skip to main content
article

A review of vessel extraction techniques and algorithms

Published:01 June 2004Publication History
Skip Abstract Section

Abstract

Vessel segmentation algorithms are the critical components of circulatory blood vessel analysis systems. We present a survey of vessel extraction techniques and algorithms. We put the various vessel extraction approaches and techniques in perspective by means of a classification of the existing research. While we have mainly targeted the extraction of blood vessels, neurosvascular structure in particular, we have also reviewed some of the segmentation methods for the tubular objects that show similar characteristics to vessels. We have divided vessel segmentation algorithms and techniques into six main categories: (1) pattern recognition techniques, (2) model-based approaches, (3) tracking-based approaches, (4) artificial intelligence-based approaches, (5) neural network-based approaches, and (6) tube-like object detection approaches. Some of these categories are further divided into subcategories. We have also created tables to compare the papers in each category against such criteria as dimensionality, input type, preprocessing, user interaction, and result type.

References

  1. Agin, G. and Binford, T. 1976. Computer description of curved objects. IEEE Trans. Comput. C-25, 439--449.]]Google ScholarGoogle Scholar
  2. Armande, N., Monga, O., and Montesinos, P. 1995. Extraction of thin nets in grey-level images. In Proceedings of Scandinavian Conference on Image Analysis. 287--295.]]Google ScholarGoogle Scholar
  3. Armande, N., Montesinos, P., and Monga, O. 1999. Thin nets extraction using multi-scale approach. Comput. Vis. Image Understand. 73, 2, 248--257.]] Google ScholarGoogle Scholar
  4. Ayache, N. 1994. Medical computer vision, virtual reality and robotics. Image Vis. Comput. 13, 4, 295--313.]]Google ScholarGoogle Scholar
  5. Ayache, N., Guéziec, A., Thirion, J., and Gourdon, A. 1993. Evaluating 3-d registration of ct-scan images using crest lines. Math. Meth. Med. Imag. II 2035, 06 (July), 60--71.]]Google ScholarGoogle Scholar
  6. Aylward, S. and Bullitt, E. 2001. Analysis of the parameter space of a metric for registering 3d vascular images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.]] Google ScholarGoogle Scholar
  7. Aylward, S. and Bullitt, E. 2002. Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Image. 21, 2 (Feb.), 61--75.]]Google ScholarGoogle Scholar
  8. Aylward, S., Jomier, J., Weeks, S., and Bullitt, E. 2002. Registration and analysis of vascular images. Int. J. Comput. Vision.]] Google ScholarGoogle Scholar
  9. Aylward, S., Pizer, S., Bullitt, E., and Eberl, D. 1996. Intensity ridge and widths for tubular object segmentation and description. In Proceedings of the Workshop on Math. Methods in Biomed. Image Analysis. 131--138.]] Google ScholarGoogle Scholar
  10. Binford, T. 1971. Visual perception by computer. In IEEE Conf. on Sys. and Controls.]]Google ScholarGoogle Scholar
  11. Bombardier, V., Jaluent, M., Bubel, A., and Bremont, J. 1997. Cooperation of two fuzzy segmentation operators for digital subtracted angiograms analysis. In IEEE Conference on Fuzzy Systems. Vol. 2. 1057--1062.]]Google ScholarGoogle Scholar
  12. Bors, A. G. and Pitas, I. 1998. Object segmentation and modeling in volumetric images. In Proc. Wksp on Non-Linear Model Based Image Analysis. 295--300.]]Google ScholarGoogle Scholar
  13. Buhler, K., Felkel, P., and La Cruz, A. 2002. Geometric methods for vessel visualization and quantification---A survey. Tech. Rep. TR_VRVis_2002_035, VRVis Research Center,Vienna, Austria.]]Google ScholarGoogle Scholar
  14. Bullitt, E. and Aylward, S. 2001. Analysis of time-varying images using 3d vascular models. In Proc. Applied Imagery Pat. Recog. Works. 9--14.]] Google ScholarGoogle Scholar
  15. Bullitt, E., Aylward, S., Liu, A., Stone, J., Mukherji, S., Coffey, C., Gerig, G., and Pizer, S. 1999. 3d graph description of the intracerebral vasculature from segmented mra and test of accuracy by copariosn with x-ray angiograms. Inf. Proc. Med. Imag. 1613, 308--321.]] Google ScholarGoogle Scholar
  16. Bullitt, E., Aylward, S., Smith, K. Mukherji, S., Jiroutek, M., and Muller, K. 2001. Symbolic description of intracerebral vessels segmented from MRA and evaluation by comparison with x-ray angiograms. IEEE Med. Image Anal. 5, 157--169.]]Google ScholarGoogle Scholar
  17. Canny, J. 1983. Finding edges and lines in images. Tech. Rep. 720, MITAIL.]] Google ScholarGoogle Scholar
  18. Caselles, V., Catte, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours in image processing. Numer. Math. 66, 1, 1--32.]]Google ScholarGoogle Scholar
  19. Chan, R., Karl, W., and Lees, R. 2000. A new model-based technique for enhanced small-vessel measurements in x-ray cine-angiograms. IEEE Trans. on Med. Image 19, 3 (March), 243--255.]]Google ScholarGoogle Scholar
  20. Chandrinos, K. V., Pilu, M., Fisher, R. B., and Trahanias, P. E. 1998. Image processing techniques for the quantification of atherosclerotic changes. In Mediterranian Conf. Medical and Bio. Eng. and Computing.]]Google ScholarGoogle Scholar
  21. Chaudhuri, S., Katz, N., Nelson, M., and Goldbaum, M. 1989. Detection of blood vessels in retinal images using two dimensional blood vessel filters. IEEE Trans. on Med. Img. 8, 3 (Sept.).]]Google ScholarGoogle Scholar
  22. Chen, J., Sato, Y., and Tamura, S. 1998. Orientation space filtering for multiple orientation line segmentation. In Proc. of the IEEE Conf. on CVPR. 311--317.]] Google ScholarGoogle Scholar
  23. Chen, J., Sato, Y., and Tamura, S. 2000. Orientation space filtering for multiple orientation line segmentation. PAMI 22, 5 (May), 417--429.]] Google ScholarGoogle Scholar
  24. Chen, Q., Stock, K., Prasad, P., and Hatabu, H. 1999. Fast magnetic resonance imaging techniques. European J. of Radio. 29, 2 (Feb.), 90--100.]]Google ScholarGoogle Scholar
  25. Chwialkowski, M., Ibrahim, Y., Hong, F., and Peshock, R. 1996. A method for fully automated quantitative analysis of arterial flow using flow-sensitized MR images. Comp. Med. Imaging and Graphics 20, 5, 365--378.]]Google ScholarGoogle Scholar
  26. Clak, J. 1991. Neural network modelling. Physics in Med. and Bio. 36, 1259--1317.]]Google ScholarGoogle Scholar
  27. Clarke, L., Velthuizen, R., Camacho, M., Heine, J., Vaidyanathan, M., Hall, L., and Thatcher, R. 1995. MRI segmentation: Methods and applications. Magne. Reson. Imaging 13, 3, 343--368.]]Google ScholarGoogle Scholar
  28. Cote, B., Hart, W., Goldbaum, M., Kube, P., and Nelson, M. 1994. Classifiction of blood vessels in images of the ocular fundus. Tech. Rep. CS94-350, UCSD.]]Google ScholarGoogle Scholar
  29. Cronemeyer, J., Heising, G., and Orglmeister, R. 1992. A fast skeleton finder for parallel hardware. In IEEE Computers in Cardiology. 23--26.]]Google ScholarGoogle Scholar
  30. Davies, E. 1987. A high speed algorithm for circular object detection. Pattern Rec. Let. 6, 323--333.]] Google ScholarGoogle Scholar
  31. Do Carmo, M. 1976. Differential geometry of curves and surfaces. PH.]]Google ScholarGoogle Scholar
  32. Donizelli, M. 1998. Region-oriented segmentation of vascular structures from dsa images using mathematical morphology and binary region growing. In Proc. of the Works. Image Proces. for the Medicine. Vol. 12.]]Google ScholarGoogle Scholar
  33. Duncan, J. S. and Ayache, N. 2000. Medical image analysis: Progress over two decades and the challenges ahead. PAMI 22, 1 (Jan.), 85--105.]] Google ScholarGoogle Scholar
  34. Eiho, S. and Qian, Y. 1997. Detection of coronary artery tree using morphological operator. IEEE Comput. Cardiol. 24, 525--528.]]Google ScholarGoogle Scholar
  35. Felkel, P., Wegenkittl, R., and Kanitsar, A. 2001. Vessel tracking in peripheral CTA datasets---An overview. In Spring Conf. on Computer Graph. 232--239.]] Google ScholarGoogle Scholar
  36. Fessler, J. A. and Macovski, A. 1991. Object-based 3-d reconstruction of arterial trees from magnetic resonance angiograms. IEEE Trans. on Med. Image 10, 1 (Mar.), 25--39.]]Google ScholarGoogle Scholar
  37. Figueiredo, M. and Leitao, J. 1995. A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. on Med. Image 14, 162--172.]]Google ScholarGoogle Scholar
  38. Fritsch, D., Eberly, D., Pizer, S., and McAuliffe, M. 1995. Simulated cores and their application in medical imaging. Inf. Proc. Med. Imaging, 365--368.]]Google ScholarGoogle Scholar
  39. Fritsch, D., Pizer, S., Morse, B., Eberly, D., and Liu, A. 1994. The multiscale medial axis and its applications in image registration. Pattern Rec. Let. 15, 5, 445--452.]] Google ScholarGoogle Scholar
  40. Geiger, D., Gupta, A., Costa, L., and Vlontzos, J. 1995. Dynamic programming for detecting, tracking, and matching deformable contours. PAMI 17, 3, 294--302.]] Google ScholarGoogle Scholar
  41. Goldbaum, M., Moezzi, S., Taylor, A., Chatterjee, S., Boyd, J., Hunter, E., and Jain, R. 1996. Automated diagnosis and image understanding with object extraction, object classification, and inferencing in retinal images. In IEEE Int. Conf. on Image Processing. Vol. 3.]]Google ScholarGoogle Scholar
  42. Grimson, W., Lozano-Perez, T., Nobel, N., and White, S. 1993. An automatic tube inspection system that finds cylinders in range data. In Proc. of the IEEE Conf. on CVPR. 446--452.]]Google ScholarGoogle Scholar
  43. Guéziec, A. and Ayache, N. 1994. Smoothing and matching of 3-d space curves. Int. J. of Comp. Vision 12, 1 (Jan.), 79--104.]] Google ScholarGoogle Scholar
  44. Guéziec, A., Pennec, X., and Ayache, N. 1997. Medical image registration using geometric hashing. IEEE Computational Sci. Eng., Special Issue on Geometric Hashing 4, 4, 29--41, Oct--Dec.]] Google ScholarGoogle Scholar
  45. Gullberg, G. and Zeng, G. 1992. A cone-beam filtered backpropagation reconstruction algorithm for cardiac single photon emission computed tomography. IEEE Trans. on Med. Img. MI-11, 91--101.]]Google ScholarGoogle Scholar
  46. Guo, D. and Richardson, P. 1998. Automatic vessel extraction from angiogram images. IEEE Comput. Cardiol. 25, 441--444.]]Google ScholarGoogle Scholar
  47. Haris, K., Efstratiadis, S. N., Maglaveras, N., Gourassas, J., Pappas, C., and Louridas, G. 1997a. Automated coronary artey extraction using watersheds. IEEE Comput. Cardiol. 24, 741--744.]]Google ScholarGoogle Scholar
  48. Haris, K., Efstratiadis, S., Maglaveras, N., and Pappas, C. 1997b. Semi-automatic extraction of vascular networks in angiograms. In IEEE Conf. Eng. in Medicine and Bio. 1067--1068.]]Google ScholarGoogle Scholar
  49. Hart, M. and Holley, L. 1993. A method of automated coronary artey tracking in unsubtracted angiograms. In IEEE Comput. Cardiol. 93--96.]]Google ScholarGoogle Scholar
  50. Hart, W. E., Goldbaum, M., Cote, B., Kube, P., and Nelson, M. R. 1997. Automated measurement of retinal vascular tortuosity. In Proc AMIA Fall Conference.]]Google ScholarGoogle Scholar
  51. Haykin, S. 1994. Neural Networks: A Comprehensive Foundation. Mcmillan College, New York.]] Google ScholarGoogle Scholar
  52. Higgins, W., Sypra, W., Karwoski, R., and Ritman, E. 1996. System for analyzing hig-resolution three-dimensional coronary angiograms. IEEE Trans. on Med. Image 15, 377--385.]]Google ScholarGoogle Scholar
  53. Higgins, W. E., Spyra, W. J. T., Ritman, E. L., Kim, Y., and Spelman, F. A. 1989. Automatic extraction of the arterial tree from 3-d angiograms. In IEEE Conf. Eng. in Medicine and Bio. Vol. 2. 563--564.]]Google ScholarGoogle Scholar
  54. Hoover, A., Kouznetsova, V., and Goldbaum, M. 2000. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. on Med. Image 19, 3 (March), 203--210.]]Google ScholarGoogle Scholar
  55. Hu, Y., Rogers, W., Coast, D., Kramer, C., and Reichek, N. 1998. Vessel boundary extraction based on a global and local deformable physical model with variable stiffness. Magne. Reson. Imaging 16, 8, 943--951.]]Google ScholarGoogle Scholar
  56. Huang, Q. and Stockman, G. 1993. Generalized tube model: Recognizing 3d elongated objects from 2d intensity images. In Proc. of the IEEE Conf. on CVPR. 104--109.]]Google ScholarGoogle Scholar
  57. Hunter, I., Soraghan, J., and McDonagh, T. 1995. Fully automatic left ventricular boundary extraction in echocardiographic images. In IEEE Computers in Cardiology. 741--744.]]Google ScholarGoogle Scholar
  58. Jain, R., Kasturi, R., and Schunck, B. 1995. Machine Vision. McGH.]] Google ScholarGoogle Scholar
  59. Kalitzin, S., Ter haar Romaney, B., Salden, A., Nacken, P., and Viergever, M. 1998. Topological numbers and singularities in scalar images: Scale-space evolution properties. J. Math. Imaging and Vis. 9, 253--269.]] Google ScholarGoogle Scholar
  60. Kass, M., Witkin, A., and Terzoopoulos, D. 1988. Snakes: Active contour models. Int. J. Comput. Vision 1, 4, 321--331.]]Google ScholarGoogle Scholar
  61. Kawata, Y., Niki, N., and Kumazaki, T. 1995a. An approach for detecting blood vessel diseases from cone-beam CT image. In IEEE Int. Conf. on Image Processing. 500--503.]] Google ScholarGoogle Scholar
  62. Kawata, Y., Niki, N., Kumazaki, T., and Moonier, P. 1995b. Characteristics measurement for blood vessel diseases detection based on cone-beam ct images. In IEEE Nuclear Science Symposium and Medical Imaging Conference. Vol. 3. 1660--1664.]]Google ScholarGoogle Scholar
  63. Kayikcioglu, T. and Mitra, S. 1992. Unique determination of shape and area of coronary arterial cross-section from biplane angiograms. In IEEE Comp.-Based Med. Sys. 596--603.]]Google ScholarGoogle Scholar
  64. Kayikcioglu, T. and Mitra, S. 1993. A new method for estimating dimensions and 3-d reconstruction of coronary arterial trees from biplane angiograms. In IEEE Comp.-Based Med. Sys. 153--158.]]Google ScholarGoogle Scholar
  65. Kirbas, C. and Quek, F. 2002. 3d wave propagation and traceback in vascular extraction. In IEEE Eng. in Medicine and Bio. and Biomed. Eng. Soc.]]Google ScholarGoogle Scholar
  66. Kitamura, K., Tobis, J., and Sklansky, J. 1988a. Biplane analysis of atheromatous coronary arteries. In Proc. Int. Conf. Pattern Rec. Vol. 2. 1277--1281.]]Google ScholarGoogle Scholar
  67. Kitamura, K., Tobis, J., and Sklansky, J. 1988b. Estimating the 3-d skeletons and transverse areas of coronary arteries from biplane angiograms. IEEE Trans. on Med. Img. 7, 173--187.]]Google ScholarGoogle Scholar
  68. Klein, A., Egglin, T., Pollak, J., Lee, F., and Amini, A. 1994. Identifying vascular features with orientation specific filters and b-spline snakes. In IEEE Computers in Cardiology. 113--116.]]Google ScholarGoogle Scholar
  69. Klein, A., Lee, F., and Amini, A. 1997. Quantitative coronary angiography with deformable spline models. IEEE Trans. on Med. Img. 16, 468--482.]]Google ScholarGoogle Scholar
  70. Koenderink, J. 1990. Solid shapes. MITP.]] Google ScholarGoogle Scholar
  71. Kohonen, T. 1995. Self-organizing Maps. Springer-Verlag, New York.]] Google ScholarGoogle Scholar
  72. Koller, T. M., Gerig, G., Székely, G., and Dettwiler, D. 1995. Multiscale detection of curvilinear structures in 2d and 3d image data. In Int. Conf. on Comp. Vision. 864--869.]] Google ScholarGoogle Scholar
  73. Kompatsiaris, I., Tzovaras, D., Koutkias, V., and Strintzis, M. 2000. Deformable boundary detection of stents in angiographic images. IEEE Trans. on Med. Img. 19, 6 (June), 652--662.]]Google ScholarGoogle Scholar
  74. Kottke, D. and Sun, Y. 1990a. Region splitting of medical images based upon bimodality analysis. In IEEE Eng. Conf. in Medicine and Bio. Vol. 12. 154--155.]]Google ScholarGoogle Scholar
  75. Kottke, D. and Sun, Y. 1990b. Segmentation of coronary arteriograms by iterative ternary classsification. IEEE Trans. on Biomed. Engr. 37, 778--785.]]Google ScholarGoogle Scholar
  76. Kozerke, S., Botnar, R., Oyre, S., Scheidegger, M. B., Pedersen, E., and Boesinger, P. 1999. Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J. of Mag. Res. Imaging 10, 1 (July), 41--51.]]Google ScholarGoogle Scholar
  77. Krissian, K., Malandain, G., and Ayache, N. 1996. Directional anisotropic diffusion applied to segmentation of vessels in 3d images. Tech. Rep. 3064, INRIA.]]Google ScholarGoogle Scholar
  78. Krissian, K., Malandain, G., and Ayache, N. 1998. Model-based multiscale detection and reconstruction of 3d vessels. Tech. Rep. 3442, INRIA.]]Google ScholarGoogle Scholar
  79. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., and Trousset, Y. 1998a. Model-based multiscale detection of 3d vessels. Proc. of the IEEE Conf. on CVPR, 722--727.]] Google ScholarGoogle Scholar
  80. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., and Trousset, Y. 1998b. Model-based multiscale detection of 3d vessels. In Proc. IEEE Workshop Biomed. Image Anal. 202--208.]] Google ScholarGoogle Scholar
  81. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., and Trousset, Y. 1999. Model based detection of tubular structures in 3d images. Tech. Rep. 3736, INRIA.]]Google ScholarGoogle Scholar
  82. Lecornu, L., Roux, C., and Jacq, J. 1994. Extraction of vessel contours in angiograms by simultaneous tracking of the two edges. In IEEE Conf. Eng. in Medicine and Bio. Vol. 1. 678--679.]]Google ScholarGoogle Scholar
  83. Lindeberg, T. 1994. Scale-Space theory in Computer Vision. Kluwer Academic Publishers, Dordrecht, Netherlands.]] Google ScholarGoogle Scholar
  84. Lindeberg, T. 1996. Edge detection and ridge detection with automatic scale selection. In Proc. of the IEEE Conf. on CVPR. 465.]] Google ScholarGoogle Scholar
  85. Liu, I. and Sun, Y. 1993. Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme. IEEE Trans. on Med. Img. 12, 334--341.]]Google ScholarGoogle Scholar
  86. Lorenz, C., Carse, I. C., Buzug, T. M., Fassnacht, C., and Weese, J. 1997. Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2d and 3d medical images. In Joint Conf. Comp. Vision, Vir. Reality and Robotics in Medicine and Robotics, and Comput.-Assisted Surgery. 213--222.]] Google ScholarGoogle Scholar
  87. Lu, S. and Eiho, S. 1993. Automatic detection of the coronary arterial contours with sub-branches from an x-ray angiogram. In IEEE Computers in Cardiology. 575--578.]]Google ScholarGoogle Scholar
  88. Luo, H., Qiang, L., Acharya, R., and Gaborski, R. 2000. Robust snake model. In Proc. IEEE Conf. on CVPR. Vol. 1. 452--457.]]Google ScholarGoogle Scholar
  89. Malladi, R., Sethian, J. A., and Vemuri, B. C. 1995. Shape modeling with front propagation: A level set approach. PAMI 17, 2 (Feb.), 158--175.]] Google ScholarGoogle Scholar
  90. Mao, F., Ruan, S., Bruno, A., Toumoulin, C., Collorec, R., and Haigron, P. 1992. Extraction of structural features in digital subtraction angiography. In IEEE Int. Biomed. Eng. Days. 166--169.]]Google ScholarGoogle Scholar
  91. Martelli, A. 1976. An application of heuristic search methods to edge and contour detection. In Commun. ACM 19, 73--83.]] Google ScholarGoogle Scholar
  92. Mayer, H., Laptev, I., Baumgartner, A., and Steger, C. 1997. Automatic road extraction based on multi-scale modeling, context, and snakes. IEEE Trans. on Med. Image 32, 47--56.]]Google ScholarGoogle Scholar
  93. McInerney, T. and Terzopoulos, D. 1995. Topologically adaptable snakes. In Int. Conf. on Comp. Vision. 840--845.]] Google ScholarGoogle Scholar
  94. McInerney, T. and Terzopoulos, D. 1996. Deformable models in medical image analysis: A survey. IEEE Medical Image Analysis 1, 2, 91--108.]]Google ScholarGoogle Scholar
  95. McInerney, T. and Terzopoulos, D. 1997. Medical image segmentation using topologically adaptable surfaces. In Conf. Comp. Vision, Vir. Reality and Robotics in Medicine and Robotics. Vol. 1205. 23--32.]] Google ScholarGoogle Scholar
  96. Miller, J., Breen, D., Lorensen, W., O'Bara, R., and Wozny, M. 1991. Geometrically deformed models: A method for extracting closed geometric models from volume data. CG 25, 4 (July), 217--226.]] Google ScholarGoogle Scholar
  97. Molina, C., Prause, G., Radeva, P., and Sonka, M. 1998. 3-d catheter path reconstruction from biplane angiograms. In SPIE. Vol. 3338. 504--512.]]Google ScholarGoogle Scholar
  98. Monga, O., Armande, N., and Montesinos, P. 1997. Thin nets and crest lines: Application to satellite data and medical images. Computer Vision and Image Understanding 66, 1.]] Google ScholarGoogle Scholar
  99. Monga, O., Lengagne, R., and Deriche, R. 1994a. Crest-lines extraction in volumetric 3d medical images: a multiscale approach. In Proc. Int. Conf. Pattern Rec.]]Google ScholarGoogle Scholar
  100. Monga, O., Lengagne, R., and Deriche, R. 1994b. Extraction of the zero-crossings of the curvature derivatives in volumic 3d medical images: A multi-scale approach. In Proc. of the IEEE Conf. on CVPR. 852--855.]]Google ScholarGoogle Scholar
  101. Nekovei, R. and Sun, Y. 1995. Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. on Neural Nets 6, 1 (January), 64--72.]] Google ScholarGoogle Scholar
  102. Nguyen, T. and Sklansky, J. 1986a. Computing the skeleton of coronary arteries in cineangiograms. Comput. and Biomed. Res. 19, 428--444.]] Google ScholarGoogle Scholar
  103. Nguyen, T. and Sklansky, J. 1986b. A fast skeleton finder for coronary arteries. In Proc. Int. Conf. Pattern Rec. 481--483.]]Google ScholarGoogle Scholar
  104. Niki, N., Kawata, Y., Sato, H., and Kumazaki, T. 1993. 3d imaging of blood vessels using x-ray rotational angiographic system. IEEE Med. Imaging Conf. 3, 1873--1877.]]Google ScholarGoogle Scholar
  105. O'Brien, J. F. and Ezquerra, N. F. 1994. Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial structural constraints. In Proc. SPIE Conf. Visualization in Biomed. Computing.]]Google ScholarGoogle Scholar
  106. O'Donnell, T., Boult, T. E., Fang, X., and Gupta, A. 1994. The extruded generalized cylinder: A deformable model for object recovery. In Proc. of the IEEE Conf. on CVPR. 174--181.]]Google ScholarGoogle Scholar
  107. O'Donnell, T., Gupta, A., and Boult, T. 1997. A new model for the recovery of cylindrical structures from medical image data. In Joint Conf. Comp. Vision, Vir. Reality and Robotics in Medicine and Robotics, and Comp.-Assisted Surgery. 223--232.]] Google ScholarGoogle Scholar
  108. Osher, S. and Sethian, J. A. 1988. Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulation. J. Computat. Phys. 79, 12--49.]] Google ScholarGoogle Scholar
  109. Otsu, N. 1979. A threshold selection method from gray-level histograms. IEEE Trans. on Syst., Man, and Cybernet. 9, 62--66.]]Google ScholarGoogle Scholar
  110. Park, S., Lee, J., Koo, J., Kwon, O., and Hong, S. 1997. Adaptive tracking algorithm based on direction field using ml estimation in angiogram. In IEEE Conference on Speech and Image Technologies for Computing and Telecommunications. Vol. 2. 671--675.]]Google ScholarGoogle Scholar
  111. Parker, D. L., Wu, J., and van Bree, R. E. 1988. Three dimensional vascular reconstruction from projections: A theoretical review. In IEEE Conf. Eng. in Medicine and Bio.]]Google ScholarGoogle Scholar
  112. Parvin, B. A., Penf, C., Johnston, W., and Maestre, F. M. 1994. Tracking of tubular objects for scientific applications. In Proc. of the IEEE Conf. on CVPR. 295--301.]]Google ScholarGoogle Scholar
  113. Pellot, C., Herment, A., and Sigelle, M. 1994. A 3d reconstruction of vascular structures from two x-ray angiograms using an adapted simulated annealing algorithm. IEEE Trans. on Med. Img. 13, 48--60.]]Google ScholarGoogle Scholar
  114. Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. PAMI 12, 7 (July), 629--639.]] Google ScholarGoogle Scholar
  115. Petrocelli, R., Elion, J., and Manbeck, K. M. 1992. A new method for structure recognition in unsubtracted digital angiograms. In IEEE Computers in Cardiology. 207--210.]]Google ScholarGoogle Scholar
  116. Petrocelli, R., Manbeck, K., and Elion, J. 1993. Three dimensional structure recognition in digital angiograms using gauss-markov methods. In IEEE Computers in Cardiology. 101--104.]]Google ScholarGoogle Scholar
  117. Pham, D., Xu, C., and Prince, J. 2000. Current Methods in Medical Image Segmentation. Vol. 2. 315--338.]]Google ScholarGoogle Scholar
  118. Pitas, I. and Venetsanopoulos, A. 1990. Nonlinear Digital Filters: principles and applications. Kluver Academic, Norwell, Mass.]]Google ScholarGoogle Scholar
  119. Pizer, S., Morse, B., and Fritsch, D. 1998. Zoom-invariant vision of figural shape: the mathematics of cores. Computer Vision and Image Understanding 69, 55--71.]] Google ScholarGoogle Scholar
  120. Poli, R. and Valli, G. 1997. An algorithm for real-time vessel enhancement and detection. Comp. Methods and Prog. in Biomed. 52, 1 (Jan.), 1--22.]]Google ScholarGoogle Scholar
  121. Prinet, V., Monga, O., Ge, C. Xie, S., and Ma, S. 1996. Thin network extraction in 3d images: Application to medical angiograms. In Proc. Int. Conf. Pattern Rec. 386--390.]] Google ScholarGoogle Scholar
  122. Prinet, V., Monga, O., and Rocchisani, J. 1997. Multi-dimensional vessel extraction using crest lines. In IEEE Conf. Eng. in Medicine and Bio. Vol. 1. 393--394.]]Google ScholarGoogle Scholar
  123. Puig, P. 1998a. Cerebral blood vessels modeling. Tech. Rep. LSI-98-21-R, PICS.]]Google ScholarGoogle Scholar
  124. Puig, P. 1998b. Discrete medial axis transform for discrete objects. Tech. Rep. LSI-98-20-R, PICS.]]Google ScholarGoogle Scholar
  125. Quek, F. and Kirbas, C. 2001. Vessel extraction in medical images by wave propagation and traceback. IEEE Trans. on Med. Img. 20, 2 (Feb.), 117--131.]]Google ScholarGoogle Scholar
  126. Quek, F., Kirbas, C., and Charbel, F. 1999. Aim:attentionally-based interaction model for the interpretation of vascular angiograph. IEEE Trans. on Inf. Tech. in Biomed. 3, 2 (June), 139--150.]] Google ScholarGoogle Scholar
  127. Quek, F., Kirbas, C., and Charbel, F. 2001. Aim: An attentionally-based system for the interpretation of angiography. In Proc. IEEE Med. Imaging and Augmented Reality Conf. 168--173.]] Google ScholarGoogle Scholar
  128. Quek, F., Kirbas, C., and Gong, X. 2001. Simulated wave propagation and traceback in vascular extraction. In Proc. IEEE Med. Imaging and Augmented Reality Conf. 229--234.]] Google ScholarGoogle Scholar
  129. Ripley, B. 1996. Pattern Recognition and Neural Networks. Cambridge University Press.]] Google ScholarGoogle Scholar
  130. Ritchings, R. and Colchester, A. 1986. Detection of abnomalities on carotid angiograms. Pattern Rec. Let. 4, 367--374.]] Google ScholarGoogle Scholar
  131. Rosenfeld, A. and Smith, R. 1981. Thresholding using relaxation. PAMI 3, 598--606.]]Google ScholarGoogle Scholar
  132. Rost, U., Munkel, H., and Liedtke, C.-E. 1998. A knowledge based system for the configuration of image processing algorithms. Fachtagung Informations und Mikrosystem Technik.]]Google ScholarGoogle Scholar
  133. Rueckert, D. and Burger, P. 1995. Contour fitting using stochastic and probabilistic relaxation for cine mr images. In Computer Assisted Radiology. 137--142.]]Google ScholarGoogle Scholar
  134. Rueckert, D. and Burger, P. 1996. Shape-based tracking and analysis of the aorta in cardiac mr images using geometrically defornable templates. In Computer Assisted Radiology.]]Google ScholarGoogle Scholar
  135. Rueckert, D., Burger, P., Forbat, S. M., Mohiaddin, R. D., and Yang, G. Z. 1997. Automatic tracking of the aorta in cardiovascular mr images using deformable models. IEEE Trans. on Med. Img. 16, 5 (Oct.), 581--590.]]Google ScholarGoogle Scholar
  136. Sarry, L. and Boire, J. 2001. Three-dimensional tracking of coronary arteries from biplane angiographic sequences using parametrically deformable moodels. IEEE Trans. on Med. Img. 20, 12 (Dec.), 1341--1351.]]Google ScholarGoogle Scholar
  137. Sarwal, A. and Dhawan, A. 1994. 3-d reconstruction of coronary arteries. In IEEE Conf. Eng. in Medicine and Bio. Vol. 1. 504--505.]]Google ScholarGoogle Scholar
  138. Sato, Y., Araki, T., Hanayama, M., Naito, H., and Tamura, S. 1998a. A viewpoint determination system for stenosis diagnosis and quantification in coronary angiographic image acquisition. IEEE Trans. on Med. Img. 17, 121--137.]]Google ScholarGoogle Scholar
  139. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., and Kikinis, R. 1998b. 3d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. IEEE Medical Image Analysis 2, 2 (June), 143--168.]]Google ScholarGoogle Scholar
  140. Schmitt, H., Grass, M., Rasche, V., Schramm, O., Haehnel, S., and Sartor, K. 2002. An x-ray-based method for the determination of the contrast agent propagation in 3-d vessel structures. IEEE Trans. on Med. Img. 21, 3 (Mar.), 251--262.]]Google ScholarGoogle Scholar
  141. Sethian, J. 1999. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, Cambridge, UK.]]Google ScholarGoogle Scholar
  142. Sethian, J. A. 1996. A fast marching level set method for monotinically advancing fronts. In Proc. of Nat. Acad. of Sci. Vol. 93. 1591--1595.]]Google ScholarGoogle Scholar
  143. Shen, H. and Johnson, C. R. 1994. Semi-automatic image segmentation: A bimodal thresholding approach. Tech. Rep. UUCS-94-019, Univ. of Utah, Dept. of Comput. Science.]]Google ScholarGoogle Scholar
  144. Shiffman, S., Rubin, G. D., and Napel, S. 1996. Semiautomated Editing of Computed Tomography Sections for Visualization of Vasculature. Vol. 2707. SPIE.]]Google ScholarGoogle Scholar
  145. Smets, C., Verbeeck, G., Suetens, P., and Oosterlinck, A. 1988. A knowledge-based system for the delineation of blood vessels on subtraction angiograms. Pattern Rec. Lett. 8, 113--121.]] Google ScholarGoogle Scholar
  146. Sonka, M., Hlavac, V., and Boyle, R. 1999. Image Processing, Analysis, and Machine Vision. PWS Publishing.]] Google ScholarGoogle Scholar
  147. Sorantin, E., Halmai, C., Erdohelyi, B., Palagyi, K., Nyul, L., Olle, K., Geiger, B., Lindbichler, F., Friedrich, G., and Kiesler, K. 2002. Spiral-ct-based assessment of tracheal stenoses using 3-d-skeletonization. IEEE Trans. on Med. Img. 21, 3 (Mar.), 263--273.]]Google ScholarGoogle Scholar
  148. Stansfield, S. 1986. Angy: A rule-based expert system for automatic segmentation of coronory vessels from digital subtracted angiograms. PAMI 8, 3 (Mar.), 188--199.]] Google ScholarGoogle Scholar
  149. Stevenson, D. 1987. Working towards the automatic detection of blood vessels in x-ray angiograms. Pattern Rec. Lett. 6, 107--112.]] Google ScholarGoogle Scholar
  150. Stockett, M. and Soroka, B. 1992. Extracting spinal cord contours from transaxial mr images using computer vision techniques. In IEEE Comp.-Based Med. Sys. 1--8.]]Google ScholarGoogle Scholar
  151. Summers, P. and Bhalerao, A. 1995. Derivation of pressure gradients from magnetic resonance angiography using multi-resolution segmentation. In Proceedings of International Conference on Image Processing and its Applications. 404--408.]]Google ScholarGoogle Scholar
  152. Sun, Y. 1989. Automated identification of vessel contours in coronary arteriograms by an adaptive tracking algorithm. IEEE Trans. on Med. Img. 8, 78--88.]]Google ScholarGoogle Scholar
  153. Thackray, B. and Nelson, A. 1993. Semi-automatic segmentation of vascular network images using a rotating structuring element (rose) with mathematical morphology and dual feature thresholding. IEEE Trans. on Med. Img. 12, 385--392.]]Google ScholarGoogle Scholar
  154. Thirion, B., Bascle, B., Ramesh, V., and Navab, N. 2000. Fusion of color, shading and boundary infomation for factory pipe segmentation. In Proc. of the IEEE Conf. on CVPR. Vol. 2. 349--356.]]Google ScholarGoogle Scholar
  155. Toledo, R., Orriols, X., Binefa, X., Raveda, P., Vitria, J., and Villanueva, J. J. 2000. Tracking elongated structures using statistical snakes. In Proc. of the IEEE Conf. on CVPR. 157--162.]]Google ScholarGoogle Scholar
  156. Tolias, Y. and Panas, S. 1998. A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering. IEEE Trans. on Med. Img. 17, 263--273.]]Google ScholarGoogle Scholar
  157. Tozaki, T., Kawata, Y., Niki, N., Ohmatsu, H., and Moriyama, N. 1995. 3-d visualization of blood vessels and tumor using thin slice ct. In IEEE Nuclear Science Symposium and Medical Imaging Conference. Vol. 3. 1470--1474.]]Google ScholarGoogle Scholar
  158. Umbaugh, S. 1998. Computer Vision and Machine Processing. PHPTR.]]Google ScholarGoogle Scholar
  159. van der Weide, R., Bakker, C., and Viergever, M. 2001. Localization of intravascular devices with paramagnetic markers in mr images. IEEE Trans. on Med. Img. 20, 10 (October), 1061--1071.]]Google ScholarGoogle Scholar
  160. Wood, S., Qu, G., and Roloff, L. 1995. Detection and labeling of retinal vessels for longitidunal studies. In IEEE Int. Conf. on Image Processing. Vol. 3. 164--167.]] Google ScholarGoogle Scholar
  161. Xu, C., Pham, D., and Prince, J. 2000. Medical Image Segmentation Using Deformable Models. SPIE Press, Chapter 3, 129--174.]]Google ScholarGoogle Scholar
  162. Xu, C. and Prince, J. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Proces. 7, 359--369.]] Google ScholarGoogle Scholar
  163. Yim, P., Choyke, P., and Summers, R. 2000. Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. on Med. Img. 19, 6 (June), 568--576.]]Google ScholarGoogle Scholar
  164. Zana, F. and Klein, J. 1997. Robust segmentation of vessels from retinal angiography. In IEEE International Conference on Digital Signal Processing. Vol. 2. 1087--1090.]]Google ScholarGoogle Scholar
  165. Zerroug, M. and Nevatia, R. 1993. Quasi-invariant properties and 3-d shape recovery of non-constant generalized cylinders. In Proc. of the IEEE Conf. on CVPR. 96--103.]]Google ScholarGoogle Scholar
  166. Zhou, L., Rzeszotarski, M., Singerman, L., and Chokreff, J. 1994. The detection and quantification of retinopathy using digital angiograms. IEEE Trans. on Med. Img. 13, 619--626.]]Google ScholarGoogle Scholar

Index Terms

  1. A review of vessel extraction techniques and algorithms

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader