, Valentin-Gamazo C, Broelsch CE, Malagó M, Lang H (2008) Preoperative volume prediction in adult live donor liver transplantation: 3-D CT volumetry approach to prevent miscalculations. Eur J Med Res 13:319–326PubMed Radtke A, Sotiropoulos GC, Nadalin S, Molmenti EP, Schroeder T, Saner FH, Sgourakis G, Cicinnati VR, Valentin-Gamazo C, Broelsch CE, Malagó M, Lang H (2008) Preoperative volume prediction in adult live donor liver transplantation: 3-D CT volumetry approach to prevent miscalculations. Eur J Med Res 13:319–326PubMed
11.
go back to reference Niehues SM, Unger JK, Malinowski M, Neymeyer J, Hamm B, Stockmann M (2010) Liver volume measurement: reason of the difference between in vivo CT-volumetry and intraoperative ex vivo determination and how to cope it. Eur J Med Res 15:345–350CrossRefPubMedPubMedCentral Niehues SM, Unger JK, Malinowski M, Neymeyer J, Hamm B, Stockmann M (2010) Liver volume measurement: reason of the difference between in vivo CT-volumetry and intraoperative ex vivo determination and how to cope it. Eur J Med Res 15:345–350CrossRefPubMedPubMedCentral
12.
go back to reference Couinaud C (1999) Liver anatomy: portal (and suprahepatic) or biliary segmentation. Dig Surg 16:459–467CrossRefPubMed Couinaud C (1999) Liver anatomy: portal (and suprahepatic) or biliary segmentation. Dig Surg 16:459–467CrossRefPubMed
13.
go back to reference Goceri E (2016) Fully automated liver segmentation using Sobolev gradient-based level set evolution. Int Eng J Numer Methods Biomed Eng. doi:10.1002/cnm.2765 Goceri E (2016) Fully automated liver segmentation using Sobolev gradient-based level set evolution. Int Eng J Numer Methods Biomed Eng. doi:10.​1002/​cnm.​2765
14.
go back to reference Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845CrossRefPubMed Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845CrossRefPubMed
15.
go back to reference Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121CrossRef Kirbas C, Quek F (2004) A review of vessel extraction techniques and algorithms. ACM Comput Surv 36(2):81–121CrossRef
16.
go back to reference Makowski P, Casciaro S (2008) Review of vessel segmentation methods applied to liver volume images. Minimally Invasive Technologies and Nanosystems for Diagnosis and Therapies (Italy: Istituto di Fisiologia Clinica) pp 103–112 Makowski P, Casciaro S (2008) Review of vessel segmentation methods applied to liver volume images. Minimally Invasive Technologies and Nanosystems for Diagnosis and Therapies (Italy: Istituto di Fisiologia Clinica) pp 103–112
17.
go back to reference Rigamonti R, Lepetit V (2012) Accurate and efficient linear structure segmentation by leveraging ad hoc features with learned filters. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI 2012. LNCS 7510, 189–197 Rigamonti R, Lepetit V (2012) Accurate and efficient linear structure segmentation by leveraging ad hoc features with learned filters. In: Ayache N, Delingette H, Golland P, Mori K (eds) Medical image computing and computer-assisted intervention—MICCAI 2012. LNCS 7510, 189–197
18.
go back to reference Gonzalez G, Fleuret F, Fua P (2009) Learning rotational features for filament detection. In: Proceedings of CVPR 2009 Gonzalez G, Fleuret F, Fua P (2009) Learning rotational features for filament detection. In: Proceedings of CVPR 2009
19.
go back to reference Rigamonti R, Sironi A, Lepetit V, Fua P (2013) Learning separable filters. In: Proceedings of CVPR 2013 Rigamonti R, Sironi A, Lepetit V, Fua P (2013) Learning separable filters. In: Proceedings of CVPR 2013
20.
go back to reference Becker C, Rigamonti R, Lepetit V, Fua P. (2013) Supervised feature learning for curvilinear structure segmentation. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI 2013, Part I. LNCS 8149, pp 526–533 Becker C, Rigamonti R, Lepetit V, Fua P. (2013) Supervised feature learning for curvilinear structure segmentation. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI 2013, Part I. LNCS 8149, pp 526–533
21.
go back to reference Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40:438–445CrossRefPubMed Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40:438–445CrossRefPubMed
22.
go back to reference Narasimha H, Mahadevan V, Beach J, Roysam B (2008) Improved detection of the central reflex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing. IEEE Trans Inf Technol Biomed 12:406–410CrossRef Narasimha H, Mahadevan V, Beach J, Roysam B (2008) Improved detection of the central reflex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing. IEEE Trans Inf Technol Biomed 12:406–410CrossRef
23.
go back to reference Soares J, Cree M (2006) Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222CrossRefPubMed Soares J, Cree M (2006) Retinal vessel segmentation using the 2D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25:1214–1222CrossRefPubMed
24.
go back to reference Luo G, Opas C, Shankar M (2008) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 49:168–172 Luo G, Opas C, Shankar M (2008) Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE Trans Biomed Eng 49:168–172
25.
go back to reference Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal 19:46–57CrossRefPubMed Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable COSFIRE filters for vessel delineation with application to retinal images. Med Image Anal 19:46–57CrossRefPubMed
26.
go back to reference Azzopardi G, Petkov N (2013) Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recognit Lett 34:922–933CrossRef Azzopardi G, Petkov N (2013) Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recognit Lett 34:922–933CrossRef
27.
go back to reference Freiman M, Joskowicz L, Sosna J (2009) A variational method for vessels segmentation: algorithm and application to liver vessels visualization. Proc SPIE 7261:1–8 Freiman M, Joskowicz L, Sosna J (2009) A variational method for vessels segmentation: algorithm and application to liver vessels visualization. Proc SPIE 7261:1–8
28.
go back to reference Kaftan JN, Tek H, Aach T (2009) A two-stage approach for fully automatic segmentation of venous vascular structures in liver CT images. Proc SPIE 7259:1–2 Kaftan JN, Tek H, Aach T (2009) A two-stage approach for fully automatic segmentation of venous vascular structures in liver CT images. Proc SPIE 7259:1–2
29.
go back to reference Wang Y, Fang B, Pi J, Wu L, Wang PSP, Wang H (2013) Automatic multi-scale segmentation of intrahepatic vessel in CT images for liver surgery planning. Int J Pattern Recognit Artif Intell 27:1357001CrossRef Wang Y, Fang B, Pi J, Wu L, Wang PSP, Wang H (2013) Automatic multi-scale segmentation of intrahepatic vessel in CT images for liver surgery planning. Int J Pattern Recognit Artif Intell 27:1357001CrossRef
30.
go back to reference Drechsler K, Laura C. (2010) Comparison of vesselness functions for multiscale analysis of the liver vasculature. In: 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–5 Drechsler K, Laura C. (2010) Comparison of vesselness functions for multiscale analysis of the liver vasculature. In: 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB), pp. 1–5
31.
go back to reference Truc PTH, Khan MAU, Lee Y-K, Lee S, Kim TS (2009) Vessel enhancement filter using directional filter bank. Comput Vis Image Underst 113:101–112CrossRef Truc PTH, Khan MAU, Lee Y-K, Lee S, Kim TS (2009) Vessel enhancement filter using directional filter bank. Comput Vis Image Underst 113:101–112CrossRef
32.
go back to reference Duda RO, Hart PE, David GS (1995) Pattern Classification and Scene Analysis (2nd edn). Part I: Pattern Classification, Wiley, New York. pp. 15–16 Duda RO, Hart PE, David GS (1995) Pattern Classification and Scene Analysis (2nd edn). Part I: Pattern Classification, Wiley, New York. pp. 15–16
33.
go back to reference Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201CrossRefPubMed Vincent L (1993) Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process 2:176–201CrossRefPubMed
34.
go back to reference Pamulapati V, Wood BJ, Linguraru MG (2011) Intra-hepatic vessel segmentation and classification in multi-phase CT using optimized graph cuts. Proceedings of the IEEE International Symposium on Biomedical Imaging, pp 1982–1985 Pamulapati V, Wood BJ, Linguraru MG (2011) Intra-hepatic vessel segmentation and classification in multi-phase CT using optimized graph cuts. Proceedings of the IEEE International Symposium on Biomedical Imaging, pp 1982–1985
35.
go back to reference Huang S, Wang B, Cheng M, Huang X, Ju Y (2008) The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy. Comput Methods Programs Biomed 92:274–278CrossRefPubMed Huang S, Wang B, Cheng M, Huang X, Ju Y (2008) The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy. Comput Methods Programs Biomed 92:274–278CrossRefPubMed
36.
go back to reference Homann H, Vesom G, Noble JA (2008) Vasculature segmentation of CT liver images using graph cuts and graph-based analysis. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 53–56 Homann H, Vesom G, Noble JA (2008) Vasculature segmentation of CT liver images using graph cuts and graph-based analysis. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 53–56
37.
go back to reference Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J (2001) Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 6:131–142CrossRefPubMed Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J (2001) Fully automatic anatomical, pathological, and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 6:131–142CrossRefPubMed
38.
go back to reference Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21:1344–1357CrossRefPubMed Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21:1344–1357CrossRefPubMed
39.
go back to reference Kang X, Zhao Q, Sharma K, Shekhar R, Wood BJ, Linguraru MG (2014) Automatic labeling of liver veins in CT by probabilistic backward tracing. In: Proceedings of the IEEE 11th International Symposium on Biomedical Imaging (ISBI’14) Beijing, China, pp. 1115–1118 Kang X, Zhao Q, Sharma K, Shekhar R, Wood BJ, Linguraru MG (2014) Automatic labeling of liver veins in CT by probabilistic backward tracing. In: Proceedings of the IEEE 11th International Symposium on Biomedical Imaging (ISBI’14) Beijing, China, pp. 1115–1118
Metadata
Title
Automatic labeling of portal and hepatic veins from MR images prior to liver transplantation
Author
Evgin Goceri
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 12/2016
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1446-8

Other articles of this Issue 12/2016

International Journal of Computer Assisted Radiology and Surgery 12/2016 Go to the issue