Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 1/2023

17-11-2022 | Empagliflozin

Empagliflozin activates JAK2/STAT3 signaling and protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions

Authors: Fan Zhang, Xudong Cao, Chunhui Zhao, Li Chen, Xiaolin Chen

Published in: Journal of Thrombosis and Thrombolysis | Issue 1/2023

Login to get access

Abstract

The morbidity and mortality rates of cardiovascular disease are markedly higher in patients with diabetes than in non-diabetic patients, including patients with ischemia–reperfusion injury (IRI). However, the cardiovascular protective effects of Empagliflozin (EMPA) on IRI in diabetes mellitus have rarely been studied. In this study, we established a cardiomyocyte hypoxia/reoxygenation (H/R) injury model to mimic myocardial I/R injuries that occur in vivo. H9C2 cells were subjected to high glucose (HG) treatment plus H/R injury to mimic myocardial I/R injuries that occur in diabetes mellitus. Next, different concentrations of EMPA were added to the H9C2 cells and its protective effect was detected. STAT3 knockdown with recombinant plasmids was used to determine its roles. Our results showed that H/R injury-induced cell apoptosis, necroptosis, oxidative stress, and endoplasmic reticulum stress were further promoted by HG conditions, and HG treatment plus an H/R injury inhibited the activation of JAK2/STAT3 signaling. EMPA was found to protect against H/R-induced cardiomyocyte injury under HG conditions and activate JAK2/STAT3 signaling, while down-regulation of STAT3 reversed the protective effect of EMPA. When taken together, these findings indicate that EMPA protects against I/R-induced cardiomyocyte injury by activating JAK2/STAT3 signaling under HG conditions. Our results clarified the mechanisms that underlie the cardiovascular protective effects of EMPA in diabetes mellitus and provide new therapeutic targets for IRI in diabetes mellitus.
Literature
1.
go back to reference The L (2017) Diabetes: a dynamic disease. Lancet 389(10085):2163 The L (2017) Diabetes: a dynamic disease. Lancet 389(10085):2163
3.
go back to reference Thomas R, Halim S, Gurudas S et al (2019) IDF Diabetes Atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract 157:107840PubMed Thomas R, Halim S, Gurudas S et al (2019) IDF Diabetes Atlas: a review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res Clin Pract 157:107840PubMed
4.
go back to reference Napoli R, Formoso G, Piro S et al (2020) Management of type 2 diabetes for prevention of cardiovascular disease. An expert opinion of the Italian Diabetes Society. Nutr Metab Cardiovasc Dis 30(11):1926–1936PubMed Napoli R, Formoso G, Piro S et al (2020) Management of type 2 diabetes for prevention of cardiovascular disease. An expert opinion of the Italian Diabetes Society. Nutr Metab Cardiovasc Dis 30(11):1926–1936PubMed
5.
go back to reference Booth G, Kapral M, Fung K et al (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet (Lond, Engl) 368(9529):29–36 Booth G, Kapral M, Fung K et al (2006) Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet (Lond, Engl) 368(9529):29–36
6.
go back to reference Newman J, Schwartzbard A, Weintraub H et al (2017) Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol 70(7):883–893PubMedCentralPubMed Newman J, Schwartzbard A, Weintraub H et al (2017) Primary prevention of cardiovascular disease in diabetes mellitus. J Am Coll Cardiol 70(7):883–893PubMedCentralPubMed
7.
go back to reference Wanner C, Lachin J, Inzucchi S et al (2018) Empagliflozin and clinical outcomes in patients with type 2 Diabetes Mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137(2):119–129PubMed Wanner C, Lachin J, Inzucchi S et al (2018) Empagliflozin and clinical outcomes in patients with type 2 Diabetes Mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 137(2):119–129PubMed
8.
go back to reference Vaidya V, Gangan NandSheehan J (2015) Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review. Expert Rev Pharmacoecon Outcomes Res 15(3):487–497PubMed Vaidya V, Gangan NandSheehan J (2015) Impact of cardiovascular complications among patients with Type 2 diabetes mellitus: a systematic review. Expert Rev Pharmacoecon Outcomes Res 15(3):487–497PubMed
9.
go back to reference Eltzschig HandEckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401 Eltzschig HandEckle T (2011) Ischemia and reperfusion–from mechanism to translation. Nat Med 17(11):1391–1401
10.
go back to reference Yellon DandHausenloy D (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135 Yellon DandHausenloy D (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135
11.
go back to reference Anaya-Prado R, Toledo-Pereyra L, Lentsch A et al (2002) Ischemia/reperfusion injury. J Surg Res 105(2):248–258PubMed Anaya-Prado R, Toledo-Pereyra L, Lentsch A et al (2002) Ischemia/reperfusion injury. J Surg Res 105(2):248–258PubMed
12.
go back to reference Zhao D, Yang JandYang L (2017) Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017:6437467PubMedCentralPubMed Zhao D, Yang JandYang L (2017) Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017:6437467PubMedCentralPubMed
13.
go back to reference Li W, Li W, Leng Y et al (2020) Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39(2):210–225PubMed Li W, Li W, Leng Y et al (2020) Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol 39(2):210–225PubMed
14.
go back to reference Wang C, Zhu L, Yuan W et al (2020) Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 24(12):6670–6679PubMedCentralPubMed Wang C, Zhu L, Yuan W et al (2020) Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 24(12):6670–6679PubMedCentralPubMed
15.
go back to reference Yang Z, Li C, Wang Y et al (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194PubMed Yang Z, Li C, Wang Y et al (2018) Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol 125:185–194PubMed
16.
go back to reference Dong X, Liu H, Zhang M et al (2019) Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. Am J Transl Res 11(1):499–508PubMedCentralPubMed Dong X, Liu H, Zhang M et al (2019) Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. Am J Transl Res 11(1):499–508PubMedCentralPubMed
17.
go back to reference Inzucchi S, Bergenstal R, Buse J et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1):140–149PubMed Inzucchi S, Bergenstal R, Buse J et al (2015) Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1):140–149PubMed
18.
19.
go back to reference Wright E, Loo DandHirayama B (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794PubMed Wright E, Loo DandHirayama B (2011) Biology of human sodium glucose transporters. Physiol Rev 91(2):733–794PubMed
20.
go back to reference Gerich J (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med 27(2):136–142PubMed Gerich J (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med 27(2):136–142PubMed
21.
go back to reference Abdul-Ghani MandDeFronzo R (2008) Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 14(6):782–790 Abdul-Ghani MandDeFronzo R (2008) Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr Pract 14(6):782–790
22.
go back to reference Wilding J (2014) The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism 63(10):1228–1237PubMed Wilding J (2014) The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism 63(10):1228–1237PubMed
23.
go back to reference Frampton J (2018) Empagliflozin: a review in type 2 diabetes. Drugs 78(10):1037–1048PubMed Frampton J (2018) Empagliflozin: a review in type 2 diabetes. Drugs 78(10):1037–1048PubMed
24.
go back to reference Tikkanen I, Narko K, Zeller C et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38(3):420–428PubMed Tikkanen I, Narko K, Zeller C et al (2015) Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38(3):420–428PubMed
25.
go back to reference Perrone-Filardi P, Avogaro A, Bonora E et al (2017) Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol 241:450–456PubMed Perrone-Filardi P, Avogaro A, Bonora E et al (2017) Mechanisms linking empagliflozin to cardiovascular and renal protection. Int J Cardiol 241:450–456PubMed
26.
go back to reference Goerg J, Sommerfeld M, Greiner B et al (2021) Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 22(11):5437PubMedCentralPubMed Goerg J, Sommerfeld M, Greiner B et al (2021) Low-dose empagliflozin improves systolic heart function after myocardial infarction in rats: regulation of MMP9, NHE1, and SERCA2a. Int J Mol Sci 22(11):5437PubMedCentralPubMed
27.
go back to reference Lu Q, Liu J, Li X et al (2020) Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol 501:110642PubMed Lu Q, Liu J, Li X et al (2020) Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol Cell Endocrinol 501:110642PubMed
28.
go back to reference Hu Z, Ju F, Du L et al (2021) Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol 20(1):199PubMedCentralPubMed Hu Z, Ju F, Du L et al (2021) Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol 20(1):199PubMedCentralPubMed
29.
go back to reference Kappel B, Lehrke M, Schütt K et al (2017) Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136(10):969–972PubMed Kappel B, Lehrke M, Schütt K et al (2017) Effect of empagliflozin on the metabolic signature of patients with type 2 diabetes mellitus and cardiovascular disease. Circulation 136(10):969–972PubMed
30.
go back to reference Levine M (2017) Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev 13(4):405–423PubMedCentralPubMed Levine M (2017) Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr Diabetes Rev 13(4):405–423PubMedCentralPubMed
31.
go back to reference Woo V (2020) Cardiovascular effects of sodium-glucose cotransporter-2 inhibitors in adults with type 2 diabetes. Can J Diabetes 44(1):61–67PubMed Woo V (2020) Cardiovascular effects of sodium-glucose cotransporter-2 inhibitors in adults with type 2 diabetes. Can J Diabetes 44(1):61–67PubMed
32.
go back to reference Amin E, Rifaai RandAbdel-Latif R (2020) Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol 34(5):548–558PubMed Amin E, Rifaai RandAbdel-Latif R (2020) Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol 34(5):548–558PubMed
33.
go back to reference Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes Res Clin Pract 157:107843PubMed Saeedi P, Petersohn I, Salpea P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 edition. Diabetes Res Clin Pract 157:107843PubMed
34.
go back to reference Cheng GandLi L (2020) High-glucose-induced apoptosis, ROS production and pro-inflammatory response in cardiomyocytes is attenuated by metformin treatment via PP2A activation. J Biosci 45:1–11 Cheng GandLi L (2020) High-glucose-induced apoptosis, ROS production and pro-inflammatory response in cardiomyocytes is attenuated by metformin treatment via PP2A activation. J Biosci 45:1–11
35.
go back to reference Kosuru R, Cai Y, Kandula V et al (2018) AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia- reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell Physiol Biochem 46(4):1381–1397PubMed Kosuru R, Cai Y, Kandula V et al (2018) AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia- reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell Physiol Biochem 46(4):1381–1397PubMed
36.
go back to reference Zhang L, Wang X, Wu Y et al (2018) Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring. J Cell Mol Med 22(4):2200–2209PubMedCentralPubMed Zhang L, Wang X, Wu Y et al (2018) Maternal diabetes up-regulates NOX2 and enhances myocardial ischaemia/reperfusion injury in adult offspring. J Cell Mol Med 22(4):2200–2209PubMedCentralPubMed
37.
go back to reference Ng K, Lau Y, Dhandhania V et al (2018) Empagliflozin ammeliorates high glucose induced-cardiac dysfuntion in human iPSC-derived cardiomyocytes. Sci Rep 8(1):14872PubMedCentralPubMed Ng K, Lau Y, Dhandhania V et al (2018) Empagliflozin ammeliorates high glucose induced-cardiac dysfuntion in human iPSC-derived cardiomyocytes. Sci Rep 8(1):14872PubMedCentralPubMed
38.
go back to reference Seefeldt J, Lassen T, Hjortbak M et al (2021) Cardioprotective effects of empagliflozin after ischemia and reperfusion in rats. Sci Rep 11(1):9544PubMedCentralPubMed Seefeldt J, Lassen T, Hjortbak M et al (2021) Cardioprotective effects of empagliflozin after ischemia and reperfusion in rats. Sci Rep 11(1):9544PubMedCentralPubMed
39.
go back to reference Nikolaou P, Efentakis P, Abu Qourah F et al (2021) Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress. Antioxid Redox Signal 34(7):551–571PubMed Nikolaou P, Efentakis P, Abu Qourah F et al (2021) Chronic empagliflozin treatment reduces myocardial infarct size in nondiabetic mice through STAT-3-mediated protection on microvascular endothelial cells and reduction of oxidative stress. Antioxid Redox Signal 34(7):551–571PubMed
40.
go back to reference Ideishi A, Suematsu Y, Tashiro K et al (2021) Combination of Linagliptin and Empagliflozin preserves cardiac systolic function in an ischemia-reperfusion injury mice with diabetes mellitus. Cardiol Res 12(2):91–97PubMedCentralPubMed Ideishi A, Suematsu Y, Tashiro K et al (2021) Combination of Linagliptin and Empagliflozin preserves cardiac systolic function in an ischemia-reperfusion injury mice with diabetes mellitus. Cardiol Res 12(2):91–97PubMedCentralPubMed
41.
go back to reference Lei S, Su W, Xia Z et al (2019) Hyperglycemia-induced oxidative stress abrogates remifentanil preconditioning-mediated cardioprotection in diabetic rats by impairing caveolin-3-modulated PI3K/Akt and JAK2/STAT3 signaling. Oxid Med Cell Longev 2019:9836302PubMedCentralPubMed Lei S, Su W, Xia Z et al (2019) Hyperglycemia-induced oxidative stress abrogates remifentanil preconditioning-mediated cardioprotection in diabetic rats by impairing caveolin-3-modulated PI3K/Akt and JAK2/STAT3 signaling. Oxid Med Cell Longev 2019:9836302PubMedCentralPubMed
42.
go back to reference Wang C, Li H, Wang S et al (2018) Repeated non-invasive limb ischemic preconditioning confers cardioprotection through PKC-ε/STAT3 signaling in diabetic rats. Cell Physiol Biochem 45(5):2107–2121PubMed Wang C, Li H, Wang S et al (2018) Repeated non-invasive limb ischemic preconditioning confers cardioprotection through PKC-ε/STAT3 signaling in diabetic rats. Cell Physiol Biochem 45(5):2107–2121PubMed
43.
go back to reference Xu J, Lei S, Liu Y et al (2013) Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013:716219PubMedCentralPubMed Xu J, Lei S, Liu Y et al (2013) Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013:716219PubMedCentralPubMed
44.
go back to reference Wang Y, Li H, Huang H et al (2016) Cardioprotection from emulsified isoflurane postconditioning is lost in rats with streptozotocin-induced diabetes due to the impairment of Brg1/Nrf2/STAT3 signalling. Clin Sci (Lond, Engl: 1979) 130(10):801–812 Wang Y, Li H, Huang H et al (2016) Cardioprotection from emulsified isoflurane postconditioning is lost in rats with streptozotocin-induced diabetes due to the impairment of Brg1/Nrf2/STAT3 signalling. Clin Sci (Lond, Engl: 1979) 130(10):801–812
45.
go back to reference Deng F, Wang S, Zhang L et al (2017) Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol Biochem 44(1):279–292PubMed Deng F, Wang S, Zhang L et al (2017) Propofol through upregulating caveolin-3 attenuates post-hypoxic mitochondrial damage and cell death in H9C2 cardiomyocytes during hyperglycemia. Cell Physiol Biochem 44(1):279–292PubMed
46.
go back to reference Visavadiya N, Keasey M, Razskazovskiy V et al (2016) Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 14(1):32PubMedCentralPubMed Visavadiya N, Keasey M, Razskazovskiy V et al (2016) Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 14(1):32PubMedCentralPubMed
47.
go back to reference Zhang W, Jin Y, Wang D et al (2020) Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 156:118–130PubMed Zhang W, Jin Y, Wang D et al (2020) Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 156:118–130PubMed
Metadata
Title
Empagliflozin activates JAK2/STAT3 signaling and protects cardiomyocytes from hypoxia/reoxygenation injury under high glucose conditions
Authors
Fan Zhang
Xudong Cao
Chunhui Zhao
Li Chen
Xiaolin Chen
Publication date
17-11-2022
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 1/2023
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-022-02719-0

Other articles of this Issue 1/2023

Journal of Thrombosis and Thrombolysis 1/2023 Go to the issue