Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2020

Open Access 01-08-2020 | Glioma | Research Article

(2S, 4R)-4-[18F]Fluoroglutamine for In vivo PET Imaging of Glioma Xenografts in Mice: an Evaluation of Multiple Pharmacokinetic Models

Authors: Maxwell WG Miner, Heidi Liljenbäck, Jenni Virta, Joni Merisaari, Vesa Oikonen, Jukka Westermarck, Xiang-Guo Li, Anne Roivainen

Published in: Molecular Imaging and Biology | Issue 4/2020

Login to get access

Abstract

Purpose

The glutamine analogue (2S, 4R)-4-[18F]fluoroglutamine ([18F]FGln) was investigated to further characterize its pharmacokinetics and acquire in vivo positron emission tomography (PET) images of separate orthotopic and subcutaneous glioma xenografts in mice.

Procedures

[18F]FGln was synthesized at a high radiochemical purity as analyzed by high-performance liquid chromatography. An orthotopic model was created by injecting luciferase-expressing patient-derived BT3 glioma cells into the right hemisphere of BALB/cOlaHsd-Foxn1nu mouse brains (tumor growth monitored via in vivo bioluminescence), the subcutaneous model by injecting rat BT4C glioma cells into the flank and neck regions of Foxn1nu/nu mice. Dynamic PET images were acquired after injecting 10–12 MBq of the tracer into mouse tail veins. Animals were sacrificed 63 min after tracer injection, and ex vivo biodistributions were measured. Tumors and whole brains (with tumors) were cryosectioned, autoradiographed, and stained with hematoxylin-eosin. All images were analyzed with CARIMAS software. Blood sampling of 6 Foxn1nu/nu and 6 C57BL/6J mice was performed after 9–14 MBq of tracer was injected at time points between 5 and 60 min then assayed for erythrocyte uptake, plasma protein binding, and plasma parent-fraction of radioactivity to correct PET image-derived whole-blood radioactivity and apply the data to multiple pharmacokinetic models.

Results

Orthotopic human glioma xenografts displayed PET image tumor-to-healthy brain region ratio of 3.6 and 4.8 while subcutaneously xenografted BT4C gliomas displayed (n = 12) a tumor-to-muscle (flank) ratio of 1.9 ± 0.7 (range 1.3–3.4). Using PET image-derived blood radioactivity corrected by population-based stability analyses, tumor uptake pharmacokinetics fit Logan and Yokoi modeling for reversible uptake.

Conclusions

The results reinforce that [18F]FGln has preferential uptake in glioma tissue versus that of corresponding healthy tissue and fits well with reversible uptake models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lin N, Yan W, Gao K et al (2014) Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases. PLoS One 9:94871CrossRef Lin N, Yan W, Gao K et al (2014) Prevalence and clinicopathologic characteristics of the molecular subtypes in malignant glioma: a multi-institutional analysis of 941 cases. PLoS One 9:94871CrossRef
2.
go back to reference Platten M, Kretz A, Naumann U et al (2003) Monocyte chemoattractant protein–1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388–392CrossRef Platten M, Kretz A, Naumann U et al (2003) Monocyte chemoattractant protein–1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54:388–392CrossRef
3.
go back to reference Perry JR, Bélanger K, Mason WP et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28:2051–2057CrossRef Perry JR, Bélanger K, Mason WP et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28:2051–2057CrossRef
4.
go back to reference Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Trans Med 7:274CrossRef Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Trans Med 7:274CrossRef
5.
go back to reference Dunphy MP, Harding JJ, Venneti S et al (2018) In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of [18F]-(2S, 4R)-4-fluoroglutamine. Radiology 287:667–675CrossRef Dunphy MP, Harding JJ, Venneti S et al (2018) In vivo PET assay of tumor glutamine flux and metabolism: in-human trial of [18F]-(2S, 4R)-4-fluoroglutamine. Radiology 287:667–675CrossRef
6.
go back to reference Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433CrossRef Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433CrossRef
7.
go back to reference Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619CrossRef Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619CrossRef
8.
go back to reference Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787CrossRef Wise DR, DeBerardinis RJ, Mancuso A et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787CrossRef
9.
go back to reference Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131:2475–2485CrossRef Bode BP (2001) Recent molecular advances in mammalian glutamine transport. J Nutr 131:2475–2485CrossRef
10.
go back to reference Wipf D, Ludewig U, Tegeder M et al (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147CrossRef Wipf D, Ludewig U, Tegeder M et al (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147CrossRef
11.
go back to reference Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of l-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105CrossRef Qu W, Oya S, Lieberman BP et al (2012) Preparation and characterization of l-[5-11C]-glutamine for metabolic imaging of tumors. J Nucl Med 53:98–105CrossRef
12.
go back to reference Hess S, Høilund-Carlsen PF, Alavi A (2014) Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study. Clin Nucl Med 39:701–703CrossRef Hess S, Høilund-Carlsen PF, Alavi A (2014) Historic images in nuclear medicine: 1976: the first issue of clinical nuclear medicine and the first human FDG study. Clin Nucl Med 39:701–703CrossRef
13.
go back to reference Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597CrossRef Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597CrossRef
14.
go back to reference Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75CrossRef Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75CrossRef
15.
go back to reference Pauleit D, Stoffels G, Schaden W et al (2005) PET with o-(2-18F-fluoroethyl)-l-tyrosine in peripheral tumors: first clinical results. J Nucl Med 46:411–416PubMed Pauleit D, Stoffels G, Schaden W et al (2005) PET with o-(2-18F-fluoroethyl)-l-tyrosine in peripheral tumors: first clinical results. J Nucl Med 46:411–416PubMed
16.
go back to reference Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586CrossRef Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586CrossRef
17.
go back to reference Okubo S, Zhen HN, Kawai N et al (2010) Correlation of L-methyl-11C-methionine (Met) uptake with l-type amino acid transporter 1 in human gliomas. J Neur Onc 99:217–225CrossRef Okubo S, Zhen HN, Kawai N et al (2010) Correlation of L-methyl-11C-methionine (Met) uptake with l-type amino acid transporter 1 in human gliomas. J Neur Onc 99:217–225CrossRef
18.
go back to reference Herholz K, Hölzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRef Herholz K, Hölzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322CrossRef
19.
go back to reference Lapa C, Kircher M, Da Via M et al (2019) Comparison of 11C-choline and 11C-methionine PET/CT in multiple myeloma. Clin Nucl Med 44:620–624CrossRef Lapa C, Kircher M, Da Via M et al (2019) Comparison of 11C-choline and 11C-methionine PET/CT in multiple myeloma. Clin Nucl Med 44:620–624CrossRef
20.
go back to reference Yelamanchi SD, Jayaram S, Thomas JK et al (2016) A pathway map of glutamate metabolism. J Cell Commun Signal 10:69–75CrossRef Yelamanchi SD, Jayaram S, Thomas JK et al (2016) A pathway map of glutamate metabolism. J Cell Commun Signal 10:69–75CrossRef
21.
go back to reference Grill V, Björkman O, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32CrossRef Grill V, Björkman O, Gutniak M, Lindqvist M (1992) Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: important role of glutamine release for nitrogen balance. Metabolism 41:28–32CrossRef
22.
go back to reference Lieberman BP, Ploessl K, Wang L et al (2011) PET imaging of glutaminolysis in tumors by 18F-(2S, 4R) 4-fluoroglutamine. J Nucl Med 52:1947–1955CrossRef Lieberman BP, Ploessl K, Wang L et al (2011) PET imaging of glutaminolysis in tumors by 18F-(2S, 4R) 4-fluoroglutamine. J Nucl Med 52:1947–1955CrossRef
23.
go back to reference Hassanein M, Hight MR, Buck JR et al (2016) Preclinical evaluation of 4-[18F]fluoroglutamine PET to assess ASCT2 expression in lung cancer. Mol Imaging Biol 18:18–23CrossRef Hassanein M, Hight MR, Buck JR et al (2016) Preclinical evaluation of 4-[18F]fluoroglutamine PET to assess ASCT2 expression in lung cancer. Mol Imaging Biol 18:18–23CrossRef
24.
go back to reference Zhou R, Pantel AR, Li S et al (2017) [18F](2S, 4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res 77:1476–1484CrossRef Zhou R, Pantel AR, Li S et al (2017) [18F](2S, 4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Cancer Res 77:1476–1484CrossRef
25.
go back to reference Wu Z, Zha Z, Li G et al (2014) [18F](2S,4R)-4-(3-fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 11:3852–3866CrossRef Wu Z, Zha Z, Li G et al (2014) [18F](2S,4R)-4-(3-fluoropropyl)glutamine as a tumor imaging agent. Mol Pharm 11:3852–3866CrossRef
26.
go back to reference Zha Z, Ploessl K, Lieberman BP et al (2018) Alanine and glycine conjugates of (2S,4R)-4-[18F]fluoroglutamine for tumor imaging. Nucl Med Biol 60:19–28CrossRef Zha Z, Ploessl K, Lieberman BP et al (2018) Alanine and glycine conjugates of (2S,4R)-4-[18F]fluoroglutamine for tumor imaging. Nucl Med Biol 60:19–28CrossRef
27.
go back to reference Li C, Liu H, Duan D et al (2018) Preclinical study of an 18F-labeled glutamine derivative for cancer imaging. Nucl Med Biol 64:34–40CrossRef Li C, Liu H, Duan D et al (2018) Preclinical study of an 18F-labeled glutamine derivative for cancer imaging. Nucl Med Biol 64:34–40CrossRef
28.
go back to reference Li XG, Helariutta K, Roivainen A et al (2014) Using 5-deoxy-5-[18F] fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 9:138–145CrossRef Li XG, Helariutta K, Roivainen A et al (2014) Using 5-deoxy-5-[18F] fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 9:138–145CrossRef
29.
go back to reference Le Joncour V, Filppu P, Hyvönen M, et al. (2019) Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 11:pii:e9034 Le Joncour V, Filppu P, Hyvönen M, et al. (2019) Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol Med 11:pii:e9034
30.
go back to reference Law I, Albert NL, Arbizu J et al (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using pet with radiolabelled amino acids and [18F]FDG: v 1.0. Eur J Nucl Med Mol Imaging 46:540–557CrossRef Law I, Albert NL, Arbizu J et al (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using pet with radiolabelled amino acids and [18F]FDG: v 1.0. Eur J Nucl Med Mol Imaging 46:540–557CrossRef
31.
go back to reference Bower S, Hull CJ (1982) Comparative pharmacokinetics of fentanyl and alfentanil. Br J Anaesth 54:871–877CrossRef Bower S, Hull CJ (1982) Comparative pharmacokinetics of fentanyl and alfentanil. Br J Anaesth 54:871–877CrossRef
32.
go back to reference Cooper AJ, Krasnikov BF, Pinto JT et al (2012) Comparative enzymology of (2S, 4R) 4-fluoroglutamine and (2S, 4R)4-fluoroglutamate. Comp Biochem Physiol, Part B: Biochem Mol Biol 163:108–120CrossRef Cooper AJ, Krasnikov BF, Pinto JT et al (2012) Comparative enzymology of (2S, 4R) 4-fluoroglutamine and (2S, 4R)4-fluoroglutamate. Comp Biochem Physiol, Part B: Biochem Mol Biol 163:108–120CrossRef
33.
go back to reference Della Torre S, Mitro N, Meda C et al (2018) Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab 28:256–267CrossRef Della Torre S, Mitro N, Meda C et al (2018) Short-term fasting reveals amino acid metabolism as a major sex-discriminating factor in the liver. Cell Metab 28:256–267CrossRef
34.
go back to reference Naugler WE, Sakurai T, Kim S et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124CrossRef Naugler WE, Sakurai T, Kim S et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124CrossRef
Metadata
Title
(2S, 4R)-4-[18F]Fluoroglutamine for In vivo PET Imaging of Glioma Xenografts in Mice: an Evaluation of Multiple Pharmacokinetic Models
Authors
Maxwell WG Miner
Heidi Liljenbäck
Jenni Virta
Joni Merisaari
Vesa Oikonen
Jukka Westermarck
Xiang-Guo Li
Anne Roivainen
Publication date
01-08-2020
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 4/2020
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-020-01472-1

Other articles of this Issue 4/2020

Molecular Imaging and Biology 4/2020 Go to the issue