Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2019

01-06-2019 | Brief Article

Sparse Detector Configuration in SiPM Digital Photon Counting PET: a Feasibility Study

Authors: Jun Zhang, Michelle I. Knopp, Michael V. Knopp

Published in: Molecular Imaging and Biology | Issue 3/2019

Login to get access

Abstract

Purpose

To investigate the minimum number of SiPM detectors required for solid-state digital photon counting (DPC) oncologic whole-body 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/X-ray computed tomography (CT).

Procedures

A DPC PET/CT (Vereos, Philips) with 23,040 1-to-1 crystal-to-detector couplings was utilized. [18F]FDG PET/CT of a uniformity phantom and 10 oncology patients selected by block randomization from a large clinical trial were included (457 ± 38 MBq, 64 ± 22 min p.i, body mass index (BMI) of 14–41). Sparse-ring PET configurations with 50 % detector reduction in tangential and axial directions were analyzed and compared to the current full ring configuration. Resulting images were reviewed blindly and quantitatively over detectable lesions and the liver.

Results

One hundred twelve lesions (d = 10 to 95 mm) were analyzed in the patient population. All lesions remained visible and were demonstrated without compromised image quality under all BMIs in the 50 % sparse detector configurations despite the DPC PET system sensitivity reduction to 1/4th. An excellent consistency of SUVmax measurements of lesions with an average of 5 % SUVmax difference was found between dPET of full and sparse configurations.

Conclusions

The feasibility of either expanding the axial field of view (FOV) by a factor of two or halving the number of detectors was demonstrated for solid-state digital photon counting PET, thus either potentially enabling cost reduction or extended effective axial FOV without increased cost.
Literature
1.
go back to reference Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, Beekman FJ (2009) A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol 54:3501–3512CrossRefPubMed Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, Beekman FJ (2009) A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol 54:3501–3512CrossRefPubMed
2.
go back to reference Zhang J, Miller M, Binzel K, Tung C, Knopp MV (2016) Evaluation of the stability and system characteristics of digital photon counting PET/CT. J Nucl Med 57(Suppl 2):258 Zhang J, Miller M, Binzel K, Tung C, Knopp MV (2016) Evaluation of the stability and system characteristics of digital photon counting PET/CT. J Nucl Med 57(Suppl 2):258
3.
go back to reference Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS (2017) Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med 58(9):1511–1518CrossRefPubMed Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS (2017) Studies of a next generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med 58(9):1511–1518CrossRefPubMed
4.
go back to reference Zhang X, Wang X, Ren N, Kuang Z, Deng X, Fu X, Wu S, Sang Z, Hu Z, Liang D, Liu X, Zheng H, Yang Y (2017) Performance of a SiPM based semi-monolithic scintillator PET detector. Phys Med Biol 62:7889–7904CrossRefPubMed Zhang X, Wang X, Ren N, Kuang Z, Deng X, Fu X, Wu S, Sang Z, Hu Z, Liang D, Liu X, Zheng H, Yang Y (2017) Performance of a SiPM based semi-monolithic scintillator PET detector. Phys Med Biol 62:7889–7904CrossRefPubMed
5.
go back to reference Zhang J, Maniawski P, Knopp MV (2017) Effect of next generation SiPM digital photon counting PET technology on effective system spatial resolution. J Nucl Med 58(Suppl 1):1322 Zhang J, Maniawski P, Knopp MV (2017) Effect of next generation SiPM digital photon counting PET technology on effective system spatial resolution. J Nucl Med 58(Suppl 1):1322
7.
go back to reference Knopp MV, Binzel K, Nagar V et al (2015) Initial clinical experience using a digital PET detector for whole-body oncologic PET/CT. J Nucl Med 56(Suppl 3):1695 Knopp MV, Binzel K, Nagar V et al (2015) Initial clinical experience using a digital PET detector for whole-body oncologic PET/CT. J Nucl Med 56(Suppl 3):1695
8.
go back to reference Wright CL, Binzel K, Zhang J, Wuthrick EJ, Knopp MV (2017) Clinical feasibility of 90Y digital PET/CT for imaging microsphere biodistribution following radioembolization. Eur J Nucl Med Mol Imaging 44:1194–1197CrossRefPubMed Wright CL, Binzel K, Zhang J, Wuthrick EJ, Knopp MV (2017) Clinical feasibility of 90Y digital PET/CT for imaging microsphere biodistribution following radioembolization. Eur J Nucl Med Mol Imaging 44:1194–1197CrossRefPubMed
9.
go back to reference Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMed Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMed
10.
go back to reference Bian J, Siewerdsen JH, Han X et al (2010) Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys Med Biol 21(55):6575–6599CrossRef Bian J, Siewerdsen JH, Han X et al (2010) Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys Med Biol 21(55):6575–6599CrossRef
11.
go back to reference Kalke M, Siltanen S (2014) Sinogram interpolation method for sparse-angle tomography. Appl Math 5:423–441CrossRef Kalke M, Siltanen S (2014) Sinogram interpolation method for sparse-angle tomography. Appl Math 5:423–441CrossRef
13.
go back to reference Valiollahzadeh S, Clark JW Jr, Mawlawi O (2015) Using compressive sensing to recover images from PET scanners with partial detector rings. Med Phys 42:121–133CrossRefPubMed Valiollahzadeh S, Clark JW Jr, Mawlawi O (2015) Using compressive sensing to recover images from PET scanners with partial detector rings. Med Phys 42:121–133CrossRefPubMed
14.
go back to reference Tashima H, Yoshida E, Inadama N, Nishikido F, Nakajima Y, Wakizaka H, Shinaji T, Nitta M, Kinouchi S, Suga M, Haneishi H, Inaniwa T, Yamaya T (2016) Development of a small single-ring OpenPET prototype with a novel transformable architecture. Phys Med Biol 61:1795–1809CrossRefPubMed Tashima H, Yoshida E, Inadama N, Nishikido F, Nakajima Y, Wakizaka H, Shinaji T, Nitta M, Kinouchi S, Suga M, Haneishi H, Inaniwa T, Yamaya T (2016) Development of a small single-ring OpenPET prototype with a novel transformable architecture. Phys Med Biol 61:1795–1809CrossRefPubMed
15.
go back to reference Zhang Z, Ye J, Chen B, Perkins AE, Rose S, Sidky EY, Kao CM, Xia D, Tung CH, Pan X (2016) Investigation of optimization-based reconstruction with an image-total-variation constraint in PET. Phys Med Biol 61:6055–6084CrossRefPubMedPubMedCentral Zhang Z, Ye J, Chen B, Perkins AE, Rose S, Sidky EY, Kao CM, Xia D, Tung CH, Pan X (2016) Investigation of optimization-based reconstruction with an image-total-variation constraint in PET. Phys Med Biol 61:6055–6084CrossRefPubMedPubMedCentral
17.
go back to reference Saha GB (2010) Performance characteristics of PET scanners. In: Basics of PET imaging: physics, chemistry, and regulations. Springer-Verlag, New York, pp 101–102 Saha GB (2010) Performance characteristics of PET scanners. In: Basics of PET imaging: physics, chemistry, and regulations. Springer-Verlag, New York, pp 101–102
18.
19.
go back to reference Cherry SR, Sorenson JA, Phelps ME (2012) Positron emission tomography. In: Physics in Nuclear Medicine, 4th edn. Elsevier Health Sciences, New York, pp 319–321 Cherry SR, Sorenson JA, Phelps ME (2012) Positron emission tomography. In: Physics in Nuclear Medicine, 4th edn. Elsevier Health Sciences, New York, pp 319–321
20.
go back to reference Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37:783–788CrossRef Strother SC, Casey ME, Hoffman EJ (1990) Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts. IEEE Trans Nucl Sci 37:783–788CrossRef
Metadata
Title
Sparse Detector Configuration in SiPM Digital Photon Counting PET: a Feasibility Study
Authors
Jun Zhang
Michelle I. Knopp
Michael V. Knopp
Publication date
01-06-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1250-7

Other articles of this Issue 3/2019

Molecular Imaging and Biology 3/2019 Go to the issue