Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2016

01-12-2016 | Commentary

Failed PET Application Attempts in the Past, Can We Avoid Them in the Future?

Authors: Gang Cheng, Thomas J. Werner, Andrew Newberg, Abass Alavi

Published in: Molecular Imaging and Biology | Issue 6/2016

Login to get access

Excerpt

The introduction of positron emission tomography (PET) as a major imaging methodology has truly revolutionized the practice of medicine far beyond what has been accomplished with other modalities [1, 2]. For more than a decade, PET and PET/computed tomography (CT), as a noninvasive imaging modality, has demonstrated a great value in clinical practice, mainly in clinical oncology for tumor characterization, staging, and guiding therapy selection in patients with various kind of malignancies. PET also plays an important role in the diagnosis of cardiovascular diseases and neurological disorders such as Alzheimer’s disease and seizures. By now, it is apparent that structural imaging techniques are quite insensitive for the early detection of most diseases in spite of the superior spatial resolution provided by these modalities. The success of PET/CT, particularly with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG), has led to great interest in the development of new molecular probes for PET imaging to reveal functional changes targeting molecular/cellular levels for optimal visualization of the underlying process. According to the Molecular Imaging and Contrast Agent Database, 42 % of all imaging agents under development are PET-based [3]. A wide variety of new PET radiopharmaceuticals have been developed or are under development to evaluate various pathological processes such as hypoxia [4, 5], proliferation [68], apoptosis [9], angiogenesis [10, 11], and growth factor receptor expression [12, 13]. …
Literature
1.
go back to reference Vargemezis V, Liakopoulos V, Kriki P et al (2010) Pivotal role of paricalcitol in the treatment of calcific uremic arteriolopathy in the presence of a parathyroid adenoma. Am J Kidney Dis 55:144–147CrossRefPubMed Vargemezis V, Liakopoulos V, Kriki P et al (2010) Pivotal role of paricalcitol in the treatment of calcific uremic arteriolopathy in the presence of a parathyroid adenoma. Am J Kidney Dis 55:144–147CrossRefPubMed
2.
go back to reference Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18CrossRefPubMed Basu S, Kwee TC, Surti S et al (2011) Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci 1228:1–18CrossRefPubMed
3.
5.
go back to reference Carlin S, Humm JL (2012) PET of hypoxia: current and future perspectives. J Nucl Med 53:1171–1174CrossRefPubMed Carlin S, Humm JL (2012) PET of hypoxia: current and future perspectives. J Nucl Med 53:1171–1174CrossRefPubMed
6.
go back to reference Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SCrossRefPubMed
7.
go back to reference Sai KKS, Jones LA, Mach RH (2013) Development of 18F-labeled PET probes for imaging cell proliferation. Curr Top Med Chem 13:892–908CrossRefPubMed Sai KKS, Jones LA, Mach RH (2013) Development of 18F-labeled PET probes for imaging cell proliferation. Curr Top Med Chem 13:892–908CrossRefPubMed
8.
go back to reference Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54:903–912CrossRefPubMed Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54:903–912CrossRefPubMed
9.
go back to reference Haberkorn U, Markert A, Mier W et al (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151CrossRefPubMed Haberkorn U, Markert A, Mier W et al (2011) Molecular imaging of tumor metabolism and apoptosis. Oncogene 30:4141–4151CrossRefPubMed
10.
go back to reference Hong H, Chen F, Zhang Y, Cai W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76:2–20CrossRefPubMed Hong H, Chen F, Zhang Y, Cai W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76:2–20CrossRefPubMed
11.
go back to reference Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–S103CrossRefPubMedPubMedCentral Haubner R, Beer AJ, Wang H, Chen X (2010) Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging 37(Suppl 1):S86–S103CrossRefPubMedPubMedCentral
12.
go back to reference Sekar TV, Dhanabalan A, Paulmurugan R (2011) Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol 12:508–527CrossRefPubMed Sekar TV, Dhanabalan A, Paulmurugan R (2011) Imaging cellular receptors in breast cancers: an overview. Curr Pharm Biotechnol 12:508–527CrossRefPubMed
13.
go back to reference Kiyono Y, Mori T, Okazawa H (2012) Positron emission tomography radiopharmaceuticals for sex steroid hormone receptor imaging. Curr Med Chem 19:3266–3270CrossRefPubMed Kiyono Y, Mori T, Okazawa H (2012) Positron emission tomography radiopharmaceuticals for sex steroid hormone receptor imaging. Curr Med Chem 19:3266–3270CrossRefPubMed
14.
go back to reference DiMasi JA, Reichert JM, Feldman L, Malins A (2013) Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther 94:329–335CrossRefPubMed DiMasi JA, Reichert JM, Feldman L, Malins A (2013) Clinical approval success rates for investigational cancer drugs. Clin Pharmacol Ther 94:329–335CrossRefPubMed
15.
go back to reference Li Z, Gifford A, Liu Q et al (2005) Candidate PET radioligands for cannabinoid CB1 receptors: [18F]AM5144 and related pyrazole compounds. Nucl Med Biol 32:361–366CrossRefPubMed Li Z, Gifford A, Liu Q et al (2005) Candidate PET radioligands for cannabinoid CB1 receptors: [18F]AM5144 and related pyrazole compounds. Nucl Med Biol 32:361–366CrossRefPubMed
16.
go back to reference Smith AL, Freeman SM, Stehouwer JS et al (2012) Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors. Bioorg Med Chem 20:2721–2738CrossRefPubMedPubMedCentral Smith AL, Freeman SM, Stehouwer JS et al (2012) Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors. Bioorg Med Chem 20:2721–2738CrossRefPubMedPubMedCentral
17.
go back to reference Risgaard R, Ettrup A, Balle T et al (2013) Radiolabelling and PET brain imaging of the alpha1-adrenoceptor antagonist Lu AE43936. Nucl Med Biol 40:135–140CrossRefPubMed Risgaard R, Ettrup A, Balle T et al (2013) Radiolabelling and PET brain imaging of the alpha1-adrenoceptor antagonist Lu AE43936. Nucl Med Biol 40:135–140CrossRefPubMed
18.
go back to reference Airaksinen AJ, Finnema SJ, Balle T et al (2013) Radiosynthesis and evaluation of new alpha1-adrenoceptor antagonists as PET radioligands for brain imaging. Nucl Med Biol 40:747–754CrossRefPubMed Airaksinen AJ, Finnema SJ, Balle T et al (2013) Radiosynthesis and evaluation of new alpha1-adrenoceptor antagonists as PET radioligands for brain imaging. Nucl Med Biol 40:747–754CrossRefPubMed
19.
go back to reference Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM (2013) Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett 23:3389–3392CrossRefPubMedPubMedCentral Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM (2013) Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett 23:3389–3392CrossRefPubMedPubMedCentral
20.
go back to reference Cole EL, Shao X, Sherman P et al (2014) Synthesis and evaluation of [11C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3beta (GSK-3beta). Nucl Med Biol 41:507–512CrossRefPubMedPubMedCentral Cole EL, Shao X, Sherman P et al (2014) Synthesis and evaluation of [11C]PyrATP-1, a novel radiotracer for PET imaging of glycogen synthase kinase-3beta (GSK-3beta). Nucl Med Biol 41:507–512CrossRefPubMedPubMedCentral
21.
go back to reference Moon BS, Carlson KE, Katzenellenbogen JA et al (2009) Synthesis and evaluation of aryl-substituted diarylpropionitriles, selective ligands for estrogen receptor beta, as positron-emission tomographic imaging agents. Bioorg Med Chem 17:3479–3488CrossRefPubMed Moon BS, Carlson KE, Katzenellenbogen JA et al (2009) Synthesis and evaluation of aryl-substituted diarylpropionitriles, selective ligands for estrogen receptor beta, as positron-emission tomographic imaging agents. Bioorg Med Chem 17:3479–3488CrossRefPubMed
22.
go back to reference Ding M, Ghanekar S, Elmore CS et al (2012) [H]Chiba-1001(methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse 66:315–322CrossRefPubMed Ding M, Ghanekar S, Elmore CS et al (2012) [H]Chiba-1001(methyl-SSR180711) has low in vitro binding affinity and poor in vivo selectivity to nicotinic alpha-7 receptor in rodent brain. Synapse 66:315–322CrossRefPubMed
23.
go back to reference van Veghel D, Cleynhens J, Pearce LV et al (2013) Synthesis and biological evaluation of [C]SB366791: a new PET-radioligand for in vivo imaging of the TRPV1 receptor. Nucl Med Biol 40:141–147CrossRefPubMed van Veghel D, Cleynhens J, Pearce LV et al (2013) Synthesis and biological evaluation of [C]SB366791: a new PET-radioligand for in vivo imaging of the TRPV1 receptor. Nucl Med Biol 40:141–147CrossRefPubMed
24.
go back to reference Graham K, Muller A, Lehmann L et al (2014) [18F]Fluoropyruvate: radiosynthesis and initial biological evaluation. J Labelled Compd Radiopharm 57:164–171CrossRef Graham K, Muller A, Lehmann L et al (2014) [18F]Fluoropyruvate: radiosynthesis and initial biological evaluation. J Labelled Compd Radiopharm 57:164–171CrossRef
25.
go back to reference Horti AG, Ravert HT, Gao Y et al (2013) Synthesis and evaluation of new radioligands [11C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol 40:395–402CrossRefPubMedPubMedCentral Horti AG, Ravert HT, Gao Y et al (2013) Synthesis and evaluation of new radioligands [11C]A-833834 and [(11)C]A-752274 for positron-emission tomography of alpha7-nicotinic acetylcholine receptors. Nucl Med Biol 40:395–402CrossRefPubMedPubMedCentral
26.
go back to reference Lacivita E, Niso M, Hansen HD et al (2014) Design, synthesis, radiolabeling and in vivo evaluation of potential positron emission tomography (PET) radioligands for brain imaging of the 5-HT7 receptor. Bioorg Med Chem 22:1736–1750CrossRefPubMed Lacivita E, Niso M, Hansen HD et al (2014) Design, synthesis, radiolabeling and in vivo evaluation of potential positron emission tomography (PET) radioligands for brain imaging of the 5-HT7 receptor. Bioorg Med Chem 22:1736–1750CrossRefPubMed
27.
go back to reference Parent EE, Dence CS, Sharp TL et al (2006) Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol 33:615–624CrossRefPubMed Parent EE, Dence CS, Sharp TL et al (2006) Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[18F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol 33:615–624CrossRefPubMed
28.
go back to reference Lucatelli C, Honer M, Salazar J-F et al (2009) Synthesis, radiolabeling, in vitro and in vivo evaluation of [18F]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5. Nucl Med Biol 36:613–622CrossRefPubMed Lucatelli C, Honer M, Salazar J-F et al (2009) Synthesis, radiolabeling, in vitro and in vivo evaluation of [18F]-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5. Nucl Med Biol 36:613–622CrossRefPubMed
29.
go back to reference Baumann CA, Mu L, Wertli N et al (2010) Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands. Bioorg Med Chem 18:6044–6054CrossRefPubMed Baumann CA, Mu L, Wertli N et al (2010) Syntheses and pharmacological characterization of novel thiazole derivatives as potential mGluR5 PET ligands. Bioorg Med Chem 18:6044–6054CrossRefPubMed
30.
go back to reference Parent EE, Jenks C, Sharp T et al (2006) Synthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamide. Nucl Med Biol 33:705–713CrossRefPubMed Parent EE, Jenks C, Sharp T et al (2006) Synthesis and biological evaluation of a nonsteroidal bromine-76-labeled androgen receptor ligand 3-[76Br]bromo-hydroxyflutamide. Nucl Med Biol 33:705–713CrossRefPubMed
31.
go back to reference Courtyn J, Cornelissen B, Oltenfreiter R et al (2004) Synthesis and assessment of [11C]acetylhomotaurine as an imaging agent for the study of the pharmacodynamic properties of acamprosate by positron emission tomography. Nucl Med Biol 31:649–654CrossRefPubMed Courtyn J, Cornelissen B, Oltenfreiter R et al (2004) Synthesis and assessment of [11C]acetylhomotaurine as an imaging agent for the study of the pharmacodynamic properties of acamprosate by positron emission tomography. Nucl Med Biol 31:649–654CrossRefPubMed
32.
go back to reference Vasdev N, Garcia A, Stableford WT et al (2005) Synthesis and ex vivo evaluation of carbon-11 labelled N-(4-methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)urea ([11C]AR-A014418): a radiolabelled glycogen synthase kinase-3beta specific inhibitor for PET studies. Bioorg Med Chem Lett 15:5270–5273CrossRefPubMed Vasdev N, Garcia A, Stableford WT et al (2005) Synthesis and ex vivo evaluation of carbon-11 labelled N-(4-methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)urea ([11C]AR-A014418): a radiolabelled glycogen synthase kinase-3beta specific inhibitor for PET studies. Bioorg Med Chem Lett 15:5270–5273CrossRefPubMed
33.
go back to reference Labas R, Gilbert G, Nicole O et al (2011) Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem 46:2295–2309CrossRefPubMed Labas R, Gilbert G, Nicole O et al (2011) Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem 46:2295–2309CrossRefPubMed
34.
go back to reference Yim C-B, Mikkola K, Fagerholm V et al (2013) Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a N-maleoyl-L-lysyl-glycine linkage. Nucl Med Biol 40:1006–1012CrossRefPubMed Yim C-B, Mikkola K, Fagerholm V et al (2013) Synthesis and preclinical characterization of [64Cu]NODAGA-MAL-exendin-4 with a N-maleoyl-L-lysyl-glycine linkage. Nucl Med Biol 40:1006–1012CrossRefPubMed
35.
go back to reference Celen S, Deroose C, de Groot T et al (2008) Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography. Bioconjug Chem 19:441–449CrossRefPubMed Celen S, Deroose C, de Groot T et al (2008) Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography. Bioconjug Chem 19:441–449CrossRefPubMed
36.
go back to reference Wang W-F, Ishiwata K, Kiyosawa M et al (2004) Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res 36:255–263CrossRefPubMed Wang W-F, Ishiwata K, Kiyosawa M et al (2004) Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res 36:255–263CrossRefPubMed
37.
go back to reference Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential NK1 receptor radioligands 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-4-[11C]methyl-piperazine and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid [11C]methyl ester. Nucl Med Biol 32:543–552CrossRefPubMed Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential NK1 receptor radioligands 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-4-[11C]methyl-piperazine and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid [11C]methyl ester. Nucl Med Biol 32:543–552CrossRefPubMed
38.
go back to reference Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential dopamine D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides. Bioorg Med Chem 13:6233–6243CrossRefPubMed Gao M, Mock BH, Hutchins GD, Zheng Q-H (2005) Synthesis and initial PET imaging of new potential dopamine D3 receptor radioligands (E)-4,3,2-[11C]methoxy-N-4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl-cinnamoylamides. Bioorg Med Chem 13:6233–6243CrossRefPubMed
39.
go back to reference Airaksinen AJ, Jablonowski JA, van der Mey M et al (2006) Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 33:801–810CrossRefPubMed Airaksinen AJ, Jablonowski JA, van der Mey M et al (2006) Radiosynthesis and biodistribution of a histamine H3 receptor antagonist 4-[3-(4-piperidin-1-yl-but-1-ynyl)-[11C]benzyl]-morpholine: evaluation of a potential PET ligand. Nucl Med Biol 33:801–810CrossRefPubMed
40.
go back to reference Moharram S, Zhou A, Kumar P, Knaus EE, Wiebe LI (2005) Radiosynthesis, in vitro cellular uptake and in vivo biodistribution of 3′-O-(3-benzenesulfonylfuroxan-4-yl)-5-[125I]iodo-2′-deoxyuridine, a nucleoside-based nitric oxide donor. Nucl Med Biol 32:641–645CrossRefPubMed Moharram S, Zhou A, Kumar P, Knaus EE, Wiebe LI (2005) Radiosynthesis, in vitro cellular uptake and in vivo biodistribution of 3′-O-(3-benzenesulfonylfuroxan-4-yl)-5-[125I]iodo-2′-deoxyuridine, a nucleoside-based nitric oxide donor. Nucl Med Biol 32:641–645CrossRefPubMed
41.
go back to reference Jakobsen S, Kodahl GM, Olsen AK, Cumming P (2006) Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 33:593–597CrossRefPubMed Jakobsen S, Kodahl GM, Olsen AK, Cumming P (2006) Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 33:593–597CrossRefPubMed
42.
go back to reference Wyffels L, Muccioli GG, Kapanda CN et al (2010) PET imaging of fatty acid amide hydrolase in the brain: synthesis and biological evaluation of an 11C-labelled URB597 analogue. Nucl Med Biol 37:665–675CrossRefPubMed Wyffels L, Muccioli GG, Kapanda CN et al (2010) PET imaging of fatty acid amide hydrolase in the brain: synthesis and biological evaluation of an 11C-labelled URB597 analogue. Nucl Med Biol 37:665–675CrossRefPubMed
43.
go back to reference Ravert HT, Dorff P, Foss CA et al (2013) Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: an agonist probe for the alpha7 nicotinic acetylcholine receptor. Nucl Med Biol 40:731–739CrossRefPubMed Ravert HT, Dorff P, Foss CA et al (2013) Radiochemical synthesis and in vivo evaluation of [18F]AZ11637326: an agonist probe for the alpha7 nicotinic acetylcholine receptor. Nucl Med Biol 40:731–739CrossRefPubMed
44.
go back to reference Wang HL, Wang SS, Song WH et al (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS One 10, e0125924CrossRefPubMedPubMedCentral Wang HL, Wang SS, Song WH et al (2015) Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance. PLoS One 10, e0125924CrossRefPubMedPubMedCentral
45.
go back to reference Granda ML, Carlin SM, Moseley CK et al (2013) Synthesis and evaluation of methylated arylazepine compounds for PET imaging of 5-HT(2c) receptors. ACS Chem Neurosci 4:261–265CrossRefPubMed Granda ML, Carlin SM, Moseley CK et al (2013) Synthesis and evaluation of methylated arylazepine compounds for PET imaging of 5-HT(2c) receptors. ACS Chem Neurosci 4:261–265CrossRefPubMed
46.
go back to reference Lodge NJ, Li Y-W, Chin FT et al (2014) Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors. Nucl Med Biol 41:524–535CrossRefPubMedPubMedCentral Lodge NJ, Li Y-W, Chin FT et al (2014) Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors. Nucl Med Biol 41:524–535CrossRefPubMedPubMedCentral
47.
go back to reference Huang Y, Narendran R, Bischoff F et al (2012) Synthesis and characterization of two PET radioligands for the metabotropic glutamate 1 (mGlu1) receptor.[Erratum appears in Synapse. 2013 Feb;67(2):109]. Synapse 66:1002–1014CrossRefPubMed Huang Y, Narendran R, Bischoff F et al (2012) Synthesis and characterization of two PET radioligands for the metabotropic glutamate 1 (mGlu1) receptor.[Erratum appears in Synapse. 2013 Feb;67(2):109]. Synapse 66:1002–1014CrossRefPubMed
48.
go back to reference Pollard H, Moreau J, Arrang JM, Schwartz JC (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52:169–189CrossRefPubMed Pollard H, Moreau J, Arrang JM, Schwartz JC (1993) A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 52:169–189CrossRefPubMed
49.
go back to reference Anlauf M, Eissele R, Schafer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040CrossRefPubMed Anlauf M, Eissele R, Schafer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040CrossRefPubMed
50.
go back to reference Harris PE, Farwell MD, Ichise M (2013) PET quantification of pancreatic VMAT 2 binding using (+) and (−) enantiomers of [18F]FP-DTBZ in baboons. Nucl Med Biol 40:60–64CrossRefPubMed Harris PE, Farwell MD, Ichise M (2013) PET quantification of pancreatic VMAT 2 binding using (+) and (−) enantiomers of [18F]FP-DTBZ in baboons. Nucl Med Biol 40:60–64CrossRefPubMed
51.
go back to reference Normandin MD, Petersen KF, Ding Y-S et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916CrossRefPubMedPubMedCentral Normandin MD, Petersen KF, Ding Y-S et al (2012) In vivo imaging of endogenous pancreatic beta-cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med 53:908–916CrossRefPubMedPubMedCentral
52.
go back to reference Kung MP, Hou C, Lieberman BP et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176CrossRefPubMed Kung MP, Hou C, Lieberman BP et al (2008) In vivo imaging of beta-cell mass in rats using 18F-FP-(+)-DTBZ: a potential PET ligand for studying diabetes mellitus. J Nucl Med 49:1171–1176CrossRefPubMed
53.
go back to reference Kung HF, Lieberman BP, Zhuang ZP et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837CrossRefPubMedPubMedCentral Kung HF, Lieberman BP, Zhuang ZP et al (2008) In vivo imaging of vesicular monoamine transporter 2 in pancreas using an 18F epoxide derivative of tetrabenazine. Nucl Med Biol 35:825–837CrossRefPubMedPubMedCentral
54.
go back to reference Freeby M, Goland R, Ichise M et al (2008) VMAT2 quantitation by PET as a biomarker for beta-cell mass in health and disease. Diabetes Obes Metab 10(Suppl 4):98–108CrossRefPubMed Freeby M, Goland R, Ichise M et al (2008) VMAT2 quantitation by PET as a biomarker for beta-cell mass in health and disease. Diabetes Obes Metab 10(Suppl 4):98–108CrossRefPubMed
55.
go back to reference Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513CrossRefPubMedPubMedCentral Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest 116:1506–1513CrossRefPubMedPubMedCentral
57.
go back to reference Singhal T, Ding YS, Weinzimmer D et al (2011) Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 13:973–984CrossRefPubMed Singhal T, Ding YS, Weinzimmer D et al (2011) Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol 13:973–984CrossRefPubMed
58.
go back to reference Goland R, Freeby M, Parsey R et al (2009) 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls.[Erratum appears in J Nucl Med. 2009 Oct;50(10):1578]. J Nucl Med 50:382–389CrossRefPubMedPubMedCentral Goland R, Freeby M, Parsey R et al (2009) 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls.[Erratum appears in J Nucl Med. 2009 Oct;50(10):1578]. J Nucl Med 50:382–389CrossRefPubMedPubMedCentral
59.
go back to reference Blomberg BA, Eriksson O, Saboury B, Alavi A (2013) beta-Cell mass imaging with DTBZ positron emission tomography: is it possible? Mol Imaging Biol 15:1–2CrossRefPubMed Blomberg BA, Eriksson O, Saboury B, Alavi A (2013) beta-Cell mass imaging with DTBZ positron emission tomography: is it possible? Mol Imaging Biol 15:1–2CrossRefPubMed
60.
go back to reference Blomberg BA, Codreanu I, Cheng G et al (2013) Beta-cell imaging: call for evidence-based and scientific approach. Mol Imaging Biol 15:123–130CrossRefPubMed Blomberg BA, Codreanu I, Cheng G et al (2013) Beta-cell imaging: call for evidence-based and scientific approach. Mol Imaging Biol 15:123–130CrossRefPubMed
61.
go back to reference Fagerholm V, Mikkola KK, Ishizu T et al (2010) Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 51:1439–1446CrossRefPubMed Fagerholm V, Mikkola KK, Ishizu T et al (2010) Assessment of islet specificity of dihydrotetrabenazine radiotracer binding in rat pancreas and human pancreas. J Nucl Med 51:1439–1446CrossRefPubMed
62.
go back to reference Eriksson O, Jahan M, Johnstrom P et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37:357–363CrossRefPubMed Eriksson O, Jahan M, Johnstrom P et al (2010) In vivo and in vitro characterization of [18F]-FE-(+)-DTBZ as a tracer for beta-cell mass. Nucl Med Biol 37:357–363CrossRefPubMed
63.
go back to reference Veluthakal R, Harris P (2010) In vivo beta-cell imaging with VMAT 2 ligands--current state-of-the-art and future perspective. Curr Pharm Des 16:1568–1581CrossRefPubMedPubMedCentral Veluthakal R, Harris P (2010) In vivo beta-cell imaging with VMAT 2 ligands--current state-of-the-art and future perspective. Curr Pharm Des 16:1568–1581CrossRefPubMedPubMedCentral
64.
go back to reference Saisho Y, Harris PE, Butler AE et al (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–551CrossRefPubMedPubMedCentral Saisho Y, Harris PE, Butler AE et al (2008) Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J Mol Histol 39:543–551CrossRefPubMedPubMedCentral
65.
go back to reference Morel O, Mandry D, Micard E et al (2015) Evidence of cyclic changes in the metabolism of abdominal aortic aneurysms during growth phases: 18F-FDG PET sequential observational study. J Nucl Med 56:1030–1035CrossRefPubMed Morel O, Mandry D, Micard E et al (2015) Evidence of cyclic changes in the metabolism of abdominal aortic aneurysms during growth phases: 18F-FDG PET sequential observational study. J Nucl Med 56:1030–1035CrossRefPubMed
66.
go back to reference Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I (2015) Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med 56:552–559CrossRefPubMed Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I (2015) Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med 56:552–559CrossRefPubMed
67.
go back to reference Burg S, Dupas A, Stute S et al (2013) Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 58:7527–7542CrossRefPubMed Burg S, Dupas A, Stute S et al (2013) Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 58:7527–7542CrossRefPubMed
68.
go back to reference Hoetjes NJ, van Velden FHP, Hoekstra OS et al (2010) Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 37:1679–1687CrossRefPubMedPubMedCentral Hoetjes NJ, van Velden FHP, Hoekstra OS et al (2010) Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging 37:1679–1687CrossRefPubMedPubMedCentral
69.
go back to reference Adams HJ, Kwee TC (2016) A negative 18F-FDG-PET scan can never exclude residual disease. Nucl Med Commun 37:102–103PubMed Adams HJ, Kwee TC (2016) A negative 18F-FDG-PET scan can never exclude residual disease. Nucl Med Commun 37:102–103PubMed
70.
go back to reference Peterson LM, Kurland BF, Link JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38:969–978CrossRefPubMedPubMedCentral Peterson LM, Kurland BF, Link JM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38:969–978CrossRefPubMedPubMedCentral
71.
go back to reference Linden HM, Kurland BF, Peterson LM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17:4799–4805CrossRefPubMedPubMedCentral Linden HM, Kurland BF, Peterson LM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17:4799–4805CrossRefPubMedPubMedCentral
72.
go back to reference Peterson LM, Kurland BF, Schubert EK et al (2014) A phase 2 study of 16alpha-[18F]-fluoro-17-beta-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol 16:431–440CrossRefPubMed Peterson LM, Kurland BF, Schubert EK et al (2014) A phase 2 study of 16alpha-[18F]-fluoro-17-beta-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol 16:431–440CrossRefPubMed
73.
go back to reference Yoo J, Dence CS, Sharp TL et al (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha-[18F]fluoro-17beta-estradiol. J Med Chem 48:6366–6378CrossRefPubMed Yoo J, Dence CS, Sharp TL et al (2005) Synthesis of an estrogen receptor beta-selective radioligand: 5-[18F]fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile and comparison of in vivo distribution with 16alpha-[18F]fluoro-17beta-estradiol. J Med Chem 48:6366–6378CrossRefPubMed
74.
go back to reference Lee JH, Peters O, Lehmann L et al (2012) Synthesis and biological evaluation of two agents for imaging estrogen receptor beta by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol 39:1105–1116CrossRefPubMed Lee JH, Peters O, Lehmann L et al (2012) Synthesis and biological evaluation of two agents for imaging estrogen receptor beta by positron emission tomography: challenges in PET imaging of a low abundance target. Nucl Med Biol 39:1105–1116CrossRefPubMed
75.
go back to reference Arstad E, Gitto R, Chimirri A et al (2006) Closing in on the AMPA receptor: synthesis and evaluation of 2-acetyl-1-(4′-chlorophenyl)-6-methoxy-7-[11C]methoxy-1,2,3,4-tetrahydroisoquinoline as a potential PET tracer. Bioorg Med Chem 14:4712–4717CrossRefPubMed Arstad E, Gitto R, Chimirri A et al (2006) Closing in on the AMPA receptor: synthesis and evaluation of 2-acetyl-1-(4′-chlorophenyl)-6-methoxy-7-[11C]methoxy-1,2,3,4-tetrahydroisoquinoline as a potential PET tracer. Bioorg Med Chem 14:4712–4717CrossRefPubMed
76.
go back to reference Kumar JSD, Majo VJ, Sullivan GM et al (2006) Synthesis and in vivo evaluation of [11C]SN003 as a PET ligand for CRF1 receptors. Bioorg Med Chem 14:4029–4034CrossRefPubMed Kumar JSD, Majo VJ, Sullivan GM et al (2006) Synthesis and in vivo evaluation of [11C]SN003 as a PET ligand for CRF1 receptors. Bioorg Med Chem 14:4029–4034CrossRefPubMed
77.
go back to reference Sullivan GM, Parsey RV, Kumar JSD et al (2007) PET Imaging of CRF1 with [11C]R121920 and [11C]DMP696: is the target of sufficient density? Nucl Med Biol 34:353–361CrossRefPubMedPubMedCentral Sullivan GM, Parsey RV, Kumar JSD et al (2007) PET Imaging of CRF1 with [11C]R121920 and [11C]DMP696: is the target of sufficient density? Nucl Med Biol 34:353–361CrossRefPubMedPubMedCentral
78.
go back to reference Goke B (2010) What are the potential benefits of clinical beta-cell imaging in diabetes mellitus? Curr Pharm Des 16:1547–1549CrossRefPubMed Goke B (2010) What are the potential benefits of clinical beta-cell imaging in diabetes mellitus? Curr Pharm Des 16:1547–1549CrossRefPubMed
80.
81.
go back to reference Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–659CrossRefPubMed Sweet IR, Cook DL, Lernmark A, Greenbaum CJ, Krohn KA (2004) Non-invasive imaging of beta cell mass: a quantitative analysis. Diabetes Technol Ther 6:652–659CrossRefPubMed
Metadata
Title
Failed PET Application Attempts in the Past, Can We Avoid Them in the Future?
Authors
Gang Cheng
Thomas J. Werner
Andrew Newberg
Abass Alavi
Publication date
01-12-2016
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 6/2016
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-016-1017-y

Other articles of this Issue 6/2016

Molecular Imaging and Biology 6/2016 Go to the issue