Skip to main content
Log in

A Deep-Learning System for Fully-Automated Peripherally Inserted Central Catheter (PICC) Tip Detection

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

A peripherally inserted central catheter (PICC) is a thin catheter that is inserted via arm veins and threaded near the heart, providing intravenous access. The final catheter tip position is always confirmed on a chest radiograph (CXR) immediately after insertion since malpositioned PICCs can cause potentially life-threatening complications. Although radiologists interpret PICC tip location with high accuracy, delays in interpretation can be significant. In this study, we proposed a fully-automated, deep-learning system with a cascading segmentation AI system containing two fully convolutional neural networks for detecting a PICC line and its tip location. A preprocessing module performed image quality and dimension normalization, and a post-processing module found the PICC tip accurately by pruning false positives. Our best model, trained on 400 training cases and selectively tuned on 50 validation cases, obtained absolute distances from ground truth with a mean of 3.10 mm, a standard deviation of 2.03 mm, and a root mean squares error (RMSE) of 3.71 mm on 150 held-out test cases. This system could help speed confirmation of PICC position and further be generalized to include other types of vascular access and therapeutic support devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Funaki B: Central venous access: a primer for the diagnostic radiologist. AJR Am J Roentgenol 179:309–318, 2002

    Article  PubMed  Google Scholar 

  2. Fuentealba I, Taylor GA: Diagnostic errors with inserted tubes, lines and catheters in children. Pediatr Radiol 42:1305–1315, 2012

    Article  PubMed  Google Scholar 

  3. Tomaszewski KJ, Ferko N, Hollmann SS, Eng SC, Richard HM, Rowe L et al.: Time and resources of peripherally inserted central catheter insertion procedures: a comparison between blind insertion/chest X-ray and a real time tip navigation and confirmation system. Clinicoecon Outcomes Res 9:115–125, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pereira S, Pinto A, Alves V, Silva CA: Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging, 2016. https://doi.org/10.1109/TMI.2016.2538465

  5. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y et al.: Brain tumor segmentation with Deep Neural Networks. Med Image Anal 35:18–31, 2017

    Article  PubMed  Google Scholar 

  6. Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging, 2016. https://doi.org/10.1109/TMI.2016.2535865

  7. Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK et al.: J Digit Imaging, 2017. https://doi.org/10.1007/s10278-017-9955-8

  8. Greenspan H, van Ginneken B, Summers RM: Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Trans Med Imaging 35:1153–1159

  9. Lakhani P, Sundaram B: Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 162326, 2017

  10. Cicero M, Bilbily A, Colak E, Dowdell T, Gray B, Perampaladas K et al.: Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs. Invest Radiol 52:281–287, 2017

    Article  PubMed  Google Scholar 

  11. Bar Y, Diamant I, Wolf L, Lieberman S, Konen E, Greenspan H: Chest pathology identification using deep feature selection with non-medical training. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. Taylor & Francis, 2016, pp 1–5

  12. Yang W, Chen Y, Liu Y, Zhong L, Qin G, Lu Z et al.: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain. Med Image Anal 35:421–433, 2017

    Article  PubMed  Google Scholar 

  13. Chen S, Zhong S, Yao L, Shang Y, Suzuki K: Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing. Phys Med Biol 61:2283–2301, 2016

    Article  PubMed  Google Scholar 

  14. Lee W-L, Chang K, Hsieh K-S: Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models. Med Biol Eng Comput 54:1409–1422, 2016

    Article  PubMed  Google Scholar 

  15. Long J, Shelhamer E, Darrell T: Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, pp 3431–3440

  16. Zuiderveld K.: Contrast Limited Adaptive Histogram Equalization. In Graphics Gems IV. Academic Press Professional, Inc., San Diego, 1994, pp 474–485

  17. Novikov AA, Lenis D, Major D, Hladůvka J, Wimmer M, Bühler K: Fully Convolutional Architectures for Multi-Class Segmentation in Chest Radiographs [Internet]. arXiv [cs.CV]. Available: http://arxiv.org/abs/1701.08816, 2017

  18. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L: ImageNet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on 2009, pp 248–255

  19. Platero C, Tobar MC: Combining a Patch-based Approach with a Non-rigid Registration-based Label Fusion Method for the Hippocampal Segmentation in Alzheimer’s Disease. Neuroinformatics, 2017. https://doi.org/10.1007/s12021-017-9323-3

  20. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J: Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing Systems 25. Curran Associates, Inc. 2012, pp 2843–2851

  21. Kiryati N, Eldar Y, Bruckstein AM: A probabilistic Hough transform. Pattern Recognit 24:303–316, 1991

    Article  Google Scholar 

  22. Shelhamer E: fcn.berkeleyvision.org [Internet]. Github; Available: https://github.com/shelhamer/fcn.berkeleyvision.org

  23. NVIDIA® DIGITS™ DevBox: In: NVIDIA Developer [Internet]. Available: https://developer.nvidia.com/devbox, 16 Mar 2015 [cited 23 Aug 2016]

  24. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al.: A Survey on Deep Learning in Medical Image Analysis [Internet]. arXiv [cs.CV]. Available: https://arxiv.org/abs/1702.05747, 2017

  25. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78, 2017

    Article  PubMed  Google Scholar 

  26. Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286, 2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Jordan Rogers for his commitment to initial implementation of PICC line detection machine learning system. We thank Junghwan Cho, PhD; Dania Daye, MD; Vishala Mishra, MD; and Garry Choy, MD for their helpful clinical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Synho Do.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Mansouri, M., Tajmir, S. et al. A Deep-Learning System for Fully-Automated Peripherally Inserted Central Catheter (PICC) Tip Detection. J Digit Imaging 31, 393–402 (2018). https://doi.org/10.1007/s10278-017-0025-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-017-0025-z

Keywords

Navigation