Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2018

Open Access 01-10-2018 | Review Article

Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies

Authors: Francis Man, Twan Lammers, Rafael T. M. de Rosales

Published in: Molecular Imaging and Biology | Issue 5/2018

Login to get access

Abstract

Imaging plays a key role in the preclinical evaluation of nanomedicine-based drug delivery systems and it has provided important insights into their mechanism of action and therapeutic effect. Its role in supporting the clinical development of nanomedicine products, however, has been less explored. In this review, we summarize clinical studies in which imaging has provided valuable information on the pharmacokinetics, biodistribution, and target site accumulation of nanomedicine-based drug delivery systems. Importantly, these studies provide convincing evidence on the uptake of nanomedicines in tumors, confirming that the enhanced permeability and retention (EPR) effect is a real phenomenon in patients, albeit with fairly high levels of inter- and intraindividual variability. It is gradually becoming clear that imaging is critically important to help address this high heterogeneity. In support of this notion, a decent correlation between nanomedicine uptake in tumors and antitumor efficacy has recently been obtained in two independent studies in patients, exemplifying that image-guided drug delivery can help to pave the way towards individualized and improved nanomedicine therapies.
Literature
1.
2.
go back to reference Kunjachan S, Ehling J, Storm G et al (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115:10907–10937CrossRefPubMedPubMedCentral Kunjachan S, Ehling J, Storm G et al (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115:10907–10937CrossRefPubMedPubMedCentral
3.
go back to reference Chakravarty R, Hong H, Cai W (2014) Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11:3777–3797CrossRefPubMedPubMedCentral Chakravarty R, Hong H, Cai W (2014) Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11:3777–3797CrossRefPubMedPubMedCentral
4.
go back to reference Ojha T, Rizzo L, Storm G et al (2015) Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin Drug Deliv 12:1203–1207CrossRefPubMed Ojha T, Rizzo L, Storm G et al (2015) Image-guided drug delivery: preclinical applications and clinical translation. Expert Opin Drug Deliv 12:1203–1207CrossRefPubMed
5.
go back to reference Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912CrossRefPubMed Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912CrossRefPubMed
6.
go back to reference Lanza GM, Moonen C, Baker JR et al (2014) Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 6:1–14CrossRefPubMed Lanza GM, Moonen C, Baker JR et al (2014) Assessing the barriers to image-guided drug delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 6:1–14CrossRefPubMed
7.
go back to reference Chakravarty R, Hong H, Cai W (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16:592–609CrossRefPubMedPubMedCentral Chakravarty R, Hong H, Cai W (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16:592–609CrossRefPubMedPubMedCentral
8.
go back to reference Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral Prabhakar U, Maeda H, Jain RK et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefPubMedPubMedCentral
9.
go back to reference Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894CrossRefPubMed Lammers T, Rizzo LY, Storm G, Kiessling F (2012) Personalized nanomedicine. Clin Cancer Res 18:4889–4894CrossRefPubMed
10.
go back to reference Natfji AA, Ravishankar D, Osborn HMI, Greco F (2017) Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J Pharm Sci 106:3179–3187CrossRefPubMed Natfji AA, Ravishankar D, Osborn HMI, Greco F (2017) Parameters affecting the enhanced permeability and retention effect: the need for patient selection. J Pharm Sci 106:3179–3187CrossRefPubMed
11.
go back to reference Hare JI, Lammers T, Ashford MB et al (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38CrossRefPubMed Hare JI, Lammers T, Ashford MB et al (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38CrossRefPubMed
12.
go back to reference Lopez-Berestein G, Kasi L, Rosenblum MG et al (1984) Clinical pharmacology of 99mTc-labeled liposomes in patients with cancer. Cancer Res 44:375–378PubMed Lopez-Berestein G, Kasi L, Rosenblum MG et al (1984) Clinical pharmacology of 99mTc-labeled liposomes in patients with cancer. Cancer Res 44:375–378PubMed
13.
go back to reference Turner AF, Presant CA, Proffitt RT et al (1988) In-111-labeled liposomes: dosimetry and tumor depiction. Radiology 166:761–765CrossRefPubMed Turner AF, Presant CA, Proffitt RT et al (1988) In-111-labeled liposomes: dosimetry and tumor depiction. Radiology 166:761–765CrossRefPubMed
14.
go back to reference Presant CA, Proffitt RT, Turner AF et al (1988) Successful imaging of human cancer with indium-111-labeled phospholipid vesicles. Cancer 62:905–911CrossRefPubMed Presant CA, Proffitt RT, Turner AF et al (1988) Successful imaging of human cancer with indium-111-labeled phospholipid vesicles. Cancer 62:905–911CrossRefPubMed
15.
go back to reference Presant CA, Ksionski G, Crossley R (1990) 111In-labeled liposomes for tumor imaging: clinical results of the International Liposome Imaging Study. J Liposome Res 1:431–436CrossRef Presant CA, Ksionski G, Crossley R (1990) 111In-labeled liposomes for tumor imaging: clinical results of the International Liposome Imaging Study. J Liposome Res 1:431–436CrossRef
16.
go back to reference Presant CA, Blayney D, Kennedy P et al (1990) Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 335:1307–1309CrossRefPubMed Presant CA, Blayney D, Kennedy P et al (1990) Preliminary report: imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 335:1307–1309CrossRefPubMed
17.
go back to reference Khalifa A, Dodds D, Rampling R et al (1997) Liposomal distribution in malignant glioma: possibilities for therapy. Nucl Med Commun 18:17–23CrossRefPubMed Khalifa A, Dodds D, Rampling R et al (1997) Liposomal distribution in malignant glioma: possibilities for therapy. Nucl Med Commun 18:17–23CrossRefPubMed
18.
go back to reference Stewart S, Harrington KJ (1997) The biodistribution and pharmacokinetics of stealth liposomes in patients with solid tumors. Oncology 11:33–37 Stewart S, Harrington KJ (1997) The biodistribution and pharmacokinetics of stealth liposomes in patients with solid tumors. Oncology 11:33–37
19.
go back to reference Harrington KJ, Mohammadtaghi S, Uster PS et al (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254PubMed Harrington KJ, Mohammadtaghi S, Uster PS et al (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254PubMed
20.
go back to reference Koukourakis MI, Koukouraki S, Giatromanolaki A et al (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non–small-cell lung cancer and head and neck cancer. J Clin Oncol 17:3512–3521CrossRefPubMed Koukourakis MI, Koukouraki S, Giatromanolaki A et al (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non–small-cell lung cancer and head and neck cancer. J Clin Oncol 17:3512–3521CrossRefPubMed
21.
go back to reference Koukourakis MI, Koukouraki S, Giatromanolaki A et al (2000) High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: rationale for combination with radiotherapy. Acta Oncol (Madr) 39:207–211CrossRef Koukourakis MI, Koukouraki S, Giatromanolaki A et al (2000) High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: rationale for combination with radiotherapy. Acta Oncol (Madr) 39:207–211CrossRef
22.
go back to reference Murray JL, Kleinerman ES, Cunningham JE et al (1989) Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. J Clin Oncol 7:1915–1925CrossRefPubMed Murray JL, Kleinerman ES, Cunningham JE et al (1989) Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. J Clin Oncol 7:1915–1925CrossRefPubMed
23.
go back to reference Giovinazzo H, Kumar P, Sheikh A et al (2016) Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer. Cancer Chemother Pharmacol 77:565–573CrossRefPubMed Giovinazzo H, Kumar P, Sheikh A et al (2016) Technetium Tc 99m sulfur colloid phenotypic probe for the pharmacokinetics and pharmacodynamics of PEGylated liposomal doxorubicin in women with ovarian cancer. Cancer Chemother Pharmacol 77:565–573CrossRefPubMed
24.
go back to reference Dams ET, Oyen WJ, Boerman OC et al (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41:622–630PubMed Dams ET, Oyen WJ, Boerman OC et al (2000) 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med 41:622–630PubMed
25.
go back to reference Weers J, Metzheiser B, Taylor G et al (2009) A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 22:131–138CrossRefPubMed Weers J, Metzheiser B, Taylor G et al (2009) A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv 22:131–138CrossRefPubMed
26.
go back to reference Farr S, Kellaway I, Parry-Jones D, Woolfrey S (1985) 99m-Technetium as a marker of liposomal deposition and clearance in the human lung. Int J Pharm 26:303–316CrossRef Farr S, Kellaway I, Parry-Jones D, Woolfrey S (1985) 99m-Technetium as a marker of liposomal deposition and clearance in the human lung. Int J Pharm 26:303–316CrossRef
27.
go back to reference Bhavna AFJ, Mittal G et al (2009) Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 71:282–291CrossRefPubMed Bhavna AFJ, Mittal G et al (2009) Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm 71:282–291CrossRefPubMed
28.
go back to reference Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed Lee H, Shields AF, Siegel BA et al (2017) 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 23:4190–4202CrossRefPubMed
29.
go back to reference Phillips E, Penate-Medina O, Zanzonico PB et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6:260ra149–260ra149CrossRefPubMedPubMedCentral Phillips E, Penate-Medina O, Zanzonico PB et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6:260ra149–260ra149CrossRefPubMedPubMedCentral
30.
go back to reference Ramanathan RK, Korn RL, Raghunand N et al (2017) Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin Cancer Res 23:3638–3648CrossRefPubMed Ramanathan RK, Korn RL, Raghunand N et al (2017) Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin Cancer Res 23:3638–3648CrossRefPubMed
31.
go back to reference Lyon PC, Griffiths LF, Lee J et al (2017) Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J Ther Ultrasound 5:28CrossRefPubMedPubMedCentral Lyon PC, Griffiths LF, Lee J et al (2017) Clinical trial protocol for TARDOX: a phase I study to investigate the feasibility of targeted release of lyso-thermosensitive liposomal doxorubicin (ThermoDox®) using focused ultrasound in patients with liver tumours. J Ther Ultrasound 5:28CrossRefPubMedPubMedCentral
32.
go back to reference Moek KL, Giesen D, Kok IC et al (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90SCrossRefPubMed Moek KL, Giesen D, Kok IC et al (2017) Theranostics using antibodies and antibody-related therapeutics. J Nucl Med 58:83S–90SCrossRefPubMed
33.
go back to reference Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435CrossRefPubMed Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435CrossRefPubMed
34.
go back to reference Lamichhane N, Udayakumar T, D’Souza W et al (2018) Liposomes: clinical applications and potential for image-guided drug delivery. Molecules 23:288CrossRef Lamichhane N, Udayakumar T, D’Souza W et al (2018) Liposomes: clinical applications and potential for image-guided drug delivery. Molecules 23:288CrossRef
35.
go back to reference James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965CrossRefPubMed James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965CrossRefPubMed
36.
go back to reference Gregoriadis G, Swain CP, Wills EJ, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 303:1313–1316CrossRef Gregoriadis G, Swain CP, Wills EJ, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 303:1313–1316CrossRef
37.
go back to reference Segal AW, Gregoriadis G, Lavender JP et al (1976) Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms. Clin Sci 51:421–425CrossRef Segal AW, Gregoriadis G, Lavender JP et al (1976) Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms. Clin Sci 51:421–425CrossRef
38.
go back to reference Richardson VJ, Ryman BE, Jewkes RF et al (1979) Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients. Br J Cancer 40:35–43CrossRefPubMedPubMedCentral Richardson VJ, Ryman BE, Jewkes RF et al (1979) Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients. Br J Cancer 40:35–43CrossRefPubMedPubMedCentral
39.
go back to reference Perez-Soler R, Lopez-Berestein G, Kasi LP et al (1985) Distribution of technetium-99m-labeled multilamellar liposomes in patients with Hodgkin’s disease. J Nucl Med 26:743–749PubMed Perez-Soler R, Lopez-Berestein G, Kasi LP et al (1985) Distribution of technetium-99m-labeled multilamellar liposomes in patients with Hodgkin’s disease. J Nucl Med 26:743–749PubMed
40.
go back to reference Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315CrossRefPubMedPubMedCentral Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315CrossRefPubMedPubMedCentral
41.
go back to reference Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992PubMed Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992PubMed
43.
go back to reference Heyder J (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1:315–320CrossRefPubMed Heyder J (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1:315–320CrossRefPubMed
44.
go back to reference van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44:765–774CrossRefPubMed van Rijt SH, Bein T, Meiners S (2014) Medical nanoparticles for next generation drug delivery to the lungs. Eur Respir J 44:765–774CrossRefPubMed
45.
go back to reference Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740CrossRefPubMed
46.
go back to reference Lee H, Zheng J, Gaddy D et al (2015) A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine 11:155–165CrossRefPubMed Lee H, Zheng J, Gaddy D et al (2015) A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine 11:155–165CrossRefPubMed
47.
go back to reference Avila-Rodriguez MA, Rios C, Carrasco-Hernandez J et al (2017) Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res 7:98CrossRefPubMedPubMedCentral Avila-Rodriguez MA, Rios C, Carrasco-Hernandez J et al (2017) Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res 7:98CrossRefPubMedPubMedCentral
48.
go back to reference Edmonds S, Volpe A, Shmeeda H et al (2016) Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines. ACS Nano 10:10294–10307CrossRefPubMedPubMedCentral Edmonds S, Volpe A, Shmeeda H et al (2016) Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines. ACS Nano 10:10294–10307CrossRefPubMedPubMedCentral
49.
go back to reference Ngoune R, Peters A, von Elverfeldt D et al (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70CrossRefPubMed Ngoune R, Peters A, von Elverfeldt D et al (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70CrossRefPubMed
51.
go back to reference Daldrup-Link HE, Golovko D, Ruffell B et al (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704CrossRefPubMedPubMedCentral Daldrup-Link HE, Golovko D, Ruffell B et al (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704CrossRefPubMedPubMedCentral
52.
go back to reference Hijnen N, Langereis S, Grüll H (2014) Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Adv Drug Deliv Rev 72:65–81CrossRefPubMed Hijnen N, Langereis S, Grüll H (2014) Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Adv Drug Deliv Rev 72:65–81CrossRefPubMed
53.
go back to reference Wright M, Centelles M, Gedroyc W, Thanou M (2018) Image guided focused ultrasound as a new method of targeted drug delivery. In: Theranostics and image guided drug delivery. Ed.Thanou M. London: The Royal Society of Chemistry, pp 1–28 Wright M, Centelles M, Gedroyc W, Thanou M (2018) Image guided focused ultrasound as a new method of targeted drug delivery. In: Theranostics and image guided drug delivery. Ed.Thanou M. London: The Royal Society of Chemistry, pp 1–28
54.
go back to reference Kiessling F, Fokong S, Bzyl J et al (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27CrossRefPubMed Kiessling F, Fokong S, Bzyl J et al (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27CrossRefPubMed
55.
go back to reference Etrych T, Lucas H, Janoušková O et al (2016) Fluorescence optical imaging in anticancer drug delivery. J Control Release 226:168–181CrossRefPubMed Etrych T, Lucas H, Janoušková O et al (2016) Fluorescence optical imaging in anticancer drug delivery. J Control Release 226:168–181CrossRefPubMed
56.
go back to reference Negussie AH, Yarmolenko PS, Partanen A et al (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperth 27:140–155CrossRef Negussie AH, Yarmolenko PS, Partanen A et al (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperth 27:140–155CrossRef
57.
go back to reference Lamichhane N, Dewkar GK, Sundaresan G et al (2017) [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery. Int J Mol Sci 18:1079CrossRefPubMedCentral Lamichhane N, Dewkar GK, Sundaresan G et al (2017) [18F]-Fluorinated carboplatin and [111In]-liposome for image-guided drug delivery. Int J Mol Sci 18:1079CrossRefPubMedCentral
58.
go back to reference Gawne P, Man F, Fonslet J, et al. (2018) Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalt Trans 47:9283–9293 Gawne P, Man F, Fonslet J, et al. (2018) Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalt Trans 47:9283–9293
Metadata
Title
Imaging Nanomedicine-Based Drug Delivery: a Review of Clinical Studies
Authors
Francis Man
Twan Lammers
Rafael T. M. de Rosales
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 5/2018
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1255-2

Other articles of this Issue 5/2018

Molecular Imaging and Biology 5/2018 Go to the issue