Skip to main content
Top
Published in: Journal of Natural Medicines 3-4/2011

01-07-2011 | Original Paper

Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes

Authors: Sun-Sil Choi, Byung-Yoon Cha, Kagami Iida, Masako Sato, Young-Sil Lee, Toshiaki Teruya, Takayuki Yonezawa, Kazuo Nagai, Je-Tae Woo

Published in: Journal of Natural Medicines | Issue 3-4/2011

Login to get access

Abstract

Adipose tissue plays an essential role in energy homeostasis as a metabolic and endocrine organ. Accordingly, adipocytes are emerging as a major drug target for obesity and obesity-mediated metabolic syndrome. Dysfunction of enlarged adipocytes in obesity is involved in obesity-mediated metabolic syndrome. Adipocytokines, such as adiponectin released from small adipocytes, are able to prevent these disorders. In this study, we found that honokiol, an ingredient of Magnolia officinalis used in traditional Chinese and Japanese medicines, enhanced adipocyte differentiation in 3T3-L1 preadipocytes. Oil Red O staining showed that treatment with honokiol in the presence of insulin dose-dependently increased lipid accumulation in 3T3-L1 preadipoyctes although its activity was weak compared with rosiglitazone. During adipocyte differentiation, the expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) mRNA and PPARγ target genes such as adipocyte protein 2 (aP2), adiponectin, and GLUT4 was induced by treatment with 10 μM honokiol. However, honokiol failed to show direct binding to the PPARγ ligand-binding domain in vitro. In preadipocytes, treatment with honokiol in the presence of insulin increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 protein and Akt protein, early insulin signaling pathways related to adipocyte differentiation, compared with insulin-only treatment. Taken together, our results suggest that honokiol promotes adipocyte differentiation through increased expression of PPARγ2 mRNA and potentiation of insulin signaling pathways such as the Ras/ERK1/2 and phosphoinositide-3-kinase (PI3K)/Akt signaling pathways.
Literature
1.
go back to reference Spiegelman BM, Flier JS (1997) Adipogenesis and obesity: rounding out the big picture. Cell 87:212–218 Spiegelman BM, Flier JS (1997) Adipogenesis and obesity: rounding out the big picture. Cell 87:212–218
2.
go back to reference McDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11CrossRef McDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13:5–11CrossRef
3.
go back to reference Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Phys Rev 78:783–809 Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Phys Rev 78:783–809
4.
go back to reference Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRef Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156PubMedCrossRef
5.
go back to reference Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514PubMedCrossRef Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514PubMedCrossRef
6.
go back to reference Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonist. Diabetes 54:2460–2470PubMedCrossRef Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonist. Diabetes 54:2460–2470PubMedCrossRef
7.
go back to reference Han KL, Jung MH, Sohn JH, Hwang JK (2006) Gisenoside 20S-proptopanaxatriol (PPT) activates peroxisome proliferator-acivated receptor γ (PPARγ) in 3T3-L1 adipocytes. Biol Pharm Bull 29:110–113PubMedCrossRef Han KL, Jung MH, Sohn JH, Hwang JK (2006) Gisenoside 20S-proptopanaxatriol (PPT) activates peroxisome proliferator-acivated receptor γ (PPARγ) in 3T3-L1 adipocytes. Biol Pharm Bull 29:110–113PubMedCrossRef
8.
go back to reference Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M (2007) Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun 353:225–230PubMedCrossRef Yang Y, Shang W, Zhou L, Jiang B, Jin H, Chen M (2007) Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells. Biochem Biophys Res Commun 353:225–230PubMedCrossRef
9.
go back to reference Waki H, Park KW, Mitro N, Pei M, Damoiseauz R, Wilpitz DC, Reue K, Saez E, Tontonoz P (2007) The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression. Cell Metab 5:357–370PubMedCrossRef Waki H, Park KW, Mitro N, Pei M, Damoiseauz R, Wilpitz DC, Reue K, Saez E, Tontonoz P (2007) The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression. Cell Metab 5:357–370PubMedCrossRef
10.
go back to reference Saito T, Abe D, Sekiya K (2008) Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ. Biochem Biophys Res Commun 372:835–839PubMedCrossRef Saito T, Abe D, Sekiya K (2008) Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ. Biochem Biophys Res Commun 372:835–839PubMedCrossRef
11.
go back to reference Tomiyama K, Nakata H, Sasa H, Arimura S, Nishio E, Watanabe Y (1995) Wortmannin, a specific phophatidylinositol 3-kinase inhibitor, inhibits adipocytic differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 212:263–269PubMedCrossRef Tomiyama K, Nakata H, Sasa H, Arimura S, Nishio E, Watanabe Y (1995) Wortmannin, a specific phophatidylinositol 3-kinase inhibitor, inhibits adipocytic differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 212:263–269PubMedCrossRef
12.
go back to reference Kohn AD, Summers SA, Birnabaum MJ, Roth RA (1996) Expression of a constiutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transport 4 translocation. J Biol Chem 271:31372–31378PubMedCrossRef Kohn AD, Summers SA, Birnabaum MJ, Roth RA (1996) Expression of a constiutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transport 4 translocation. J Biol Chem 271:31372–31378PubMedCrossRef
13.
go back to reference Font de Mora J, Porras A, Ahn N, Santos E (1997) Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol Cell Biol 17:6068–6075PubMed Font de Mora J, Porras A, Ahn N, Santos E (1997) Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Mol Cell Biol 17:6068–6075PubMed
14.
go back to reference Prusty D, Park BH, Davis KE, Garmer SR (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPAR γ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 277:46226–46232PubMedCrossRef Prusty D, Park BH, Davis KE, Garmer SR (2002) Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPAR γ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. J Biol Chem 277:46226–46232PubMedCrossRef
15.
go back to reference Xu J, Liao K (2004) Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3–L1 adipocyte differentiation. J Biol Chem 279:25914–25922 Xu J, Liao K (2004) Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3–L1 adipocyte differentiation. J Biol Chem 279:25914–25922
16.
go back to reference Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE (1996) Insulin-and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor γ. J Biol Chem 271:31771–31774PubMedCrossRef Zhang B, Berger J, Zhou G, Elbrecht A, Biswas S, White-Carrington S, Szalkowski D, Moller DE (1996) Insulin-and mitogen-activated protein kinase-mediated phosphorylation and activation of peroxisome proliferator-activated receptor γ. J Biol Chem 271:31771–31774PubMedCrossRef
17.
go back to reference Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Channing JD, Traci B, David AF, Keqiang Y, Emma M, Woflgang D, Gerald S, Jack LA (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507PubMedCrossRef Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B, Channing JD, Traci B, David AF, Keqiang Y, Emma M, Woflgang D, Gerald S, Jack LA (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem 278:35501–35507PubMedCrossRef
18.
go back to reference Yang JY, Della-Fera MA, Rayalam S, Baile CA (2008) Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16:1232–1238CrossRef Yang JY, Della-Fera MA, Rayalam S, Baile CA (2008) Enhanced effects of xanthohumol plus honokiol on apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16:1232–1238CrossRef
19.
go back to reference Uehara T, Chihara TM, Tokumitsu Y, Nomura Y (1991) Possible involvement of pertussis toxin-sensitive GTP-binding protein(s) in c-fos expression during differentiation of 3T3-L1 fibroblast to adipocytes. Biochim Biophys Acta 1088:41–46PubMed Uehara T, Chihara TM, Tokumitsu Y, Nomura Y (1991) Possible involvement of pertussis toxin-sensitive GTP-binding protein(s) in c-fos expression during differentiation of 3T3-L1 fibroblast to adipocytes. Biochim Biophys Acta 1088:41–46PubMed
20.
go back to reference Uehara T, Hoshino S, Ui M, Tokumitsu Y, Nomura Y (1994) Possible involvement of phosphatidylinositol-specific phospholipase C related to pertussis toxin sensitive GTP-binding proteins during adipocyte differentiation of 3T3-L1 fibroblast: negative regulation of protein kinase C. Biochim Biophys Acta 1224:302–310PubMedCrossRef Uehara T, Hoshino S, Ui M, Tokumitsu Y, Nomura Y (1994) Possible involvement of phosphatidylinositol-specific phospholipase C related to pertussis toxin sensitive GTP-binding proteins during adipocyte differentiation of 3T3-L1 fibroblast: negative regulation of protein kinase C. Biochim Biophys Acta 1224:302–310PubMedCrossRef
21.
go back to reference Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171PubMedCrossRef Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171PubMedCrossRef
22.
go back to reference Tafuri SR (1996) Troglitazone enhance differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 137:4706–4712PubMedCrossRef Tafuri SR (1996) Troglitazone enhance differentiation, basal glucose uptake, and Glut1 protein levels in 3T3-L1 adipocytes. Endocrinology 137:4706–4712PubMedCrossRef
23.
go back to reference Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478PubMedCrossRef Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89:463–478PubMedCrossRef
24.
go back to reference Nakae J, Kitamura T, Kitamura Y, Biffs WH 3rd, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129PubMedCrossRef Nakae J, Kitamura T, Kitamura Y, Biffs WH 3rd, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129PubMedCrossRef
25.
go back to reference Peng DD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365PubMedCrossRef Peng DD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365PubMedCrossRef
26.
go back to reference Dowell P, Otto TC, Adi S, Lane MD (2003) Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 278:45485–45491PubMedCrossRef Dowell P, Otto TC, Adi S, Lane MD (2003) Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 278:45485–45491PubMedCrossRef
27.
go back to reference Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103PubMedCrossRef Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274:2100–2103PubMedCrossRef
28.
go back to reference Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132PubMedCrossRef Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272:5128–5132PubMedCrossRef
29.
go back to reference Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Alkanuma Y, Fugiwara T, Horikoshi J, Yazuki Y, Kadowaki T (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361PubMedCrossRef Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Alkanuma Y, Fugiwara T, Horikoshi J, Yazuki Y, Kadowaki T (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361PubMedCrossRef
30.
go back to reference Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M (2010) Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod 27:1332–1336CrossRef Kotani H, Tanabe H, Mizukami H, Makishima M, Inoue M (2010) Identification of a naturally occurring rexinoid, honokiol, that activates the retinoid X receptor. J Nat Prod 27:1332–1336CrossRef
31.
go back to reference Jung CG, Horike H, Cha BY, Uhm KO, Yamauchi R, Yamaguchi T, Hosono T, Iida K, Woo JT, Michikawa M (2010) Honokiol increases ABCA1 expression level by activating retinoid X receptor beta. Biol Pharm Bull 33:1105–1111PubMedCrossRef Jung CG, Horike H, Cha BY, Uhm KO, Yamauchi R, Yamaguchi T, Hosono T, Iida K, Woo JT, Michikawa M (2010) Honokiol increases ABCA1 expression level by activating retinoid X receptor beta. Biol Pharm Bull 33:1105–1111PubMedCrossRef
32.
go back to reference Shulman AI, Mangelsdorf DJ (2005) Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353:604–615PubMedCrossRef Shulman AI, Mangelsdorf DJ (2005) Retinoid x receptor heterodimers in the metabolic syndrome. N Engl J Med 353:604–615PubMedCrossRef
33.
go back to reference Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB (2004) Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 24:3430–3444PubMedCrossRef Seo JB, Moon HM, Kim WS, Lee YS, Jeong HW, Yoo EJ, Ham J, Kang H, Park MG, Steffensen KR, Stulnig TM, Gustafsson JA, Park SD, Kim JB (2004) Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 24:3430–3444PubMedCrossRef
34.
go back to reference Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S (2006) The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 70:1164–1173PubMedCrossRef Rizzo G, Disante M, Mencarelli A, Renga B, Gioiello A, Pellicciari R, Fiorucci S (2006) The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo. Mol Pharmacol 70:1164–1173PubMedCrossRef
35.
go back to reference Ziouzenkova O, Plutzky J (2008) Retinoid metabolism and nuclear receptor responses: new insights into coordinated regulation of the PPAR–RXR complex. FEBS Lett 582:32–38PubMed Ziouzenkova O, Plutzky J (2008) Retinoid metabolism and nuclear receptor responses: new insights into coordinated regulation of the PPAR–RXR complex. FEBS Lett 582:32–38PubMed
Metadata
Title
Honokiol enhances adipocyte differentiation by potentiating insulin signaling in 3T3-L1 preadipocytes
Authors
Sun-Sil Choi
Byung-Yoon Cha
Kagami Iida
Masako Sato
Young-Sil Lee
Toshiaki Teruya
Takayuki Yonezawa
Kazuo Nagai
Je-Tae Woo
Publication date
01-07-2011
Publisher
Springer Japan
Published in
Journal of Natural Medicines / Issue 3-4/2011
Print ISSN: 1340-3443
Electronic ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-011-0512-3

Other articles of this Issue 3-4/2011

Journal of Natural Medicines 3-4/2011 Go to the issue