Skip to main content
Log in

A pathway map of glutamate metabolism

  • Nuts and Bolts
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PTMs:

Post-translational modifications

ChEBI:

Chemical Entities of Biological Interest

References

  • Battaglioli G, Liu H, Martin DL (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis. J Neurochem 86:879–887

    Article  CAS  Google Scholar 

  • Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab 16:565–577

    Article  CAS  Google Scholar 

  • Bennett CL, Huynh HM, Chance PF, Glass IA, Gospe Jr SM (2005) Genetic heterogeneity for autosomal recessive pyridoxine-dependent seizures. Neurogenetics 6:143–149

  • Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339:1323–1328

    Article  CAS  Google Scholar 

  • Bergmeyer HU, Scheibe P, Wahlefeld AW (1978) Optimization of methods for aspartate aminotransferase and alanine aminotransferase. Clin Chem 24:58–73

    Article  CAS  Google Scholar 

  • Burbaeva G, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer's disease patients. Neurochem Res 30:1443–1451

    Article  CAS  Google Scholar 

  • Buschdorf JP, Li Chew L, Zhang B, Cao Q, Liang FY, Liou YC, Zhou YT, Low BC (2006) Brain-specific BNIP-2-homology protein caytaxin relocalises glutaminase to neurite terminals and reduces glutamate levels. J Cell Sci 119:3337–3350

    Article  CAS  Google Scholar 

  • Cash CD, Maitre M, Mandel P (1979) Purification from human brain and some properties of two NADPH-linked aldehyde reductases which reduce succinic semialdehyde to 4-hydroxybutyrate. J Neurochem 33:1169–1175

    Article  CAS  Google Scholar 

  • Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE (2000) Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biol Chem 275:21981–21987

    Article  CAS  Google Scholar 

  • Chen X, Schecter RL, Griffith OW, Hayward MA, Alpert LC, Batist G (1998) Characterization of 5-oxo-L-prolinase in normal and tumor tissues of humans and rats: a potential new target for biochemical modulation of glutathione. Clin Cancer Res 4:131–138

    CAS  Google Scholar 

  • Cho SW, Yoon HY, Ahn JY, Lee EY, Lee J (2001) Cassette mutagenesis of lysine 130 of human glutamate dehydrogenase. An essential residue in catalysis. Eur J Biochem 268:3205–3213

    Article  CAS  Google Scholar 

  • Choe ES, McGinty JF (2001) Cyclic AMP and mitogen-activated protein kinases are required for glutamate-dependent cyclic AMP response element binding protein and elk-1 phosphorylation in the dorsal striatum in vivo. J Neurochem 76:401–412

    Article  CAS  Google Scholar 

  • Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E (2010) Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. J Biol Chem 285:29826–29833

    Article  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    CAS  Google Scholar 

  • Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  CAS  Google Scholar 

  • Dutta S, Ray S, Nagarajan K (2013) Glutamic acid as anticancer agent: an overview. Saudi Pharm J 21:337–343

    Article  Google Scholar 

  • Eguchi S, Oshiro N, Miyamoto T, Yoshino K, Okamoto S, Ono T, Kikkawa U, Yonezawa K (2009) AMP-activated protein kinase phosphorylates glutamine : fructose-6-phosphate amidotransferase 1 at Ser243 to modulate its enzymatic activity. Genes Cells 14:179–189

    Article  CAS  Google Scholar 

  • Eng CH, Yu K, Lucas J, White E, Abraham RT (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3:ra31

  • Ffrench-Mullen JM, Koller K, Zaczek R, Coyle JT, Hori N, Carpenter DO (1985) N-acetylaspartylglutamate: possible role as the neurotransmitter of the lateral olfactory tract. Proc Natl Acad Sci U S A 82:3897–3900

    Article  CAS  Google Scholar 

  • Fischer B, Callewaert B, Schroter P, Coucke PJ, Schlack C, Ott CE, Morroni M, Homann W, Mundlos S, Morava E, Ficcadenti A, Kornak U (2014) Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Mol Genet Metab 112:310–316

    Article  CAS  Google Scholar 

  • Forte-McRobbie C, Pietruszko R (1989) Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism. Biochem J 261:935–943

    Article  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  CAS  Google Scholar 

  • Glinghammar B, Rafter I, Lindstrom AK, Hedberg JJ, Andersson HB, Lindblom P, Berg AL, Cotgreave I (2009) Detection of the mitochondrial and catalytically active alanine aminotransferase in human tissues and plasma. Int J Mol Med 23:621–631

    Article  CAS  Google Scholar 

  • Graves LM, Guy HI, Kozlowski P, Huang M, Lazarowski E, Pope RM, Collins MA, Dahlstrand EN, Earp 3rd HS, Evans DR (2000) Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403:328–332

    Article  CAS  Google Scholar 

  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, Wolberger C, Prolla TA, Weindruch R, Alt FW, Guarente L (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    Article  CAS  Google Scholar 

  • Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  CAS  Google Scholar 

  • Hearl WG, Churchich JE (1985) A mitochondrial NADP + −dependent reductase related to the 4-aminobutyrate shunt. Purification, characterization, and mechanism. J Biol Chem 260:16361–16366

    CAS  Google Scholar 

  • Henson CP, Cleland WW (1964) Kinetic studies of glutamic oxaloacetic transaminase isozymes. Biochemistry 3:338–345

    Article  CAS  Google Scholar 

  • Holmes EW, Wyngaarden JB, Kelley WN (1973) Human glutamine phosphoribosylpyrophosphate amidotransferase. Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J Biol Chem 248:6035–6040

    CAS  Google Scholar 

  • Hosokawa T, Saito T, Asada A, Ohshima T, Itakura M, Takahashi M, Fukunaga K, Hisanaga S (2006) Enhanced activation of Ca2+/calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. J Neurosci Res 84:747–754

    Article  CAS  Google Scholar 

  • Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative Splice donor Utilization Generates Isoforms with Different Sensitivity to Ornithine Inhibition. J Biol Chem 274:6754–6762

    Article  CAS  Google Scholar 

  • Hu Y, Riesland L, Paterson AJ, Kudlow JE (2004) Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem 279:29988–29993

    Article  CAS  Google Scholar 

  • Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 107:7455–7460

    Article  CAS  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    Article  CAS  Google Scholar 

  • Kuo N, Michalik M, Erecinska M (1994) Inhibition of glutamate dehydrogenase in brain mitochondria and synaptosomes by Mg2+ and polyamines: a possible cause for its low in vivo activity. J Neurochem 63:751–757

    Article  CAS  Google Scholar 

  • Li Y, Roux C, Lazereg S, LeCaer JP, Laprevote O, Badet B, Badet-Denisot MA (2007) Identification of a novel serine phosphorylation site in human glutamine:fructose-6-phosphate amidotransferase isoform 1. Biochemistry 46:13163–13169

    Article  CAS  Google Scholar 

  • Lindsey-Boltz LA, Wauson EM, Graves LM, Sancar A (2004) The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. Nucleic Acids Res 32:4524–4530

    Article  CAS  Google Scholar 

  • Lyons SA, Chung WJ, Weaver AK, Ogunrinu T, Sontheimer H (2007) Autocrine glutamate signaling promotes glioma cell invasion. Cancer Res 67:9463–9471

    Article  CAS  Google Scholar 

  • McGivan JD, Bradford NM (1983) Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim Biophys Acta 759:296–302

    Article  CAS  Google Scholar 

  • Meek TD, Karsten WE, DeBrosse CW (1987) Carbamoyl-phosphate synthetase II of the mammalian CAD protein: kinetic mechanism and elucidation of reaction intermediates by positional isotope exchange. Biochemistry 26:2584–2593

    Article  CAS  Google Scholar 

  • Murphy JM, Murch SJ, Ball RO (1996) Proline is synthesized from glutamate during intragastric infusion but not during intravenous infusion in neonatal piglets. J Nutr 126:878–886

    Article  CAS  Google Scholar 

  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L (2009) SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137:560–570

    Article  CAS  Google Scholar 

  • Noch E, Khalili K (2009) Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther 8:1791–1797

    Article  CAS  Google Scholar 

  • Pearl PL, Gibson KM, Acosta MT, Vezina LG, Theodore WH, Rogawski MA, Novotny EJ, Gropman A, Conry JA, Berry GT, Tuchman M (2003) Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 60:1413–1417

    Article  CAS  Google Scholar 

  • Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, di Pietro N, Sturma M, Novelli V, Mannino GC, Formoso G, Gervino EV, Hauser TH, Muehlschlegel JD, Niewczas MA, Krolewski AS, Biolo G, Pandolfi A, Rimm E, Sesti G, Trischitta V, Hu F, Doria A (2013) Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA 310:821–828

    Article  CAS  Google Scholar 

  • Rej R (1978) Aspartate aminotransferase activity and isoenzyme proportions in human liver tissues. Clin Chem 24:1971–1979

    Article  CAS  Google Scholar 

  • Sato T, Akasu H, Shimono W, Matsu C, Fujiwara Y, Shibagaki Y, Heard JJ, Tamanoi F, Hattori S (2015) Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem 290:1096–1105

    Article  CAS  Google Scholar 

  • Schafer DF, Jones EA (1982) Hepatic encephalopathy and the gamma-aminobutyric-acid neurotransmitter system. Lancet 1:18–20

    Article  CAS  Google Scholar 

  • Schunemann DP, Grivicich I, Regner A, Leal LF, de Araujo DR, Jotz GP, Fedrigo CA, Simon D, da Rocha AB (2010) Glutamate promotes cell growth by EGFR signaling on U-87MG human glioblastoma cell line. Pathol Oncol Res 16:285–293

    Article  CAS  Google Scholar 

  • Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT (2011) Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med (Berl) 89:229–236

    Article  CAS  Google Scholar 

  • Shigesada K, Tatibana M (1978) N-acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem 84:285–291

    Article  CAS  Google Scholar 

  • Simon M, von Lehe M (2011) Glioma-related seizures: glutamate is the key. Nat Med 17:1190–1191

    Article  CAS  Google Scholar 

  • Sonoda T, Tatibana M (1983) Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem 258:9839–9844

    CAS  Google Scholar 

  • Stanley CA, Fang J, Kutyna K, Hsu BY, Ming JE, Glaser B, Poncz M (2000) Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators Diabetes 49:667–673

    CAS  Google Scholar 

  • Strecker HJ (1957) The interconversion of glutamic acid and proline. I. The formation of delta1-pyrroline-5-carboxylic acid from glutamic acid in Escherichia coli. J Biol Chem 225:825–834

    CAS  Google Scholar 

  • Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(Suppl 1):S21–S38

    Article  CAS  Google Scholar 

  • Thangavelu K, Pan CQ, Karlberg T, Balaji G, Uttamchandani M, Suresh V, Schuler H, Low BC, Sivaraman J (2012) Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc Natl Acad Sci U S A 109:7705–7710

    Article  CAS  Google Scholar 

  • Tu Z, Anders MW (1998) Expression and characterization of human glutamate-cysteine ligase. Arch Biochem Biophys 354:247–254

    Article  CAS  Google Scholar 

  • van der Laan JW, de Boer T, Bruinvels J (1979) Di-n-propylacetate and GABA degradation. Preferential Inhibition of Succinic Semialdehyde Dehydrogenase and Indirect Inhibition of GABA-Transaminase. J Neurochem 32:1769–1780

    Article  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  CAS  Google Scholar 

  • Wakabayashi Y, Iwashima A, Yamada E, Yamada R (1991a) Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. II. N-acetylglutamate synthase. Arch Biochem Biophys 291:9–14

    Article  CAS  Google Scholar 

  • Wakabayashi Y, Yamada E, Hasegawa T, Yamada R (1991b) Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. I. Pyrroline-5-carboxylate synthase. Arch Biochem Biophys 291:1–8

    Article  CAS  Google Scholar 

  • Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18:207–219

    Article  CAS  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 21:165–204

    Article  CAS  Google Scholar 

  • Wei J, Davis KM, Wu H, Wu JY (2004) Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry 43:6182–6189

    Article  CAS  Google Scholar 

  • Wood AW, Seegmiller JE (1973) Properties of 5-phosphoribosyl-1-pyrophosphate amidotransferase from human lymphoblasts. J Biol Chem 248:138–143

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Biotechnology (DBT), Government of India for research support to the Institute of Bioinformatics, Bangalore. Soujanya D. Yelamanchi is a recipient of a Senior Research Fellowship from the Department of Science and Technology (DST), Government of India. Aafaque Ahmad Khan is a recipient of a Senior Research Fellowship from Indian Council of Medical Research (ICMR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. L. Somani or Harsha Gowda.

Ethics declarations

Conflict of interest

No potential conflicts of interest were declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yelamanchi, S.D., Jayaram, S., Thomas, J.K. et al. A pathway map of glutamate metabolism. J. Cell Commun. Signal. 10, 69–75 (2016). https://doi.org/10.1007/s12079-015-0315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0315-5

Keywords

Navigation