Skip to main content
Top
Published in: Journal of Thrombosis and Thrombolysis 1/2020

01-07-2020 | Septicemia

Characterization of circulating thrombin in patients with septic shock: a prospective observational study

Authors: Tobias Becher, Jens Müller, Ibrahim Akin, Stefan Baumann, Ksenija Stach, Martin Borggrefe, Bernd Pötzsch, Dirk Loßnitzer

Published in: Journal of Thrombosis and Thrombolysis | Issue 1/2020

Login to get access

Abstract

Septic shock is characterized by a dysregulated response to infection, hypotension and activation of the coagulation system. Markers of coagulation activation are commonly used to diagnose and monitor ensuing coagulopathies. In this study, we sought to determine levels of circulating thrombin in patients with septic shock. To characterize levels of circulating, active thrombin in patients with septic shock. 48 patients with septic shock were included in this prospective, observational study. Blood samples were obtained on admission, day 1, day 3 and day 6. Levels of active thrombin were measured using a standardized, clinically applicable oligonucleotide (aptamer)-based enzyme-capture assay (OECA). Thrombin levels were correlated with established indirect thrombin parameters, conventional coagulation tests, laboratory parameters, patient characteristics and outcome. Elevated levels of thrombin were detected in 27 patients (56.3%) during the course of the study. Thrombin levels were positively correlated with thrombin-antithrombin complexes (r = 0.30, p < 0.05) and negatively associated with FVII levels (r = − 0.28, p < 0.05). Thrombin levels on admission did not predict 30-day mortality (OR 0.82, 95% CI 0.23–2.92, p = 0.77). Circulating levels of active thrombin can be measured in a subset of patients with septic shock. Although thrombin levels are correlated with established markers of coagulation, they do not provide additional prognostic information.
Literature
1.
go back to reference Lelubre C, Vincent JL (2018) Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 14(7):417–427CrossRef Lelubre C, Vincent JL (2018) Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol 14(7):417–427CrossRef
2.
go back to reference Rhee C, Dantes R, Epstein L et al (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 318(13):1241–1249CrossRef Rhee C, Dantes R, Epstein L et al (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 318(13):1241–1249CrossRef
3.
go back to reference de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM, Girbes AR (2018) Unexplained mortality differences between septic shock trials: a systematic analysis of population characteristics and control-group mortality rates. Intensiv Care Med 44(3):311–322CrossRef de Grooth HJ, Postema J, Loer SA, Parienti JJ, Oudemans-van Straaten HM, Girbes AR (2018) Unexplained mortality differences between septic shock trials: a systematic analysis of population characteristics and control-group mortality rates. Intensiv Care Med 44(3):311–322CrossRef
4.
go back to reference Lyons PG, Micek ST, Hampton N, Kollef MH (2018) Sepsis-associated coagulopathy severity predicts hospital mortality. Crit Care Med 46(5):736–742CrossRef Lyons PG, Micek ST, Hampton N, Kollef MH (2018) Sepsis-associated coagulopathy severity predicts hospital mortality. Crit Care Med 46(5):736–742CrossRef
5.
go back to reference Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F (2011) The coagulopathy in sepsis: significance and implications for treatment. Pediatr Rep. 3(4):e30CrossRef Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F (2011) The coagulopathy in sepsis: significance and implications for treatment. Pediatr Rep. 3(4):e30CrossRef
6.
go back to reference Mesters RM, Mannucci PM, Coppola R, Keller T, Ostermann H, Kienast J (1996) Factor VIIa and antithrombin III activity during severe sepsis and septic shock in neutropenic patients. Blood 88(3):881–886CrossRef Mesters RM, Mannucci PM, Coppola R, Keller T, Ostermann H, Kienast J (1996) Factor VIIa and antithrombin III activity during severe sepsis and septic shock in neutropenic patients. Blood 88(3):881–886CrossRef
7.
go back to reference Becher T, Muller J, Akin I et al (2018) The evolution of activated protein C plasma levels in septic shock and its association with mortality: a prospective observational study. J Crit Care 47:41–48CrossRef Becher T, Muller J, Akin I et al (2018) The evolution of activated protein C plasma levels in septic shock and its association with mortality: a prospective observational study. J Crit Care 47:41–48CrossRef
8.
go back to reference Ruhl H, Muller J, Harbrecht U et al (2012) Thrombin inhibition profiles in healthy individuals and thrombophilic patients. Thromb Haemost 107(5):848–853CrossRef Ruhl H, Muller J, Harbrecht U et al (2012) Thrombin inhibition profiles in healthy individuals and thrombophilic patients. Thromb Haemost 107(5):848–853CrossRef
9.
go back to reference Muller J, Becher T, Braunstein J et al (2011) Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem Int Ed Engl 50(27):6075–6078CrossRef Muller J, Becher T, Braunstein J et al (2011) Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem Int Ed Engl 50(27):6075–6078CrossRef
10.
go back to reference Ruhl H, Winterhagen FI, Berens C, Muller J, Oldenburg J, Potzsch B (2018) In vivo thrombin generation and subsequent APC formation are increased in factor V Leiden carriers. Blood 131(13):1489–1492CrossRef Ruhl H, Winterhagen FI, Berens C, Muller J, Oldenburg J, Potzsch B (2018) In vivo thrombin generation and subsequent APC formation are increased in factor V Leiden carriers. Blood 131(13):1489–1492CrossRef
11.
go back to reference Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637CrossRef Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637CrossRef
12.
go back to reference Muller J, Becher T, Mayer G, Potzsch B (2016) Aptamer-based enzyme capture assay for measurement of plasma thrombin levels. Methods Mol Biol 1380:179–189CrossRef Muller J, Becher T, Mayer G, Potzsch B (2016) Aptamer-based enzyme capture assay for measurement of plasma thrombin levels. Methods Mol Biol 1380:179–189CrossRef
13.
go back to reference Muller J, Friedrich M, Becher T et al (2012) Monitoring of plasma levels of activated protein C using a clinically applicable oligonucleotide-based enzyme capture assay. J Thromb Haemost 10(3):390–398CrossRef Muller J, Friedrich M, Becher T et al (2012) Monitoring of plasma levels of activated protein C using a clinically applicable oligonucleotide-based enzyme capture assay. J Thromb Haemost 10(3):390–398CrossRef
14.
go back to reference Konigsbrugge O, Koder S, Riedl J, Panzer S, Pabinger I, Ay C (2017) A new measure for in vivo thrombin activity in comparison with in vitro thrombin generation potential in patients with hyper- and hypocoagulability. Clin Exp Med 17(2):251–256CrossRef Konigsbrugge O, Koder S, Riedl J, Panzer S, Pabinger I, Ay C (2017) A new measure for in vivo thrombin activity in comparison with in vitro thrombin generation potential in patients with hyper- and hypocoagulability. Clin Exp Med 17(2):251–256CrossRef
15.
go back to reference Koyama K, Madoiwa S, Nunomiya S et al (2014) Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care 18(1):R13CrossRef Koyama K, Madoiwa S, Nunomiya S et al (2014) Combination of thrombin-antithrombin complex, plasminogen activator inhibitor-1, and protein C activity for early identification of severe coagulopathy in initial phase of sepsis: a prospective observational study. Crit Care 18(1):R13CrossRef
16.
go back to reference Simmons J, Pittet JF (2015) The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 28(2):227–236CrossRef Simmons J, Pittet JF (2015) The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 28(2):227–236CrossRef
17.
go back to reference Takahashi H, Wada K, Niwano H, Shibata A (1992) Comparison of prothrombin fragment 1 + 2 with thrombin-antithrombin III complex in plasma of patients with disseminated intravascular coagulation. Blood Coagul Fibrinolysis 3(6):813–818CrossRef Takahashi H, Wada K, Niwano H, Shibata A (1992) Comparison of prothrombin fragment 1 + 2 with thrombin-antithrombin III complex in plasma of patients with disseminated intravascular coagulation. Blood Coagul Fibrinolysis 3(6):813–818CrossRef
18.
go back to reference Franco RF, de Jonge E, Dekkers PE et al (2000) The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Blood 96(2):554–559CrossRef Franco RF, de Jonge E, Dekkers PE et al (2000) The in vivo kinetics of tissue factor messenger RNA expression during human endotoxemia: relationship with activation of coagulation. Blood 96(2):554–559CrossRef
19.
go back to reference Pawlinski R, Wang JG, Owens AP 3rd et al (2010) Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 116(5):806–814CrossRef Pawlinski R, Wang JG, Owens AP 3rd et al (2010) Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 116(5):806–814CrossRef
20.
go back to reference Gando S, Nanzaki S, Sasaki S, Aoi K, Kemmotsu O (1998) Activation of the extrinsic coagulation pathway in patients with severe sepsis and septic shock. Crit Care Med 26(12):2005–2009CrossRef Gando S, Nanzaki S, Sasaki S, Aoi K, Kemmotsu O (1998) Activation of the extrinsic coagulation pathway in patients with severe sepsis and septic shock. Crit Care Med 26(12):2005–2009CrossRef
21.
go back to reference Kinasewitz GT, Yan SB, Basson B et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care 8(2):R82–R90CrossRef Kinasewitz GT, Yan SB, Basson B et al (2004) Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care 8(2):R82–R90CrossRef
Metadata
Title
Characterization of circulating thrombin in patients with septic shock: a prospective observational study
Authors
Tobias Becher
Jens Müller
Ibrahim Akin
Stefan Baumann
Ksenija Stach
Martin Borggrefe
Bernd Pötzsch
Dirk Loßnitzer
Publication date
01-07-2020
Publisher
Springer US
Published in
Journal of Thrombosis and Thrombolysis / Issue 1/2020
Print ISSN: 0929-5305
Electronic ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-019-01992-w

Other articles of this Issue 1/2020

Journal of Thrombosis and Thrombolysis 1/2020 Go to the issue