We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now?

    Si-Shen Feng

    Nanoscience & Nanoengineering Initiative (NUSNNI), Department of Chemical & Biomolecular Engineering and Division of Bioengineering, Faculty of Engineering, National University of Singapore, Block E5, 02–11, 4 Engineering Drive, 117576 Singapore.

    Published Online:https://doi.org/10.2217/17435889.1.3.297

    No substantial progress has really been observed during the past 50 years in fighting cancer, and the way we currently detect and treat cancer is similar to 30 years ago. Cancer nanotechnology will change the situation radically. Progress in developing nanoparticles of biodegradable polymers for new-concept chemotherapy is reviewed here by using the in vitro and in vivo experimental results obtained in my laboratory as a proof-of-concept demonstration. The prospects of using multifunctional nanoparticles for targeting, diagnosing, therapy delivery and result-reporting as a possible solution for cancer detection and treatment are also described. I believe that cancer will become curable using targeted and sustained chemotherapy by such nanoparticles at the earliest stage of disease. High efficacy and low side effects can be achieved, since high drug concentrations can be delivered selectively to the cancer cells, leaving healthy cells untouched. Thus, the required amount of the drug can be minimized.

    Bibliography

    • Grillo-Lopez AJ: Cancer therapies crisis in the USA. Expert Rev. Anticancer Ther.3,579–582 (2003).
    • Feng SS: Nanoparticles of biodegradable polymers for new-concept chemotherapy. Expert Rev. Med. Devices1,115–125 (2004).
    • Feng SS, Chien S: Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem. Engineer. Sci.58,4087–4114 (2003).
    • Ehrlich P: Chemotherapeutics: scientific principles, methods and results. LancetII,445–451 (1913).
    • Langer R: Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc. Chem. Res.33,94–101 (2000).
    • Amass W, Amass A, Tighe B: A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int.47,89–144 (1998).
    • Shikanov A, Kumar N, Domb AJ: Biodegradable polymers: an update. Isr. J. Chem.45,393–399 (2005).
    • Soppimatha KS, Aminabhavi TM, Kulkarnia AR, Rudzinskib WE: Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release70,1–20 (2001).
    • Park JH, Ye ML, Park K: Biodegradable polymers for microencapsulation of drugs. Molecules10,146–161 (2005).
    • 10  Kumar MNVR: Nano and microparticles as controlled drug delivery devices. J. Pharm. Sci.3(2),234–258 (2000).
    • 11  Service RF: Nanotechnology takes aim at cancer. Science310,1132–1134 (2005).
    • 12  Ferrari M: Cancer nanotechnology: opportunities and challenges. Nature5,161–171 (2005).
    • 13  Moghimi SM, Hunter AC, Murray JC: Nanomedicine: current status and future prospects. FASEB J.19,311–330 (2005).
    • 14  Khin YW, Feng SS: In vitro and In vivo studies on vitamin E TPGS-emulsified poly(d,l-lactic-co-glycolic acid) nanoparticles for clinical administration of paclitaxel. Biomaterials27,2285–2291 (2006).
    • 15  Mu L, Feng SS: Vitamin E TPGS used as emulsifier in the solvent extraction/ evaporation technique for fabrication of polymeric nanospheres for controlled release of paclitaxel. J. Control. Release80,129–144 (2002).
    • 16  Khin YW, Feng SS: Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials26,2713–2722 (2005).
    • 17  Zhang ZP, Feng SS: Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials27,262–270 (2006).
    • 18  Zhang ZP, Feng SS: The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials27,4025–4033 (2006).
    • 19  Zhang ZP, Feng SS: In vitro investigation on poly(lactide)-tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy. Biomacromolecules7,1139–1146 (2006).
    • 20  Dong YC, Feng SS: Paclitaxel-loaded methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles by nanoprecipitation method. Biomaterials25,2843–2849 (2004).
    • 21  Dong YC, Feng SS: Nanoparticles of poly(d,l-lactide)/methoxy poly(ethylene glycol)-poly(d,l-lactide) blends for controlled release of paclitaxel. J Biomed. Mater. Res. A78A,12–19 (2006).
    • 22  Dong YC, Feng SS: Nanoparticles of montmorillonite (MMT)/poly (d,l-lactide-co-glycolide) (PLGA) for oral delivery of anticancer drugs. Biomaterials26,6068–6076 (2005).
    • 23  Feng SS, Mu L, Win KY, Huang GF: Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem.11,413–424 (2004).
    • 24  Mu L, Feng SS: PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and the drug loading ratio. Pharm. Res.20,1864–1872 (2003).
    • 25  Mu L, Feng SS: A novel controlled release formulation for anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J. Control. Release86,33–48 (2003).
    • 26  Feng SS, Mu L, Chen BH, Pack D: Polymeric nanospheres fabricated with natural emulsifiers for clinical administration of an anticancer drug paclitaxel (Taxol®). Mater. Sci. Eng. C20,85–92 (2002).
    • 27  Feng SS, Huang GF: Effects of phospholipids as emulsifiers on controlled release of paclitaxel from nanospheres of biodegradable polymers. J. Control. Release71,53–69 (2001).
    • 28  Mu L, Teo MM, Ning HZ, Tan CS, Feng SS: Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system. J. Control. Release103,565–575 (2005).
    • 29  Mu L, Feng SS: Fabrication, characterization and in vitro release of paclitaxel loaded poly(lactic-co-glycolic acid) (PLGA) nanospheres prepared by the spray dry technique with phospholipids/cholesterol as additives. J. Control. Release76,239–254 (2001).
    • 30  Huang M, Khor E, Lim LY: Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of effects of molecular weight and degree of deacetylation. Pharm. Res.21,344–353 (2004).
    • 31  Mo Y, Lim LY: Mechanistic study of the uptake of wheat germ agglutinin-conjugated PLGA nanoparticles by A549 cells. J. Pharm. Sci.93,20–28 (2004).
    • 32  Wilhelm C, Billotey C, Roger J et al.: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials24,1001–1011 (2003).
    • 33  Behrens I, Pena AIV, Alonso MJ et al.: Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharmaceut. Res.19(8),1185–1193 (2002).
    • 34  Pietzonka P, Rothen-Rutishauser B, Langguth P et al.: Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptake. Pharmaceut. Res.19,595–601 (2002).
    • 35  Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T: Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm.50,147–160 (2000).
    • 36  Qaddoumi MG, Ueda H, Yang J et al.: The mechanism of uptake of biodegradable PLGA nanoparticles in conjunctival epithelial cell layers. Invest. Ophthalmol. Vis. Sci.42,2628 (2001).
    • 37  Fonseca C, Simoes S, Gaspar RE: Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release83,273–286 (2002).
    • 38  Duan YR, Sun X, Gong T et al.: Preparation of DHAQ-loaded mPEG-PLGA-mPEG nanoparticles and evaluation of drug release behaviors in vitro/ in vivo. J. Mater. Sci. Mater. Med.17,509–516 (2006).
    • 39  Xu ZH, Gu WW, Huang J et al.: In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm.288,361–368 (2005).
    • 40  Eley JG, Pujari VD, McLane J: Poly (lactide-co-glycolide) nanoparticles containing coumarin-6 for suppository delivery: in vitro release profile and in vivo tissue distribution. Drug Deliv.11,255–261 (2004).
    • 41  Chen DB, Yang TZ, Lu WL et al.: In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem. Pharm. Bull.49,1444–1447 (2001).
    • 42  Liebmann J, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB: Cytotoxic studies of paclitaxel (Taxol) in human tumor cell lines. Br. J. Cancer68,1104–1109 (1993).
    • 43  Kaul G, Amiji M: Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res.22,951–961 (2005).
    • 44  Yoo HS, Lee KH, Oh JE et al.: In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J. Control. Release68,419–431 (2000).
    • 45  Jain RK: Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J. Control. Release74,7–25 (2001).
    • 46  Au JLS, Jang SH, Wientjes MG: Clinical aspects of drug delivery to tumors. J. Control. Release78(1–3),81–95 (2002).
    • 47  Au JLS, Jang SH, Zheng J et al.: Determinants of drug delivery and transport to solid tumors. J. Control. Release74(1–3),31–46 (2001).
    • 48  Yan SY, Zhang DS, Gu N et al.: Therapeutic effect of Fe2O3 nanoparticles combined with magnetic fluid hyperthermia on cultured liver cancer cells and xenograft liver cancers. J. Nanosci. Nanotechnol.5,1185–1192 (2005).
    • 49  Mo Y, Lim LY: Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J. Control. Release108,244–262 (2005).
    • 50  Ma DL, Guan JW, Normandin FO et al.: Multifunctional nano-architecture for biomedical applications. Chem. Mater.18,1920–1927 (2006).
    • 51  Kopelmana R, Lee YEK, Philbertb M et al.: Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J. Magn. Magn. Mater.293,404–410 (2005).
    • 52  Allen TM, Cullis PR: Drug delivery systems: entering the mainstream. Science303,1818–1822 (2004).
    • 53  Labhasetwar V: Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol.16,674–680 (2005).
    • 54  Becerril B, Poul MA, Marks JD: Toward selection of internalizing antibodies from phage libraries. Biochem. Biophys. Res. Comm.255,386–393 (1999).
    • 55  Nielsen UB, Kirpotin DB, Pickering EM et al.: Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta1591,109–118 (2002).
    • 56  Subbaramaiah K, Howe LR, Port ER et al.: HER-2/neu status is a determinant of mammary aromatase activity in vivo: evidence for a cyclooxygenase-2-dependent mechanism. Cancer Res.66,5504–5511 (2006).
    • 57  Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ: Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol.3,269–280 (2006).
    • 58  Plosker GL, Keam SJ: Trastuzumab – a review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Drugs66,449–475 (2006).
    • 59  Rodolfo M, Melani C, Zilocchi C et al.: IgG2a induced by interleukin (IL) 12-producing tumor cell vaccines but not IgG1 induced by IL-4 vaccine is associated with the eradication of experimental metastases. Cancer Res.58,5812–6817 (1998).
    • 60  Lua YJ, Lowb PS: Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J. Control. Release91,17–29 (2003).
    • 61  Kukowska-Latallo JF, Candido KA, Cao ZY et al.: Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.65,5317–5324 (2005).
    • 62  Lanza GM, Winte PM, Caruthers SD et al.: Magnetic resonance molecular imaging with nanoparticles. J. Nucl. Cardiol.11,733–743 (2004).
    • 63  Gao XH, Yang L, Petros JA, Marshall FF, Simons JW, Nie SM: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol.16,63–72 (2005).
    • 64  Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol.22,969–976 (2004).
    • 65  Shin JH, Chungn JK, Kang JH: Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J. Nucl. Med.45,2109–2115 (2004).
    • 66  Nam JM, Thaxton CS, Mirkin CA: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science301,1884–1886 (2003).
    • 101  US National Institute of Health www.nih.gov
    • 102  US National Cancer Institute, Nanotechnology in Cancer Alliance http://nano.cancer.gov/ resource_center/sci_biblio_enabled-therapeutics.asp
    • 103  Nanomedicine Research Portal www.nano-biology.net/showcitationlist. php?sort=citations& keyword=e