Skip to main content
Top
Published in: Molecular Imaging and Biology 5/2018

01-10-2018 | Review Article

Emerging Intraoperative Imaging Modalities to Improve Surgical Precision

Authors: Israt S. Alam, Idan Steinberg, Ophir Vermesh, Nynke S. van den Berg, Eben L. Rosenthal, Gooitzen M. van Dam, Vasilis Ntziachristos, Sanjiv S. Gambhir, Sophie Hernot, Stephan Rogalla

Published in: Molecular Imaging and Biology | Issue 5/2018

Login to get access

Abstract

Intraoperative imaging (IOI) is performed to guide delineation and localization of regions of surgical interest. While oncological surgical planning predominantly utilizes x-ray computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US), intraoperative guidance mainly remains on surgeon interpretation and pathology for confirmation. Over the past decades however, intraoperative guidance has evolved significantly with the emergence of several novel imaging technologies, including fluorescence-, Raman, photoacoustic-, and radio-guided approaches. These modalities have demonstrated the potential to further optimize precision in surgical resection and improve clinical outcomes for patients. Not only can these technologies enhance our understanding of the disease, they can also yield large imaging datasets intraoperatively that can be analyzed by deep learning approaches for more rapid and accurate pathological diagnosis. Unfortunately, many of these novel technologies are still under preclinical or early clinical evaluation. Organizations like the Intra-Operative Imaging Study Group of the European Society for Molecular Imaging (ESMI) support interdisciplinary interactions with the aim to improve technical capabilities in the field, an approach that can succeed only if scientists, engineers, and physicians work closely together with industry and regulatory bodies to resolve roadblocks to clinical translation. In this review, we provide an overview of a variety of novel IOI technologies, discuss their challenges, and present future perspectives on the enormous potential of IOI for oncological surgical navigation.
Literature
2.
go back to reference Rana M, Zapf A, Kuehle M, Gellrich NC, Eckardt AM (2012) Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: a prospective randomized diagnostic study. Eur J Cancer Prev 21:460–466CrossRefPubMed Rana M, Zapf A, Kuehle M, Gellrich NC, Eckardt AM (2012) Clinical evaluation of an autofluorescence diagnostic device for oral cancer detection: a prospective randomized diagnostic study. Eur J Cancer Prev 21:460–466CrossRefPubMed
3.
go back to reference James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965CrossRefPubMed James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965CrossRefPubMed
4.
go back to reference Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128CrossRefPubMed Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128CrossRefPubMed
5.
go back to reference Scheuer W, van Dam GM, Dobosz M, Set a (2012) Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med 4:134ps11CrossRefPubMed Scheuer W, van Dam GM, Dobosz M, Set a (2012) Drug-based optical agents: infiltrating clinics at lower risk. Sci Transl Med 4:134ps11CrossRefPubMed
6.
go back to reference Koch M, Ntziachristos V (2016) Advancing surgical vision with fluorescence imaging. Annu Rev Med 67:153–164CrossRefPubMed Koch M, Ntziachristos V (2016) Advancing surgical vision with fluorescence imaging. Annu Rev Med 67:153–164CrossRefPubMed
7.
go back to reference AV DS, Lin H, Henderson ER et al (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901CrossRef AV DS, Lin H, Henderson ER et al (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901CrossRef
8.
go back to reference Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL (2017) Optical surgical navigation for precision in tumor resections. Mol Imaging Biol 19:357–362CrossRefPubMedPubMedCentral Harmsen S, Teraphongphom N, Tweedle MF, Basilion JP, Rosenthal EL (2017) Optical surgical navigation for precision in tumor resections. Mol Imaging Biol 19:357–362CrossRefPubMedPubMedCentral
9.
go back to reference Mondal SB, Gao S, Zhu N et al (2015) Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep 5:12117CrossRefPubMed Mondal SB, Gao S, Zhu N et al (2015) Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep 5:12117CrossRefPubMed
10.
go back to reference Ringhausen E, Wang T, Pitts J, Sarder P, Akers WJ (2016) Evaluation of dynamic optical projection of acquired luminescence for sentinel lymph node biopsy in large animals. Technol Cancer Res Treat 15:787–795CrossRefPubMed Ringhausen E, Wang T, Pitts J, Sarder P, Akers WJ (2016) Evaluation of dynamic optical projection of acquired luminescence for sentinel lymph node biopsy in large animals. Technol Cancer Res Treat 15:787–795CrossRefPubMed
11.
go back to reference Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101CrossRef Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77:041101CrossRef
12.
go back to reference Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846CrossRefPubMedPubMedCentral Hong G, Lee JC, Robinson JT, Raaz U, Xie L, Huang NF, Cooke JP, Dai H (2012) Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med 18:1841–1846CrossRefPubMedPubMedCentral
13.
go back to reference Schaafsma BE, Mieog JS, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332CrossRefPubMedPubMedCentral Schaafsma BE, Mieog JS, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332CrossRefPubMedPubMedCentral
15.
go back to reference Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401CrossRefPubMed
16.
go back to reference Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, Soloway MS, Karl A, Burger M (2012) Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 188:58–62CrossRefPubMedPubMedCentral Grossman HB, Stenzl A, Fradet Y, Mynderse LA, Kriegmair M, Witjes JA, Soloway MS, Karl A, Burger M (2012) Long-term decrease in bladder cancer recurrence with hexaminolevulinate enabled fluorescence cystoscopy. J Urol 188:58–62CrossRefPubMedPubMedCentral
18.
go back to reference Kijanka MM, van Brussel AS, van der Wall E et al (2016) Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res 6:14CrossRefPubMedPubMedCentral Kijanka MM, van Brussel AS, van der Wall E et al (2016) Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res 6:14CrossRefPubMedPubMedCentral
19.
go back to reference van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee A, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319CrossRefPubMed van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee A, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319CrossRefPubMed
21.
go back to reference Rosenthal EL, Moore LS, Tipirneni K, de Boer E, Stevens TM, Hartman YE, Carroll WR, Zinn KR, Warram JM (2017) Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res 23:4744–4752CrossRefPubMedPubMedCentral Rosenthal EL, Moore LS, Tipirneni K, de Boer E, Stevens TM, Hartman YE, Carroll WR, Zinn KR, Warram JM (2017) Sensitivity and specificity of cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clin Cancer Res 23:4744–4752CrossRefPubMedPubMedCentral
22.
go back to reference Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666CrossRefPubMedPubMedCentral Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, Strong TV, Schmalbach CE, Morlandt AB, Agarwal G, Hartman YE, Carroll WR, Richman JS, Clemons LK, Nabell LM, Zinn KR (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666CrossRefPubMedPubMedCentral
23.
go back to reference Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, Linssen MD, Jorritsma-Smit A, van Oosten M, Nagengast WB, Ntziachristos V, van Dam GM (2016) Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 1:283–290CrossRefPubMed Harlaar NJ, Koller M, de Jongh SJ, van Leeuwen BL, Hemmer PH, Kruijff S, van Ginkel RJ, Been LB, de Jong JS, Kats-Ugurlu G, Linssen MD, Jorritsma-Smit A, van Oosten M, Nagengast WB, Ntziachristos V, van Dam GM (2016) Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: a single-centre feasibility study. Lancet Gastroenterol Hepatol 1:283–290CrossRefPubMed
24.
go back to reference Lamberts LE, Koch M, de Jong JS et al (2016) Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res 23:2730–2741CrossRefPubMed Lamberts LE, Koch M, de Jong JS et al (2016) Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res 23:2730–2741CrossRefPubMed
25.
go back to reference Warram JM, de Boer E, van Dam GM, Moore LS, Bevans SL, Walsh EM, Young ES, Carroll WR, Stevens TM, Rosenthal EL (2016) Fluorescence imaging to localize head and neck squamous cell carcinoma for enhanced pathological assessment. J Pathol Clin Res 2:104–112CrossRefPubMedPubMedCentral Warram JM, de Boer E, van Dam GM, Moore LS, Bevans SL, Walsh EM, Young ES, Carroll WR, Stevens TM, Rosenthal EL (2016) Fluorescence imaging to localize head and neck squamous cell carcinoma for enhanced pathological assessment. J Pathol Clin Res 2:104–112CrossRefPubMedPubMedCentral
26.
go back to reference Elliott JT, Dsouza AV, Marra K, Pogue BW, Roberts DW, Paulsen KD (2016) Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules. Biomed Opt Express 7:3280–3288CrossRefPubMedPubMedCentral Elliott JT, Dsouza AV, Marra K, Pogue BW, Roberts DW, Paulsen KD (2016) Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules. Biomed Opt Express 7:3280–3288CrossRefPubMedPubMedCentral
27.
go back to reference Debie P, Vanhoeij M, Poortmans N et al (2017) Improved debulking of peritoneal tumor implants by near-infrared fluorescent nanobody image guidance in an experimental mouse model. Mol Imaging Biol 20(3):361–367CrossRef Debie P, Vanhoeij M, Poortmans N et al (2017) Improved debulking of peritoneal tumor implants by near-infrared fluorescent nanobody image guidance in an experimental mouse model. Mol Imaging Biol 20(3):361–367CrossRef
28.
go back to reference Handgraaf HJM, Boonstra MC, Prevoo H, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten M, Valentijn ARPM, Burggraaf J, van de Velde C, Frangioni JV, Vahrmeijer AL (2017) Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 8:21054–21066CrossRefPubMed Handgraaf HJM, Boonstra MC, Prevoo H, Kuil J, Bordo MW, Boogerd LSF, Sibinga Mulder BG, Sier CFM, Vinkenburg-van Slooten M, Valentijn ARPM, Burggraaf J, van de Velde C, Frangioni JV, Vahrmeijer AL (2017) Real-time near-infrared fluorescence imaging using cRGD-ZW800-1 for intraoperative visualization of multiple cancer types. Oncotarget 8:21054–21066CrossRefPubMed
29.
go back to reference Christensen A, Juhl K, Persson M, Charabi BW, Mortensen J, Kiss K, Lelkaitis G, Rubek N, von Buchwald C, Kjær A (2017) uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 8:15407–15419CrossRefPubMed Christensen A, Juhl K, Persson M, Charabi BW, Mortensen J, Kiss K, Lelkaitis G, Rubek N, von Buchwald C, Kjær A (2017) uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget 8:15407–15419CrossRefPubMed
30.
go back to reference Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J (2015) Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors. Cancer Res 75:4283–4291CrossRefPubMedPubMedCentral Fidel J, Kennedy KC, Dernell WS, Hansen S, Wiss V, Stroud MR, Molho JI, Knoblaugh SE, Meganck J, Olson JM, Rice B, Parrish-Novak J (2015) Preclinical validation of the utility of BLZ-100 in providing fluorescence contrast for imaging spontaneous solid tumors. Cancer Res 75:4283–4291CrossRefPubMedPubMedCentral
31.
go back to reference Burggraaf J, Kamerling IM, Gordon PB et al (2015) Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-met. Nat Med 21:955–961CrossRefPubMed Burggraaf J, Kamerling IM, Gordon PB et al (2015) Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-met. Nat Med 21:955–961CrossRefPubMed
32.
go back to reference Sturm MB, Joshi BP, Lu S et al (2013) Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 5:184ra161CrossRef Sturm MB, Joshi BP, Lu S et al (2013) Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 5:184ra161CrossRef
33.
go back to reference Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, Lee CL, Snuderl M, Blazer DG III, Hwang ES, Greenup RA, Mosca PJ, Mito JK, Cuneo KC, Larrier NA, O’Reilly EK, Riedel RF, Eward WC, Strasfeld DB, Fukumura D, Jain RK, Lee WD, Griffith LG, Bawendi MG, Kirsch DG, Brigman BE (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324CrossRef Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, Lee CL, Snuderl M, Blazer DG III, Hwang ES, Greenup RA, Mosca PJ, Mito JK, Cuneo KC, Larrier NA, O’Reilly EK, Riedel RF, Eward WC, Strasfeld DB, Fukumura D, Jain RK, Lee WD, Griffith LG, Bawendi MG, Kirsch DG, Brigman BE (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324CrossRef
34.
35.
go back to reference KleinJan GH, Buckle T, van Willigen DM, Oosterom M, Spa S, Kloosterboer H, van Leeuwen F (2014) Fluorescent lectins for local in vivo visualization of peripheral nerves. Molecules 19:9876–9892CrossRefPubMed KleinJan GH, Buckle T, van Willigen DM, Oosterom M, Spa S, Kloosterboer H, van Leeuwen F (2014) Fluorescent lectins for local in vivo visualization of peripheral nerves. Molecules 19:9876–9892CrossRefPubMed
36.
go back to reference Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, Felt SA, Friedland S, Liu JTC, Gambhir SS, Contag CH (2015) A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10:e0123185CrossRefPubMedPubMedCentral Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, Felt SA, Friedland S, Liu JTC, Gambhir SS, Contag CH (2015) A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10:e0123185CrossRefPubMedPubMedCentral
38.
go back to reference Moore LS, Rosenthal EL, Chung TK, de Boer E, Patel N, Prince AC, Korb ML, Walsh EM, Young ES, Stevens TM, Withrow KP, Morlandt AB, Richman JS, Carroll WR, Zinn KR, Warram JM (2017) Characterizing the utility and limitations of repurposing an open-field optical imaging device for fluorescence-guided surgery in head and neck cancer patients. J Nucl Med 58:246–251CrossRefPubMedPubMedCentral Moore LS, Rosenthal EL, Chung TK, de Boer E, Patel N, Prince AC, Korb ML, Walsh EM, Young ES, Stevens TM, Withrow KP, Morlandt AB, Richman JS, Carroll WR, Zinn KR, Warram JM (2017) Characterizing the utility and limitations of repurposing an open-field optical imaging device for fluorescence-guided surgery in head and neck cancer patients. J Nucl Med 58:246–251CrossRefPubMedPubMedCentral
39.
go back to reference Zavaleta CL, Kircher MF, Gambhir SS (2011) Raman’s “effect” on molecular imaging. J Nucl Med 52:1839–1844CrossRefPubMed Zavaleta CL, Kircher MF, Gambhir SS (2011) Raman’s “effect” on molecular imaging. J Nucl Med 52:1839–1844CrossRefPubMed
40.
go back to reference Kang S, Wang Y, Reder NP, Liu JT (2016) Multiplexed molecular imaging of biomarker-targeted SERS nanoparticles on fresh tissue specimens with channel-compressed spectrometry. PLoS One 11:e0163473CrossRefPubMedPubMedCentral Kang S, Wang Y, Reder NP, Liu JT (2016) Multiplexed molecular imaging of biomarker-targeted SERS nanoparticles on fresh tissue specimens with channel-compressed spectrometry. PLoS One 11:e0163473CrossRefPubMedPubMedCentral
41.
go back to reference Vendrell M, Maiti KK, Dhaliwal K, Chang YT (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257CrossRefPubMed Vendrell M, Maiti KK, Dhaliwal K, Chang YT (2013) Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 31:249–257CrossRefPubMed
42.
go back to reference Thakor AS, Luong R, Paulmurugan R et al (2011) The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci Transl Med 3:79ra33CrossRefPubMed Thakor AS, Luong R, Paulmurugan R et al (2011) The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci Transl Med 3:79ra33CrossRefPubMed
43.
go back to reference Rogalla S, Contag CH (2015) Early cancer detection at the epithelial surface. Cancer J 21:179–187CrossRefPubMed Rogalla S, Contag CH (2015) Early cancer detection at the epithelial surface. Cancer J 21:179–187CrossRefPubMed
44.
go back to reference Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF (2015) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra277, 7, 271ra7 Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O’Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF (2015) Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 7:271ra277, 7, 271ra7
45.
go back to reference Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227CrossRef Taruttis A, Ntziachristos V (2015) Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9:219–227CrossRef
46.
go back to reference Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794CrossRefPubMed Ntziachristos V, Razansky D (2010) Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev 110:2783–2794CrossRefPubMed
47.
go back to reference Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, Bayer C, Multhoff G, Ntziachristos V (2016) Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun 7. https://doi.org/10.1038/ncomms12121 Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, Bayer C, Multhoff G, Ntziachristos V (2016) Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun 7. https://​doi.​org/​10.​1038/​ncomms12121
49.
go back to reference Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V (2017) Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin Cancer Res 23:6912–6922CrossRefPubMed Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V (2017) Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin Cancer Res 23:6912–6922CrossRefPubMed
50.
go back to reference Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, Vetter M, Fischer S, Pfeifer L, Hagel A, Kielisch C, Görtz RS, Wildner D, Engel M, Röther J, Uter W, Siebler J, Atreya R, Rascher W, Strobel D, Neurath MF, Waldner MJ (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376:1292–1294CrossRefPubMed Knieling F, Neufert C, Hartmann A, Claussen J, Urich A, Egger C, Vetter M, Fischer S, Pfeifer L, Hagel A, Kielisch C, Görtz RS, Wildner D, Engel M, Röther J, Uter W, Siebler J, Atreya R, Rascher W, Strobel D, Neurath MF, Waldner MJ (2017) Multispectral optoacoustic tomography for assessment of Crohn’s disease activity. N Engl J Med 376:1292–1294CrossRefPubMed
51.
52.
go back to reference Bell MAL, Ostrowski AK, Li K et al (2015) Localization of transcranial targets for photoacoustic-guided endonasal surgeries. Photoacoustics 3:78–87CrossRef Bell MAL, Ostrowski AK, Li K et al (2015) Localization of transcranial targets for photoacoustic-guided endonasal surgeries. Photoacoustics 3:78–87CrossRef
53.
go back to reference Mari JM, Xia W, West SJ, Desjardins AE (2015) Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study. J Biomed Opt 20:110503–110503CrossRefPubMedPubMedCentral Mari JM, Xia W, West SJ, Desjardins AE (2015) Interventional multispectral photoacoustic imaging with a clinical ultrasound probe for discriminating nerves and tendons: an ex vivo pilot study. J Biomed Opt 20:110503–110503CrossRefPubMedPubMedCentral
54.
go back to reference Gandhi N, Allard M, Kim S, Kazanzides P, Lediju Bell MA (2017) Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot. J Biomed Opt 22:121606CrossRefPubMedCentral Gandhi N, Allard M, Kim S, Kazanzides P, Lediju Bell MA (2017) Photoacoustic-based approach to surgical guidance performed with and without a da Vinci robot. J Biomed Opt 22:121606CrossRefPubMedCentral
55.
go back to reference Dima A, Gateau J, Claussen J, Wilhelm D, Ntziachristos V (2013) Optoacoustic imaging of blood perfusion: techniques for intraoperative tissue viability assessment. J Biophotonics 6:485–492CrossRefPubMed Dima A, Gateau J, Claussen J, Wilhelm D, Ntziachristos V (2013) Optoacoustic imaging of blood perfusion: techniques for intraoperative tissue viability assessment. J Biophotonics 6:485–492CrossRefPubMed
56.
go back to reference Kang J, Chang JH, Kim SM, Lee HJ, Kim H, Wilson BC, Song TK (2017) Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction. Sci Rep 7:45008CrossRefPubMedPubMedCentral Kang J, Chang JH, Kim SM, Lee HJ, Kim H, Wilson BC, Song TK (2017) Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction. Sci Rep 7:45008CrossRefPubMedPubMedCentral
57.
59.
go back to reference Levi J, Sathirachinda A, Gambhir SS (2014) A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 20:3721–3729CrossRefPubMedPubMedCentral Levi J, Sathirachinda A, Gambhir SS (2014) A high-affinity, high-stability photoacoustic agent for imaging gastrin-releasing peptide receptor in prostate cancer. Clin Cancer Res 20:3721–3729CrossRefPubMedPubMedCentral
61.
go back to reference Kruger RA, Kiser WL, Miller KD, et al. (2000) Thermoacoustic CT: imaging principles [abstract] Kruger RA, Kiser WL, Miller KD, et al. (2000) Thermoacoustic CT: imaging principles [abstract]
62.
63.
go back to reference Ogunlade O, Beard P (2015) Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med Phys 42:170–181CrossRefPubMed Ogunlade O, Beard P (2015) Exogenous contrast agents for thermoacoustic imaging: an investigation into the underlying sources of contrast. Med Phys 42:170–181CrossRefPubMed
64.
go back to reference Orsaria P, Chiaravalloti A, Fiorentini A, Pistolese C, Vanni G, Granai AV, Varvaras D, Danieli R, Schillaci O, Petrella G, Buonomo OC (2017) PET probe-guided surgery in patients with breast cancer: proposal for a methodological approach. In Vivo 31:101–110CrossRefPubMedPubMedCentral Orsaria P, Chiaravalloti A, Fiorentini A, Pistolese C, Vanni G, Granai AV, Varvaras D, Danieli R, Schillaci O, Petrella G, Buonomo OC (2017) PET probe-guided surgery in patients with breast cancer: proposal for a methodological approach. In Vivo 31:101–110CrossRefPubMedPubMedCentral
65.
go back to reference Povoski SP, Neff RL, Mojzisik CM et al (2009) A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 7:11CrossRefPubMedPubMedCentral Povoski SP, Neff RL, Mojzisik CM et al (2009) A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 7:11CrossRefPubMedPubMedCentral
66.
go back to reference Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106:4–16CrossRefPubMed Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106:4–16CrossRefPubMed
67.
go back to reference Pouw B, van der Ploeg IM, Muller SH et al (2015) Simultaneous use of an (125)I-seed to guide tumour excision and 99mTc-nanocolloid for sentinel node biopsy in non-palpable breast-conserving surgery. Eur J Surg Oncol 41:71–78CrossRefPubMed Pouw B, van der Ploeg IM, Muller SH et al (2015) Simultaneous use of an (125)I-seed to guide tumour excision and 99mTc-nanocolloid for sentinel node biopsy in non-palpable breast-conserving surgery. Eur J Surg Oncol 41:71–78CrossRefPubMed
68.
go back to reference Vidal-Sicart S, Paredes P, Zanon G, Pahisa J, Martinez-Roman S, Caparros X, Vilalta A, Rull R, Pons F (2010) Added value of intraoperative real-time imaging in searches for difficult-to-locate sentinel nodes. J Nucl Med 51:1219–1225CrossRefPubMed Vidal-Sicart S, Paredes P, Zanon G, Pahisa J, Martinez-Roman S, Caparros X, Vilalta A, Rull R, Pons F (2010) Added value of intraoperative real-time imaging in searches for difficult-to-locate sentinel nodes. J Nucl Med 51:1219–1225CrossRefPubMed
69.
go back to reference KleinJan GH, Karakullukcu B, Klop WMC et al (2017) Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res 7:65CrossRefPubMedPubMedCentral KleinJan GH, Karakullukcu B, Klop WMC et al (2017) Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res 7:65CrossRefPubMedPubMedCentral
70.
go back to reference Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, Old L, Fong Y, Larson SM (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22:386–391CrossRefPubMed Strong VE, Humm J, Russo P, Jungbluth A, Wong WD, Daghighian F, Old L, Fong Y, Larson SM (2008) A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc 22:386–391CrossRefPubMed
71.
go back to reference Singh B, Stack BC Jr, Thacker S et al (2013) A hand-held beta imaging probe for FDG. Ann Nuc Med 27:203–208CrossRef Singh B, Stack BC Jr, Thacker S et al (2013) A hand-held beta imaging probe for FDG. Ann Nuc Med 27:203–208CrossRef
72.
go back to reference Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med 55:95–98CrossRefPubMed Thorek DL, Riedl CC, Grimm J (2014) Clinical Cerenkov luminescence imaging of 18F-FDG. J Nucl Med 55:95–98CrossRefPubMed
73.
go back to reference Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, Sbarbati A, Boschi F (2013) First human Cerenkography. J Biomed Opt 18:20502CrossRefPubMed Spinelli AE, Ferdeghini M, Cavedon C, Zivelonghi E, Calandrino R, Fenzi A, Sbarbati A, Boschi F (2013) First human Cerenkography. J Biomed Opt 18:20502CrossRefPubMed
74.
go back to reference Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, Hamed H, Pawa A, Nimmo F, Owen J, Ramalingam V, Sethi S, Mistry S, Vyas K, Tuch DS, Britten A, van Hemelrijck M, Cook GJ, Sibley-Allen C, Allen S, Purushotham A (2017) Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med 58:891–898CrossRefPubMed Grootendorst MR, Cariati M, Pinder SE, Kothari A, Douek M, Kovacs T, Hamed H, Pawa A, Nimmo F, Owen J, Ramalingam V, Sethi S, Mistry S, Vyas K, Tuch DS, Britten A, van Hemelrijck M, Cook GJ, Sibley-Allen C, Allen S, Purushotham A (2017) Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG Cerenkov luminescence imaging: a first-in-human feasibility study. J Nucl Med 58:891–898CrossRefPubMed
75.
go back to reference Buckle T, van Leeuwen AC, Chin PT et al (2010) A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21:355101CrossRefPubMed Buckle T, van Leeuwen AC, Chin PT et al (2010) A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21:355101CrossRefPubMed
76.
go back to reference van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FWB (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833CrossRefPubMed van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FWB (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833CrossRefPubMed
77.
go back to reference Hekman MC, Boerman OC, de Weijert M et al (2016) Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res 22:4634–4642CrossRefPubMed Hekman MC, Boerman OC, de Weijert M et al (2016) Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin Cancer Res 22:4634–4642CrossRefPubMed
78.
go back to reference Bugby SL, Lees JE, Perkins AC (2017) Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clinical Translational Imaging 5:323–341CrossRefPubMed Bugby SL, Lees JE, Perkins AC (2017) Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clinical Translational Imaging 5:323–341CrossRefPubMed
80.
82.
go back to reference Lin J-S, Lo S-C, Hasegawa A et al (1996) Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging 15:206–217CrossRefPubMed Lin J-S, Lo S-C, Hasegawa A et al (1996) Reduction of false positives in lung nodule detection using a two-level neural classification. IEEE Trans Med Imaging 15:206–217CrossRefPubMed
83.
go back to reference Lo S-C, Lou S-L, Lin J-S, Fet a (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14:711–718CrossRefPubMed Lo S-C, Lou S-L, Lin J-S, Fet a (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imaging 14:711–718CrossRefPubMed
84.
go back to reference Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK (1995) Artificial convolution neural network for medical image pattern recognition. Neural Netw 8(7-8):1201–1214 Lo SCB, Chan HP, Lin JS, Li H, Freedman MT, Mun SK (1995) Artificial convolution neural network for medical image pattern recognition. Neural Netw 8(7-8):1201–1214
85.
go back to reference Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24:1138–1150CrossRefPubMed Suzuki K, Li F, Sone S, Doi K (2005) Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 24:1138–1150CrossRefPubMed
86.
go back to reference Lo S-CB, Li H, Wang Y, et al. (2002) A multiple circular path convolution neural network system for detection of mammographic masses. ç 21:150–158 Lo S-CB, Li H, Wang Y, et al. (2002) A multiple circular path convolution neural network system for detection of mammographic masses. ç 21:150–158
87.
go back to reference Sahiner B, Chan H-P, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15:598–610CrossRefPubMed Sahiner B, Chan H-P, Petrick N et al (1996) Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging 15:598–610CrossRefPubMed
88.
go back to reference Zhang W, Giger ML, Nishikawa RM, Schmidt RA (1996) An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys 23:595–601CrossRefPubMed Zhang W, Giger ML, Nishikawa RM, Schmidt RA (1996) An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys 23:595–601CrossRefPubMed
89.
go back to reference Zhang W, Giger ML, Wu Y et al (1994) Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 21:517–524CrossRefPubMed Zhang W, Giger ML, Wu Y et al (1994) Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med Phys 21:517–524CrossRefPubMed
90.
go back to reference Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251CrossRefPubMed Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251CrossRefPubMed
92.
go back to reference Karnes WE, Alkayali T, Mittal M, Patel A, Kim J, Chang KJ, Ninh AQ, Urban G, Baldi P (2017) Su1642 automated polyp detection using deep learning: leveling the field. Gastrointest Endosc 85:AB376–AB377CrossRef Karnes WE, Alkayali T, Mittal M, Patel A, Kim J, Chang KJ, Ninh AQ, Urban G, Baldi P (2017) Su1642 automated polyp detection using deep learning: leveling the field. Gastrointest Endosc 85:AB376–AB377CrossRef
93.
go back to reference Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A (2017) Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning. Sci Rep 7:11979CrossRefPubMedPubMedCentral Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, Bohr C, Neumann H, Stelzle F, Maier A (2017) Automatic classification of cancerous tissue in Laserendomicroscopy images of the oral cavity using deep learning. Sci Rep 7:11979CrossRefPubMedPubMedCentral
94.
go back to reference Choi B, Jo K, Choi S, Choi J (2017) Surgical-tools detection based on Convolutional Neural Network in laparoscopic robot-assisted surgery. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Seogwipo, Republic of Korea, pp 1756–1759 Choi B, Jo K, Choi S, Choi J (2017) Surgical-tools detection based on Convolutional Neural Network in laparoscopic robot-assisted surgery. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Seogwipo, Republic of Korea, pp 1756–1759
95.
go back to reference Petscharnig S, Schöffmann K (2017) Learning laparoscopic video shot classification for gynecological surgery. Multim Tools Appl (7):8061–8079 Petscharnig S, Schöffmann K (2017) Learning laparoscopic video shot classification for gynecological surgery. Multim Tools Appl (7):8061–8079
96.
go back to reference Pakhomov D, Premachandran V, Allan M, Azizian M, Navab N (2017) Deep residual learning for instrument segmentation in robotic surgery. arXiv preprint arXiv:170308580 Pakhomov D, Premachandran V, Allan M, Azizian M, Navab N (2017) Deep residual learning for instrument segmentation in robotic surgery. arXiv preprint arXiv:170308580
Metadata
Title
Emerging Intraoperative Imaging Modalities to Improve Surgical Precision
Authors
Israt S. Alam
Idan Steinberg
Ophir Vermesh
Nynke S. van den Berg
Eben L. Rosenthal
Gooitzen M. van Dam
Vasilis Ntziachristos
Sanjiv S. Gambhir
Sophie Hernot
Stephan Rogalla
Publication date
01-10-2018
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 5/2018
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1227-6

Other articles of this Issue 5/2018

Molecular Imaging and Biology 5/2018 Go to the issue