Skip to main content
Top
Published in: Targeted Oncology 1/2012

01-03-2012 | Review

A review on various targeted anticancer therapies

Authors: Junjie Li, Feng Chen, Marlein Miranda Cona, Yuanbo Feng, Uwe Himmelreich, Raymond Oyen, Alfons Verbruggen, Yicheng Ni

Published in: Targeted Oncology | Issue 1/2012

Login to get access

Abstract

Translational oncology aims to translate laboratory research into new anticancer therapies. Contrary to conventional surgery, chemotherapy, and radiotherapy, targeted anticancer therapy (TAT) refers to systemic administration of drugs with particular mechanisms that specifically act on well-defined targets or biologic pathways that, when activated or inactivated, may cause regression or destruction of the malignant process, meanwhile with minimized adverse effects on healthy tissues. In this article, we intend to first give a brief review on various known TAT approaches that are deemed promising for clinical applications in the current trend of personalized medicine, and then we will introduce our newly developed approach namely small molecular sequential dual targeting theragnostic strategy as a generalized class of TAT for the management of most solid malignancies, which, after optimization, is expected to help improve overall cancer treatability and curability.
Literature
1.
go back to reference Levin PBAB (2008) World Cancer Report 2008; Report No.9789283204237 Levin PBAB (2008) World Cancer Report 2008; Report No.9789283204237
3.
go back to reference Meeran SM, Katiyar SK (2008) Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 13:2191–2202PubMedCrossRef Meeran SM, Katiyar SK (2008) Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 13:2191–2202PubMedCrossRef
4.
go back to reference Aggarwal BB, Danda D, Gupta S, Gehlot P (2009) Models for prevention and treatment of cancer: problems vs promise. Biochem Pharmacol 78(9):1083–1094PubMedCrossRef Aggarwal BB, Danda D, Gupta S, Gehlot P (2009) Models for prevention and treatment of cancer: problems vs promise. Biochem Pharmacol 78(9):1083–1094PubMedCrossRef
5.
go back to reference Hamilton A, Gallipoli P, Nicholson E, Holyoake TL (2010) Targeted therapy in haematological malignancies. J Pathol 220(4):404–418PubMed Hamilton A, Gallipoli P, Nicholson E, Holyoake TL (2010) Targeted therapy in haematological malignancies. J Pathol 220(4):404–418PubMed
6.
go back to reference Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J et al (2004) Targeted therapies for cancer. Am J Clin Pathol 122(4):598–609PubMedCrossRef Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J et al (2004) Targeted therapies for cancer. Am J Clin Pathol 122(4):598–609PubMedCrossRef
7.
go back to reference Piccaluga PP, Martinelli G, Baccarani M (2006) Advances in the treatment for haematological malignancies. Expert Opin Pharmacother 7(6):721–732PubMedCrossRef Piccaluga PP, Martinelli G, Baccarani M (2006) Advances in the treatment for haematological malignancies. Expert Opin Pharmacother 7(6):721–732PubMedCrossRef
9.
go back to reference Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9:1957–1971PubMed Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9:1957–1971PubMed
10.
go back to reference Li J, Sun Z, Zhang J, Shao H, Miranda Cona M, Wang H et al (2011) A dual-targeting anticancer approach: soil and seed principle. Radiology 260(3):799–807PubMedCrossRef Li J, Sun Z, Zhang J, Shao H, Miranda Cona M, Wang H et al (2011) A dual-targeting anticancer approach: soil and seed principle. Radiology 260(3):799–807PubMedCrossRef
11.
go back to reference Cherry M, Williams DH (2004) Recent kinase and kinase inhibitor X-ray structures: mechanisms of inhibition and selectivity insights. Curr Med Chem 11(6):663–673PubMedCrossRef Cherry M, Williams DH (2004) Recent kinase and kinase inhibitor X-ray structures: mechanisms of inhibition and selectivity insights. Curr Med Chem 11(6):663–673PubMedCrossRef
12.
go back to reference McGregor MJ (2007) A pharmacophore map of small molecule protein kinase inhibitors. J Chem Inf Model 47(6):2374–2382PubMedCrossRef McGregor MJ (2007) A pharmacophore map of small molecule protein kinase inhibitors. J Chem Inf Model 47(6):2374–2382PubMedCrossRef
13.
go back to reference Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187PubMedCrossRef Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187PubMedCrossRef
14.
go back to reference Pearson MA, Fabbro D (2004) Targeting protein kinases in cancer therapy: a success? Expert Rev Anticancer Ther 4(6):1113–1124PubMedCrossRef Pearson MA, Fabbro D (2004) Targeting protein kinases in cancer therapy: a success? Expert Rev Anticancer Ther 4(6):1113–1124PubMedCrossRef
15.
go back to reference Furge KA, MacKeigan JP, Teh BT (2010) Kinase targets in renal-cell carcinomas: reassessing the old and discovering the new. Lancet Oncol 11(6):571–578PubMedCrossRef Furge KA, MacKeigan JP, Teh BT (2010) Kinase targets in renal-cell carcinomas: reassessing the old and discovering the new. Lancet Oncol 11(6):571–578PubMedCrossRef
16.
go back to reference Fasolo A, Sessa C (2011) Current and future directions in mammalian target of rapamycin inhibitors development. Expert Opin Investig Drugs 20(3):381–394PubMedCrossRef Fasolo A, Sessa C (2011) Current and future directions in mammalian target of rapamycin inhibitors development. Expert Opin Investig Drugs 20(3):381–394PubMedCrossRef
17.
go back to reference Gambacorti-Passerini C (2008) Part I: Milestones in personalised medicine—imatinib. Lancet Oncol 9(6):600PubMedCrossRef Gambacorti-Passerini C (2008) Part I: Milestones in personalised medicine—imatinib. Lancet Oncol 9(6):600PubMedCrossRef
18.
go back to reference DeAngelo DJ, Ritz J (2004) Imatinib therapy for patients with chronic myelogenous leukemia: are patients living longer? Clin Cancer Res 10(1 Pt 1):1–3PubMedCrossRef DeAngelo DJ, Ritz J (2004) Imatinib therapy for patients with chronic myelogenous leukemia: are patients living longer? Clin Cancer Res 10(1 Pt 1):1–3PubMedCrossRef
20.
go back to reference le Coutre P, Kreuzer KA, Pursche S, Bonin M, Leopold T, Baskaynak G et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53(4):313–323PubMedCrossRef le Coutre P, Kreuzer KA, Pursche S, Bonin M, Leopold T, Baskaynak G et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53(4):313–323PubMedCrossRef
21.
go back to reference Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652PubMedCrossRef Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652PubMedCrossRef
22.
go back to reference Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7(Suppl 4):2–8PubMedCrossRef Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7(Suppl 4):2–8PubMedCrossRef
23.
go back to reference Reis-Filho JS, Milanezi F, Carvalho S, Simpson PT, Steele D, Savage K et al (2005) Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res 7(6):R1028–R1035PubMedCrossRef Reis-Filho JS, Milanezi F, Carvalho S, Simpson PT, Steele D, Savage K et al (2005) Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res 7(6):R1028–R1035PubMedCrossRef
24.
go back to reference Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361PubMedCrossRef Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62(3):346–361PubMedCrossRef
25.
go back to reference Mantha AJ, Hanson JE, Goss G, Lagarde AE, Lorimer IA, Dimitroulakos J (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11(6):2398–2407PubMedCrossRef Mantha AJ, Hanson JE, Goss G, Lagarde AE, Lorimer IA, Dimitroulakos J (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11(6):2398–2407PubMedCrossRef
26.
go back to reference Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139PubMedCrossRef Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139PubMedCrossRef
27.
go back to reference Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500PubMedCrossRef Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500PubMedCrossRef
28.
go back to reference Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388PubMedCrossRef Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388PubMedCrossRef
31.
go back to reference Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedCrossRef Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedCrossRef
33.
go back to reference Von Mehren M, Adams GP, Weiner LM (2003) Monoclonal antibody therapy for cancer. Annu Rev Med 54:343–369CrossRef Von Mehren M, Adams GP, Weiner LM (2003) Monoclonal antibody therapy for cancer. Annu Rev Med 54:343–369CrossRef
34.
35.
go back to reference Zhang Q, Chen G, Liu X, Qian Q (2007) Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res 17(2):89–99PubMedCrossRef Zhang Q, Chen G, Liu X, Qian Q (2007) Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res 17(2):89–99PubMedCrossRef
36.
go back to reference Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M (2003) Anticancer antibodies. Am J Clin Pathol 119(4):472–485PubMedCrossRef Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M (2003) Anticancer antibodies. Am J Clin Pathol 119(4):472–485PubMedCrossRef
37.
go back to reference Funaro A, Horenstein AL, Santoro P, Cinti C, Gregorini A, Malavasi F (2000) Monoclonal antibodies and therapy of human cancers. Biotechnol Adv 18(5):385–401PubMedCrossRef Funaro A, Horenstein AL, Santoro P, Cinti C, Gregorini A, Malavasi F (2000) Monoclonal antibodies and therapy of human cancers. Biotechnol Adv 18(5):385–401PubMedCrossRef
38.
39.
go back to reference Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. N Engl J Med 359(6):613–626PubMedCrossRef Cheson BD, Leonard JP (2008) Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. N Engl J Med 359(6):613–626PubMedCrossRef
40.
go back to reference Plosker GL, Figgitt DP (2003) Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 63(8):803–843PubMedCrossRef Plosker GL, Figgitt DP (2003) Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs 63(8):803–843PubMedCrossRef
41.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedCrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182PubMedCrossRef
42.
go back to reference Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578PubMedCrossRef Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578PubMedCrossRef
43.
go back to reference Mandler R, Wu C, Sausville EA, Roettinger AJ, Newman DJ, Ho DK et al (2000) Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines. J Natl Cancer Inst 92(19):1573–1581PubMedCrossRef Mandler R, Wu C, Sausville EA, Roettinger AJ, Newman DJ, Ho DK et al (2000) Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines. J Natl Cancer Inst 92(19):1573–1581PubMedCrossRef
44.
go back to reference Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK et al (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 17(5):1109–1115PubMedCrossRef Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK et al (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 17(5):1109–1115PubMedCrossRef
45.
go back to reference Jahanzeb M (2008) Adjuvant trastuzumab therapy for HER2-positive breast cancer. Clin Breast Cancer 8(4):324–333PubMedCrossRef Jahanzeb M (2008) Adjuvant trastuzumab therapy for HER2-positive breast cancer. Clin Breast Cancer 8(4):324–333PubMedCrossRef
46.
go back to reference Slamon DJL-JB, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792PubMedCrossRef Slamon DJL-JB, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792PubMedCrossRef
47.
go back to reference Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275PubMedCrossRef Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275PubMedCrossRef
48.
go back to reference Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36PubMedCrossRef Smith I, Procter M, Gelber RD, Guillaume S, Feyereislova A, Dowsett M et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369(9555):29–36PubMedCrossRef
49.
go back to reference Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr et al (2007) Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patients with HER2-positive breast cancer. 2007 ASCO Annual Meeting Proceedings Part I; 25(18S):512 Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr et al (2007) Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patients with HER2-positive breast cancer. 2007 ASCO Annual Meeting Proceedings Part I; 25(18S):512
50.
go back to reference Slamon DJ, Eiermann W, Robert N, Pienkowski T, Martin M, Pawlicki M et al (2006) 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2neu positive early breast cancer patients. Breast Cancer Res Treat 100(suppl 1):LBA 53 Slamon DJ, Eiermann W, Robert N, Pienkowski T, Martin M, Pawlicki M et al (2006) 2nd interim analysis phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab with docetaxel, carboplatin and trastuzumab in HER2neu positive early breast cancer patients. Breast Cancer Res Treat 100(suppl 1):LBA 53
51.
go back to reference Verma S (2008) Trastuzumab in the adjuvant setting: concurrent or sequential? It takes two to tango! Curr Oncol 15(1):66–67PubMedCrossRef Verma S (2008) Trastuzumab in the adjuvant setting: concurrent or sequential? It takes two to tango! Curr Oncol 15(1):66–67PubMedCrossRef
52.
go back to reference Amoroso A, Hafsi S, Militello L, Russo AE, Soua Z, Mazzarino MC et al (2011) Understanding rituximab function and resistance: implications for tailored therapy. Front Biosci 16:770–782PubMedCrossRef Amoroso A, Hafsi S, Militello L, Russo AE, Soua Z, Mazzarino MC et al (2011) Understanding rituximab function and resistance: implications for tailored therapy. Front Biosci 16:770–782PubMedCrossRef
53.
go back to reference Hauptrock B, Hess G (2008) Rituximab in the treatment of non-Hodgkin's lymphoma. Biologics 2(4):619–633PubMed Hauptrock B, Hess G (2008) Rituximab in the treatment of non-Hodgkin's lymphoma. Biologics 2(4):619–633PubMed
55.
go back to reference Tortora G, Melisi D, Ciardiello F (2004) Angiogenesis: a target for cancer therapy. Curr Pharm Des 10(1):11–26PubMedCrossRef Tortora G, Melisi D, Ciardiello F (2004) Angiogenesis: a target for cancer therapy. Curr Pharm Des 10(1):11–26PubMedCrossRef
56.
go back to reference Siemann DW, Horsman MR (2009) Vascular targeted therapies in oncology. Cell Tissue Res 335(1):241–248PubMedCrossRef Siemann DW, Horsman MR (2009) Vascular targeted therapies in oncology. Cell Tissue Res 335(1):241–248PubMedCrossRef
57.
go back to reference Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR et al (2005) Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11(2 Pt 1):416–420PubMed Siemann DW, Bibby MC, Dark GG, Dicker AP, Eskens FA, Horsman MR et al (2005) Differentiation and definition of vascular-targeted therapies. Clin Cancer Res 11(2 Pt 1):416–420PubMed
58.
go back to reference Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416PubMed Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416PubMed
59.
go back to reference Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRef Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRef
60.
go back to reference Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027PubMedCrossRef Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027PubMedCrossRef
61.
go back to reference O'Hanlon LH (2005) Taking down tumors: vascular disrupting agents entering clinical trials. J Natl Cancer Inst 97(17):1244–1245PubMed O'Hanlon LH (2005) Taking down tumors: vascular disrupting agents entering clinical trials. J Natl Cancer Inst 97(17):1244–1245PubMed
62.
go back to reference Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74, Epub 2010 Jun 8PubMedCrossRef Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37(1):63–74, Epub 2010 Jun 8PubMedCrossRef
63.
go back to reference Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268PubMed
66.
67.
go back to reference Eskens FA, Sleijfer S (2008) The use of bevacizumab in colorectal, lung, breast, renal and ovarian cancer: where does it fit? Eur J Cancer 44(16):2350–2356PubMedCrossRef Eskens FA, Sleijfer S (2008) The use of bevacizumab in colorectal, lung, breast, renal and ovarian cancer: where does it fit? Eur J Cancer 44(16):2350–2356PubMedCrossRef
68.
go back to reference Uronis HE, Hurwitz HI (2007) Is bevacizumab effective and safe in combination with chemotherapy in patients with colorectal cancer? Nat Clin Pract Oncol 4(4):214–215PubMedCrossRef Uronis HE, Hurwitz HI (2007) Is bevacizumab effective and safe in combination with chemotherapy in patients with colorectal cancer? Nat Clin Pract Oncol 4(4):214–215PubMedCrossRef
70.
go back to reference Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13(1):1–14PubMedCrossRef Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13(1):1–14PubMedCrossRef
72.
go back to reference Gridelli C, Rossi A, Maione P, Rossi E, Castaldo V, Sacco PC et al (2009) Vascular disrupting agents: a novel mechanism of action in the battle against non-small cell lung cancer. Oncologist 14(6):612–620PubMedCrossRef Gridelli C, Rossi A, Maione P, Rossi E, Castaldo V, Sacco PC et al (2009) Vascular disrupting agents: a novel mechanism of action in the battle against non-small cell lung cancer. Oncologist 14(6):612–620PubMedCrossRef
73.
go back to reference Zhao L, Ching LM, Kestell P, Kelland LR, Baguley BC (2005) Mechanisms of tumor vascular shutdown induced by 5, 6-dimethylxanthenone-4-acetic acid (DMXAA): increased tumor vascular permeability. Int J Cancer 116(2):322–326PubMedCrossRef Zhao L, Ching LM, Kestell P, Kelland LR, Baguley BC (2005) Mechanisms of tumor vascular shutdown induced by 5, 6-dimethylxanthenone-4-acetic acid (DMXAA): increased tumor vascular permeability. Int J Cancer 116(2):322–326PubMedCrossRef
74.
go back to reference Wang H, Sun X, Chen F, De Keyzer F, Yu J, Landuyt W et al (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Investig Radiol 44(1):44–53CrossRef Wang H, Sun X, Chen F, De Keyzer F, Yu J, Landuyt W et al (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Investig Radiol 44(1):44–53CrossRef
75.
go back to reference Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA (2004) Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med 45(1):129–137PubMed Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA (2004) Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med 45(1):129–137PubMed
76.
go back to reference Lewington VJ, Clarke SE, Hoefnagel CA, Behr TM, Brans B, deKlerk J, Vieira MR (2003) 131I mIBG therapy: results of a European Survey. Presented at European Association of Nuclear Medicine Medicine Meeting, August 2003, Amsterdam Lewington VJ, Clarke SE, Hoefnagel CA, Behr TM, Brans B, deKlerk J, Vieira MR (2003) 131I mIBG therapy: results of a European Survey. Presented at European Association of Nuclear Medicine Medicine Meeting, August 2003, Amsterdam
78.
79.
go back to reference Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19(3):145–163PubMedCrossRef Weiner RE, Thakur ML (2005) Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs 19(3):145–163PubMedCrossRef
80.
go back to reference Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M et al (2007) Targeted therapy in nuclear medicine—current status and future prospects. Ann Oncol 18(11):1782–1792PubMedCrossRef Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M et al (2007) Targeted therapy in nuclear medicine—current status and future prospects. Ann Oncol 18(11):1782–1792PubMedCrossRef
81.
go back to reference Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 34(1):13–26PubMedCrossRef Okarvi SM (2008) Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer. Cancer Treat Rev 34(1):13–26PubMedCrossRef
82.
go back to reference Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103(44):16436–16441PubMedCrossRef Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103(44):16436–16441PubMedCrossRef
83.
go back to reference Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ (2007) Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol 46(6):723–734PubMedCrossRef Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ (2007) Peptide receptor radionuclide therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol 46(6):723–734PubMedCrossRef
84.
go back to reference Mariani G, Erba PA, Signore A (2006) Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med 47(12):1904–1907PubMed Mariani G, Erba PA, Signore A (2006) Receptor-mediated tumor targeting with radiolabeled peptides: there is more to it than somatostatin analogs. J Nucl Med 47(12):1904–1907PubMed
85.
go back to reference Giammarile F, Chiti A, Lassmann M, Brans B, Flux G (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35(5):1039–1047PubMedCrossRef Giammarile F, Chiti A, Lassmann M, Brans B, Flux G (2008) EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 35(5):1039–1047PubMedCrossRef
86.
go back to reference Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E et al (1991) Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]-metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med 35(4):269–276PubMed Shapiro B, Sisson JC, Wieland DM, Mangner TJ, Zempel SM, Mudgett E et al (1991) Radiopharmaceutical therapy of malignant pheochromocytoma with [131I]-metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med 35(4):269–276PubMed
87.
go back to reference DuBois SG, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 35(Suppl 1):S35–S48PubMedCrossRef DuBois SG, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 35(Suppl 1):S35–S48PubMedCrossRef
88.
go back to reference Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159PubMedCrossRef Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159PubMedCrossRef
89.
go back to reference Schaefer NG, Ma J, Huang P, Buchanan J, Wahl RL (2010) Radioimmunotherapy in non-Hodgkin lymphoma: opinions of U.S. medical oncologists and hematologists. J Nucl Med 51(6):987–994PubMedCrossRef Schaefer NG, Ma J, Huang P, Buchanan J, Wahl RL (2010) Radioimmunotherapy in non-Hodgkin lymphoma: opinions of U.S. medical oncologists and hematologists. J Nucl Med 51(6):987–994PubMedCrossRef
90.
go back to reference Jacobs SA (2007) Yttrium ibritumomab tiuxetan in the treatment of non-Hodgkin's lymphoma: current status and future prospects. Biologics 1(3):215–227PubMed Jacobs SA (2007) Yttrium ibritumomab tiuxetan in the treatment of non-Hodgkin's lymphoma: current status and future prospects. Biologics 1(3):215–227PubMed
91.
go back to reference Chen FM, Taylor CR, Epstein AL (1989) Tumor necrosis treatment of ME-180 human cervical carcinoma model with 131I-labeled TNT-1 monoclonal antibody. Cancer Res 49(16):4578–4585 Chen FM, Taylor CR, Epstein AL (1989) Tumor necrosis treatment of ME-180 human cervical carcinoma model with 131I-labeled TNT-1 monoclonal antibody. Cancer Res 49(16):4578–4585
92.
go back to reference Shapiro WR, Carpenter SP, Roberts K, Shan JS (2006) (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astro-cytic glioma. Expert Opin Biol Ther 6(5):539–545PubMedCrossRef Shapiro WR, Carpenter SP, Roberts K, Shan JS (2006) (131)I-chTNT-1/B mAb: tumour necrosis therapy for malignant astro-cytic glioma. Expert Opin Biol Ther 6(5):539–545PubMedCrossRef
93.
go back to reference Khawli LA, Mizokami MM, Sharifi J, Hu P, Epstein AL (2002) Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1, -2, and -3 monoclonal antibodies after chemical modification with biotin. Cancer Biother Radiopharm17(4):359–370 Khawli LA, Mizokami MM, Sharifi J, Hu P, Epstein AL (2002) Pharmacokinetic characteristics and biodistribution of radioiodinated chimeric TNT-1, -2, and -3 monoclonal antibodies after chemical modification with biotin. Cancer Biother Radiopharm17(4):359–370
94.
go back to reference Chen S, Yu L, Jiang C, Zhao Y, Sun D, Li S et al (2005) Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23(7):1538–1547PubMedCrossRef Chen S, Yu L, Jiang C, Zhao Y, Sun D, Li S et al (2005) Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23(7):1538–1547PubMedCrossRef
95.
go back to reference Ni Y, Bormans G, Chen F, Verbruggen A, Marchal G (2005) Necrosis avid contrast agents: functional similarity versus structural diversity. Investig Radiol 40(8):526–535CrossRef Ni Y, Bormans G, Chen F, Verbruggen A, Marchal G (2005) Necrosis avid contrast agents: functional similarity versus structural diversity. Investig Radiol 40(8):526–535CrossRef
96.
go back to reference Ni Y (2008) Metalloporphyrins and functional analogues as MRI contrast agents. Curr Med Imaging Rev 4:96–112CrossRef Ni Y (2008) Metalloporphyrins and functional analogues as MRI contrast agents. Curr Med Imaging Rev 4:96–112CrossRef
97.
go back to reference Ni Y, Marchal G, Yu J, Lukito G, Petre C, Wevers M et al (1995) Localization of metalloporphyrin-induced “specific” enhancement in experimental liver tumors: comparison of magnetic resonance imaging, microangiographic, and histologic findings. Acad Radiol 2(8):687–699PubMedCrossRef Ni Y, Marchal G, Yu J, Lukito G, Petre C, Wevers M et al (1995) Localization of metalloporphyrin-induced “specific” enhancement in experimental liver tumors: comparison of magnetic resonance imaging, microangiographic, and histologic findings. Acad Radiol 2(8):687–699PubMedCrossRef
98.
go back to reference Ni Y, Pislaru C, Bosmans H, Pislaru S, Miao Y, Bogaert J et al (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11(5):876–883PubMedCrossRef Ni Y, Pislaru C, Bosmans H, Pislaru S, Miao Y, Bogaert J et al (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11(5):876–883PubMedCrossRef
99.
go back to reference Van de Putte M, Ni Y, De Witte PA (2008) Exploration of the mechanism underlying the tumor necrosis avidity of hypericin. Oncol Rep 19(4):921–926PubMed Van de Putte M, Ni Y, De Witte PA (2008) Exploration of the mechanism underlying the tumor necrosis avidity of hypericin. Oncol Rep 19(4):921–926PubMed
100.
go back to reference Ni Y, Huyghe D, Verbeke K, de Witte PA, Nuyts J, Mortelmans L et al (2006) First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging 33(5):595–601PubMedCrossRef Ni Y, Huyghe D, Verbeke K, de Witte PA, Nuyts J, Mortelmans L et al (2006) First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging 33(5):595–601PubMedCrossRef
101.
go back to reference Fonge H, Jin L, Wang H, Ni Y, Bormans G, Verbruggen A (2007) Synthesis and preliminary evaluation of mono-[123I]iodohypericin monocarboxylic acid as a necrosis avid imaging agent. Bioorg Med Chem Lett 17(14):4001–4005PubMedCrossRef Fonge H, Jin L, Wang H, Ni Y, Bormans G, Verbruggen A (2007) Synthesis and preliminary evaluation of mono-[123I]iodohypericin monocarboxylic acid as a necrosis avid imaging agent. Bioorg Med Chem Lett 17(14):4001–4005PubMedCrossRef
102.
go back to reference Van de Putte M, Wang H, Chen F, De Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep 19(4):927–932PubMed Van de Putte M, Wang H, Chen F, De Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep 19(4):927–932PubMed
103.
go back to reference Van de Putte M, Wang H, Chen F, de Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol 15(1):107–113PubMedCrossRef Van de Putte M, Wang H, Chen F, de Witte PA, Ni Y (2008) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol 15(1):107–113PubMedCrossRef
104.
go back to reference Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297–321PubMed Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297–321PubMed
106.
go back to reference Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336PubMedCrossRef Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336PubMedCrossRef
107.
go back to reference Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107PubMedCrossRef Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41(1):98–107PubMedCrossRef
108.
go back to reference De Bono JS, Tolcher AW, Rowinsky EK (2003) The future of cytotoxic therapy: selective cytotoxicity based on biology is the key. Breast Cancer Res 5(3):154–159PubMedCrossRef De Bono JS, Tolcher AW, Rowinsky EK (2003) The future of cytotoxic therapy: selective cytotoxicity based on biology is the key. Breast Cancer Res 5(3):154–159PubMedCrossRef
109.
go back to reference Strome SE, Sausville EA, Mann D (2007) A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 12(9):1084–1095PubMedCrossRef Strome SE, Sausville EA, Mann D (2007) A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 12(9):1084–1095PubMedCrossRef
110.
go back to reference Linenberger ML, Maloney DG, Bernstein ID (2002) Antibody-directed therapies for hematological malignancies. Trends Mol Med 8(2):69–76PubMedCrossRef Linenberger ML, Maloney DG, Bernstein ID (2002) Antibody-directed therapies for hematological malignancies. Trends Mol Med 8(2):69–76PubMedCrossRef
111.
go back to reference Di Lorenzo G, Porta C, Bellmunt J, Sternberg C, Kirkali Z, Staehler M et al (2011) Toxicities of targeted therapy and their management in kidney cancer. Eur Urol 59(4):526–540PubMedCrossRef Di Lorenzo G, Porta C, Bellmunt J, Sternberg C, Kirkali Z, Staehler M et al (2011) Toxicities of targeted therapy and their management in kidney cancer. Eur Urol 59(4):526–540PubMedCrossRef
112.
go back to reference Seruga B, Gan HK, Knox JJ (2009) Managing toxicities and optimal dosing of targeted drugs in advanced kidney cancer. Curr Oncol 16(Suppl 1):S52–S59PubMed Seruga B, Gan HK, Knox JJ (2009) Managing toxicities and optimal dosing of targeted drugs in advanced kidney cancer. Curr Oncol 16(Suppl 1):S52–S59PubMed
114.
go back to reference Goudar RK, Shi Q, Hjelmeland MD, Keir ST, McLendon RE, Wikstrand CJ et al (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4(1):101–112PubMed Goudar RK, Shi Q, Hjelmeland MD, Keir ST, McLendon RE, Wikstrand CJ et al (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4(1):101–112PubMed
115.
go back to reference Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRef Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedCrossRef
116.
117.
go back to reference Costantini DL, Hu M, Reilly RM (2008) Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications. Cancer Biother Radiopharm 23(1):3–24PubMedCrossRef Costantini DL, Hu M, Reilly RM (2008) Peptide motifs for insertion of radiolabeled biomolecules into cells and routing to the nucleus for cancer imaging or radiotherapeutic applications. Cancer Biother Radiopharm 23(1):3–24PubMedCrossRef
118.
go back to reference Bidros DS, Liu JK, Vogelbaum MA, Debinski W, Tatter SB (2009) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6(1):117–125PubMed Bidros DS, Liu JK, Vogelbaum MA, Debinski W, Tatter SB (2009) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6(1):117–125PubMed
119.
go back to reference O’Donnell RT (2006) Nuclear localizing sequences: an innovative way to improve targeted radiotherapy. J Nucl Med 47(5):738–739PubMed O’Donnell RT (2006) Nuclear localizing sequences: an innovative way to improve targeted radiotherapy. J Nucl Med 47(5):738–739PubMed
Metadata
Title
A review on various targeted anticancer therapies
Authors
Junjie Li
Feng Chen
Marlein Miranda Cona
Yuanbo Feng
Uwe Himmelreich
Raymond Oyen
Alfons Verbruggen
Yicheng Ni
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Targeted Oncology / Issue 1/2012
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-012-0212-2

Other articles of this Issue 1/2012

Targeted Oncology 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine