Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1/2016

01-03-2016

The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)

Authors: Marina Nati, David Haddad, Andreas L. Birkenfeld, Christian A. Koch, Triantafyllos Chavakis, Antonios Chatzigeorgiou

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1/2016

Login to get access

Abstract

The low grade inflammatory state present in obesity promotes the progression of Non-Alcoholic Fatty Liver Disease (NAFLD). In Non-Alcoholic Steatohepatitis (NASH), augmented hepatic steatosis is accompanied by aberrant intrahepatic inflammation and exacerbated hepatocellular injury. NASH is an important disorder and can lead to fibrosis, cirrhosis and even neoplasia. The pathology of NASH involves a complex network of mechanisms, including increased infiltration of different subsets of immune cells, such as monocytes, T-lymphocytes and neutrophils, to the liver, as well as activation and in situ expansion of liver resident cells such as Kupffer cells or stellate cells. In this review, we summarize recent advances regarding understanding the role of the various cells of the innate and adaptive immunity in NASH development and progression, and discuss possible future therapeutic options and tools to interfere with disease progression.
Literature
1.
go back to reference Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–112.PubMedCrossRef Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–112.PubMedCrossRef
2.
go back to reference Berlanga A, Guiu-Jurado E. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014;7(1):221–39.PubMedPubMedCentral Berlanga A, Guiu-Jurado E. Molecular pathways in non-alcoholic fatty liver disease. Clin Exp Gastroenterol. 2014;7(1):221–39.PubMedPubMedCentral
3.
go back to reference Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–74.PubMedCrossRef Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–74.PubMedCrossRef
4.
go back to reference Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.PubMedPubMedCentral Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.PubMedPubMedCentral
5.
go back to reference Tang T, Sui Y, Lian M, Li Z, Hua J. Pro-inflammatory activated kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS ONE. 2013;8(12):e81949.PubMedPubMedCentralCrossRef Tang T, Sui Y, Lian M, Li Z, Hua J. Pro-inflammatory activated kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS ONE. 2013;8(12):e81949.PubMedPubMedCentralCrossRef
6.
go back to reference Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–61.PubMedCrossRef Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–61.PubMedCrossRef
7.
go back to reference Hamaguchi M, Kojima T, Takeda N, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med. 2005;143(10):722–8.PubMedCrossRef Hamaguchi M, Kojima T, Takeda N, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med. 2005;143(10):722–8.PubMedCrossRef
8.
go back to reference Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterol. 2012;142(4):711–725.e6. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterol. 2012;142(4):711–725.e6.
9.
go back to reference Thörne A, Löfgren P, Hoffstedt J. Increased visceral adipocyte lipolysis–a pathogenic role in nonalcoholic fatty liver disease? J Clin Endocrinol Metab. 2010;95(10):E209–13.PubMedCrossRef Thörne A, Löfgren P, Hoffstedt J. Increased visceral adipocyte lipolysis–a pathogenic role in nonalcoholic fatty liver disease? J Clin Endocrinol Metab. 2010;95(10):E209–13.PubMedCrossRef
10.
go back to reference Tilg H, Moschen A. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46.PubMedCrossRef Tilg H, Moschen A. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46.PubMedCrossRef
11.
go back to reference Luo Y, Burrington CM, Graff EC, et al. Metabolic phenotype and adipose and liver features in the high fat western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 2015. doi:10.1152/ajpendo.00319. Luo Y, Burrington CM, Graff EC, et al. Metabolic phenotype and adipose and liver features in the high fat western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab 2015. doi:10.​1152/​ajpendo.​00319.
12.
go back to reference Ge CX, Yu R, Xu MX, et al. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur J Pharmacol. 2016;770:154–64. Ge CX, Yu R, Xu MX, et al. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats. Eur J Pharmacol. 2016;770:154–64.
13.
go back to reference Yimin, Furumaki H, Matsuoka S, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Investig. 2012;92(2):265–81. Yimin, Furumaki H, Matsuoka S, et al. A novel murine model for non-alcoholic steatohepatitis developed by combination of a high-fat diet and oxidized low-density lipoprotein. Lab Investig. 2012;92(2):265–81.
14.
go back to reference Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81.PubMedCrossRef Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81.PubMedCrossRef
16.
go back to reference Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.PubMed Greenberg AS, Obin MS. Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr. 2006;83(2):461S–5S.PubMed
17.
go back to reference Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415–45.PubMedCrossRef Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29(1):415–45.PubMedCrossRef
18.
go back to reference Phieler J, Chung K-J, Chatzigeorgiou A, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191(8):4367–74.PubMedCrossRef Phieler J, Chung K-J, Chatzigeorgiou A, et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J Immunol. 2013;191(8):4367–74.PubMedCrossRef
19.
go back to reference Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia. 2012;55(10):2583–92. Chatzigeorgiou  A, Karalis KP, Bornstein SR, Chavakis T. Lymphocytes in obesity-related adipose tissue inflammation. Diabetologia. 2012;55(10):2583–92.
21.
go back to reference Garcia-Martin R, Alexaki VI, Qin N, et al. Adipocyte-Specific Hif2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. Mol Cell Biol. 2015;36(3):376–93. Garcia-Martin R, Alexaki VI, Qin N, et al. Adipocyte-Specific Hif2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation. Mol Cell Biol. 2015;36(3):376–93.
22.
go back to reference McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2015;41(1):36–48.CrossRef McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2015;41(1):36–48.CrossRef
24.
go back to reference Mehal W The inflammasome in liver injury and non-alcoholic Fatty liver disease. Dig Dis. 2013;(Il):507–15. Mehal W The inflammasome in liver injury and non-alcoholic Fatty liver disease. Dig Dis. 2013;(Il):507–15.
25.
go back to reference Liang W, Lindeman JH, Menke AL, et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab Investig. 2014;94(5):491–502.PubMedCrossRef Liang W, Lindeman JH, Menke AL, et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab Investig. 2014;94(5):491–502.PubMedCrossRef
26.
go back to reference Fujii H, Kawada N. Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol. 2012;47(3):215–25.PubMedCrossRef Fujii H, Kawada N. Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol. 2012;47(3):215–25.PubMedCrossRef
27.
go back to reference Marra F, Tacke F. Roles for Chemokines in Liver Disease. Gastroenterology. 2014;147(3):577–594.e1. Marra F, Tacke F. Roles for Chemokines in Liver Disease. Gastroenterology. 2014;147(3):577–594.e1.
28.
go back to reference Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177(1):195–203.PubMedCrossRef Scapini P, Lapinet-Vera JA, Gasperini S, et al. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177(1):195–203.PubMedCrossRef
29.
go back to reference Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Investig. 2000;80(5):617–53.PubMedCrossRef Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Investig. 2000;80(5):617–53.PubMedCrossRef
30.
go back to reference Nathan C Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.PubMedCrossRef Nathan C Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.PubMedCrossRef
31.
go back to reference Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–405.PubMedCrossRef Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–405.PubMedCrossRef
32.
go back to reference Alkhouri N, Morris-Stiff G, Campbell C, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2012;32(2):297–302.PubMedCrossRef Alkhouri N, Morris-Stiff G, Campbell C, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2012;32(2):297–302.PubMedCrossRef
34.
go back to reference Rensen SS, Slaats Y, Nijhuis J, et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol. 2009;175(4):1473–82.PubMedPubMedCentralCrossRef Rensen SS, Slaats Y, Nijhuis J, et al. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am J Pathol. 2009;175(4):1473–82.PubMedPubMedCentralCrossRef
35.
go back to reference Pulli B, Ali M, Iwamoto Y, et al. Myeloperoxidase-hepatocyte-stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis. Antioxid Redox Signal. 2015;23(16):1255–69. Pulli B, Ali M, Iwamoto Y, et al. Myeloperoxidase-hepatocyte-stellate cell cross talk promotes hepatocyte injury and fibrosis in experimental nonalcoholic steatohepatitis. Antioxid Redox Signal. 2015;23(16):1255–69.
36.
go back to reference Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS ONE. 2012;7(12):e52411.PubMedPubMedCentralCrossRef Rensen SS, Bieghs V, Xanthoulea S, et al. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS ONE. 2012;7(12):e52411.PubMedPubMedCentralCrossRef
37.
go back to reference Hazen SL, Zhang R, Shen Z, et al. Formation of nitric oxide – derived oxidants by myeloperoxidase in monocytes. Circ Res. 1999;85:950–9.PubMedCrossRef Hazen SL, Zhang R, Shen Z, et al. Formation of nitric oxide – derived oxidants by myeloperoxidase in monocytes. Circ Res. 1999;85:950–9.PubMedCrossRef
38.
go back to reference Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(7):1199–234.PubMedCrossRef Davies MJ, Hawkins CL, Pattison DI, Rees MD. Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(7):1199–234.PubMedCrossRef
39.
go back to reference Souza JM, Peluffo G, Radi R. Protein tyrosine nitration-functional alteration or just a biomarker? Free Radic Biol Med. 2008;45(4):357–66.PubMedCrossRef Souza JM, Peluffo G, Radi R. Protein tyrosine nitration-functional alteration or just a biomarker? Free Radic Biol Med. 2008;45(4):357–66.PubMedCrossRef
40.
go back to reference Schults MA, Nagle PW, Rensen SS, et al. Decreased nucleotide excision repair in steatotic livers associates with myeloperoxidase-immunoreactivity. Mutat Res. 2012;736(1–2):75–81.PubMedCrossRef Schults MA, Nagle PW, Rensen SS, et al. Decreased nucleotide excision repair in steatotic livers associates with myeloperoxidase-immunoreactivity. Mutat Res. 2012;736(1–2):75–81.PubMedCrossRef
41.
go back to reference Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2013;18(9):1407–12.CrossRef Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2013;18(9):1407–12.CrossRef
42.
go back to reference Mansuy-Aubert V, Zhou QL, Xie X, et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013;17(4):534–48.PubMedPubMedCentralCrossRef Mansuy-Aubert V, Zhou QL, Xie X, et al. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013;17(4):534–48.PubMedPubMedCentralCrossRef
43.
go back to reference Syeda F, Tullis E, Slutsky AS, Zhang H. Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. Am J Physiol Heart Circ Physiol. 2008;294(6):H2769–74.PubMedCrossRef Syeda F, Tullis E, Slutsky AS, Zhang H. Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. Am J Physiol Heart Circ Physiol. 2008;294(6):H2769–74.PubMedCrossRef
44.
go back to reference Porro G. A, Lee JH, de Azavedo J, et al. Direct and indirect bacterial killing functions of neutrophil defensins in lung explants. Am J Physiol Lung Cell Mol Physiol. 2001;281(5):L1240–7.PubMed Porro G. A, Lee JH, de Azavedo J, et al. Direct and indirect bacterial killing functions of neutrophil defensins in lung explants. Am J Physiol Lung Cell Mol Physiol. 2001;281(5):L1240–7.PubMed
45.
go back to reference Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.PubMed Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol. 2000;68(1):9–14.PubMed
46.
go back to reference Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33(10):1549–56.PubMed Ibusuki R, Uto H, Arima S, et al. Transgenic expression of human neutrophil peptide-1 enhances hepatic fibrosis in mice fed a choline-deficient, L-amino acid-defined diet. Liver Int. 2013;33(10):1549–56.PubMed
47.
go back to reference Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol. 2000;1(3):199–205.PubMedCrossRef Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol. 2000;1(3):199–205.PubMedCrossRef
48.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.PubMedCrossRef
49.
go back to reference O’Keeffe M, Hochrein H, Vremec D, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med. 2002;196(10):1307–19.PubMedPubMedCentralCrossRef O’Keeffe M, Hochrein H, Vremec D, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med. 2002;196(10):1307–19.PubMedPubMedCentralCrossRef
50.
go back to reference Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev. 2010;234(1):55–75.PubMedCrossRef Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev. 2010;234(1):55–75.PubMedCrossRef
51.
go back to reference Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58(2):589–602.PubMedPubMedCentralCrossRef Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology. 2013;58(2):589–602.PubMedPubMedCentralCrossRef
52.
go back to reference Connolly M, Bedrosian A. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest. 2009;119(11):3213–25.PubMedPubMedCentral Connolly M, Bedrosian A. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J Clin Invest. 2009;119(11):3213–25.PubMedPubMedCentral
53.
go back to reference Miyake T, Akbar SM, Yoshida O, et al. Impaired dendritic cell functions disrupt antigen-specific adaptive immune responses in mice with nonalcoholic fatty liver disease. J Gastroenterol. 2010;45(8):859–67.PubMedCrossRef Miyake T, Akbar SM, Yoshida O, et al. Impaired dendritic cell functions disrupt antigen-specific adaptive immune responses in mice with nonalcoholic fatty liver disease. J Gastroenterol. 2010;45(8):859–67.PubMedCrossRef
54.
go back to reference Ibrahim J, Nguyen AH, Rehman A, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2013;143(4):1061–72.CrossRef Ibrahim J, Nguyen AH, Rehman A, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2013;143(4):1061–72.CrossRef
55.
go back to reference Jiao J, Sastre D, Fiel MI, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012;55(1):244–55.PubMedPubMedCentralCrossRef Jiao J, Sastre D, Fiel MI, et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology. 2012;55(1):244–55.PubMedPubMedCentralCrossRef
56.
go back to reference Bertola A, Ciucci T, Rousseau D, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47.PubMedPubMedCentralCrossRef Bertola A, Ciucci T, Rousseau D, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47.PubMedPubMedCentralCrossRef
57.
go back to reference Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol. 2011;166(2):281–90.PubMedPubMedCentralCrossRef Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol. 2011;166(2):281–90.PubMedPubMedCentralCrossRef
58.
go back to reference Rau M, Schilling AK, Meertens J, et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016;196(1):97–105.PubMedCrossRef Rau M, Schilling AK, Meertens J, et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016;196(1):97–105.PubMedCrossRef
59.
go back to reference Harley IT, Stankiewicz TE, Giles DA, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59(5):1830–9.PubMedPubMedCentralCrossRef Harley IT, Stankiewicz TE, Giles DA, et al. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology. 2014;59(5):1830–9.PubMedPubMedCentralCrossRef
60.
go back to reference Ju C, Pohl LR. Tolerogenic role of kupffer cells in immune-mediated adverse drug reactions. Toxicology. 2005;209(2):109–12.PubMedCrossRef Ju C, Pohl LR. Tolerogenic role of kupffer cells in immune-mediated adverse drug reactions. Toxicology. 2005;209(2):109–12.PubMedCrossRef
61.
go back to reference Macchiarelli G, Motta PM, Fujita T. Scanning electron microscopy of the liver cells. Biopathology of the Liver. 1988:37–57. Macchiarelli G, Motta PM, Fujita T. Scanning electron microscopy of the liver cells. Biopathology of the Liver. 1988:37–57.
62.
go back to reference Stienstra R, Saudale F, Duval C, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010;51(2):511–22.PubMedCrossRef Stienstra R, Saudale F, Duval C, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 2010;51(2):511–22.PubMedCrossRef
63.
go back to reference De Taeye BM, Novitskaya T, McGuinness OP, et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab. 2007;293(3):E713–25.PubMedCrossRef De Taeye BM, Novitskaya T, McGuinness OP, et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab. 2007;293(3):E713–25.PubMedCrossRef
65.
go back to reference Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153–9.PubMedPubMedCentralCrossRef Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147(1):153–9.PubMedPubMedCentralCrossRef
66.
go back to reference Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59:347–57.PubMedPubMedCentralCrossRef Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59:347–57.PubMedPubMedCentralCrossRef
67.
go back to reference Lanthier N, Molendi-Coste O, Cani PD, et al. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. Faseb J. 2011;25(12):4301–11.PubMedCrossRef Lanthier N, Molendi-Coste O, Cani PD, et al. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. Faseb J. 2011;25(12):4301–11.PubMedCrossRef
68.
go back to reference Lanthier N, Molendi-Coste O, Horsmans Y, et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G107–16.PubMedCrossRef Lanthier N, Molendi-Coste O, Horsmans Y, et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G107–16.PubMedCrossRef
69.
go back to reference Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity : functional properties of bone marrow – derived and sessile hepatic macrophages. Blood. 2007;110(12):4077–85. Klein I, Cornejo JC, Polakos NK, et al. Kupffer cell heterogeneity : functional properties of bone marrow – derived and sessile hepatic macrophages. Blood. 2007;110(12):4077–85.
70.
go back to reference Obstfeld AE, Sugaru E, Thearle M, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59(4):916–25.PubMedPubMedCentralCrossRef Obstfeld AE, Sugaru E, Thearle M, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59(4):916–25.PubMedPubMedCentralCrossRef
71.
go back to reference Egan CE, Daugherity EK, Rogers AB, et al. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS ONE. 2013;8(6):e65247.PubMedPubMedCentralCrossRef Egan CE, Daugherity EK, Rogers AB, et al. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS ONE. 2013;8(6):e65247.PubMedPubMedCentralCrossRef
72.
go back to reference Tacke F Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 2012;5:S27.PubMedPubMedCentralCrossRef Tacke F Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 2012;5:S27.PubMedPubMedCentralCrossRef
73.
go back to reference Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.PubMedPubMedCentralCrossRef Miura K, Yang L, van Rooijen N, Ohnishi H, Seki E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol. 2012;302(11):G1310–21.PubMedPubMedCentralCrossRef
74.
go back to reference Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem. 2012;287(48):40161–72.PubMedPubMedCentralCrossRef Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem. 2012;287(48):40161–72.PubMedPubMedCentralCrossRef
75.
go back to reference Kudo H, Yata Y, Takahara T, et al. Telmisartan attenuates progression of steatohepatitis in mice: role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int. 2009;29(7):988–96.PubMedCrossRef Kudo H, Yata Y, Takahara T, et al. Telmisartan attenuates progression of steatohepatitis in mice: role of hepatic macrophage infiltration and effects on adipose tissue. Liver Int. 2009;29(7):988–96.PubMedCrossRef
76.
go back to reference Nakashima H, Ogawa Y, Shono S, et al. Activation of CD11b + kupffer cells/macrophages as a common cause for exacerbation of TNF/Fas-ligand-dependent hepatitis in hypercholesterolemic mice. PLoS ONE. 2013;8(1):e49339.PubMedPubMedCentralCrossRef Nakashima H, Ogawa Y, Shono S, et al. Activation of CD11b + kupffer cells/macrophages as a common cause for exacerbation of TNF/Fas-ligand-dependent hepatitis in hypercholesterolemic mice. PLoS ONE. 2013;8(1):e49339.PubMedPubMedCentralCrossRef
77.
go back to reference Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437–43.PubMedCrossRef Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437–43.PubMedCrossRef
78.
go back to reference Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38(5):1188–98.PubMedCrossRef Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38(5):1188–98.PubMedCrossRef
79.
go back to reference Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59(2):347–57.PubMedPubMedCentralCrossRef Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59(2):347–57.PubMedPubMedCentralCrossRef
80.
81.
go back to reference Olteanu S, Kandel-Kfir M, Shaish A, et al. Lack of interleukin-1α in kupffer cells attenuates liver inflammation and expression of inflammatory cytokines in hypercholesterolaemic mice. Dig Liver Dis. 2014;46(5):433–9.PubMedCrossRef Olteanu S, Kandel-Kfir M, Shaish A, et al. Lack of interleukin-1α in kupffer cells attenuates liver inflammation and expression of inflammatory cytokines in hypercholesterolaemic mice. Dig Liver Dis. 2014;46(5):433–9.PubMedCrossRef
82.
go back to reference Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.PubMedCrossRef Kunjathoor VV, Febbraio M, Podrez EA, et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002;277(51):49982–8.PubMedCrossRef
83.
go back to reference Podrez EA, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105(8):1095–108. Podrez EA, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest. 2000;105(8):1095–108.
84.
go back to reference Bieghs V, Verheyen F, van Gorp PJ, et al. Internalization of modified lipids by CD36 and SR-a leads to hepatic inflammation and lysosomal cholesterol storage in kupffer cells. PLoS ONE. 2012;7(3):1–7.CrossRef Bieghs V, Verheyen F, van Gorp PJ, et al. Internalization of modified lipids by CD36 and SR-a leads to hepatic inflammation and lysosomal cholesterol storage in kupffer cells. PLoS ONE. 2012;7(3):1–7.CrossRef
85.
go back to reference Walenbergh SM, Koek GH, Bieghs V, Shiri-Sverdlov R. Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol. 2013;58(4):801–10.PubMedCrossRef Walenbergh SM, Koek GH, Bieghs V, Shiri-Sverdlov R. Non-alcoholic steatohepatitis: the role of oxidized low-density lipoproteins. J Hepatol. 2013;58(4):801–10.PubMedCrossRef
86.
go back to reference Bieghs V, Walenbergh SM, Hendrikx T, van Gorp PJ, et al. Trapping of oxidized LDL in lysosomes of kupffer cells is a trigger for hepatic inflammation. Liver Int. 2013;33(7):1056–61. Bieghs V, Walenbergh SM, Hendrikx T, van Gorp PJ, et al. Trapping of oxidized LDL in lysosomes of kupffer cells is a trigger for hepatic inflammation. Liver Int. 2013;33(7):1056–61.
87.
go back to reference Bieghs V, Wouters K, van Gorp PJ, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology. 2010;138(7):2477–86, 2486.e1–3.PubMedPubMedCentralCrossRef Bieghs V, Wouters K, van Gorp PJ, et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology. 2010;138(7):2477–86, 2486.e1–3.PubMedPubMedCentralCrossRef
88.
go back to reference Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57(1):141–9.PubMedCrossRef Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57(1):141–9.PubMedCrossRef
89.
go back to reference Hendrikx T, Bieghs V, Walenbergh SM, et al. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS ONE. 2013;8(12):e78792. Hendrikx T, Bieghs V, Walenbergh SM, et al. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS ONE. 2013;8(12):e78792.
90.
go back to reference Ioannou GN, Van Rooyen DM, Savard C, et al. Cholesterol-Lowering drugs Cause Dissolution of Cholesterol Crystals and Disperse Kupffer Cell Crown-Like Structures During Resolution of NASH. J Lipid Res. 2015;56:277–85. Ioannou GN, Van Rooyen DM, Savard C, et al. Cholesterol-Lowering drugs Cause Dissolution of Cholesterol Crystals and Disperse Kupffer Cell Crown-Like Structures During Resolution of NASH. J Lipid Res. 2015;56:277–85.
91.
go back to reference Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology. 2009;50(2):612–21.PubMedPubMedCentralCrossRef Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology. 2009;50(2):612–21.PubMedPubMedCentralCrossRef
92.
go back to reference Papackova Z, Palenickova E, Dankova H, et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids : the evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond). 2012;9(1):1–15.CrossRef Papackova Z, Palenickova E, Dankova H, et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids : the evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond). 2012;9(1):1–15.CrossRef
93.
go back to reference Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 2015;34:130–6.PubMedCrossRef Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 2015;34:130–6.PubMedCrossRef
95.
go back to reference Lieberman J Anatomy of a murder: how cytotoxic T cells and NK cells are activated, develop, and eliminate their targets. Immunol Rev. 2010;235(1):5–9.PubMedCrossRef Lieberman J Anatomy of a murder: how cytotoxic T cells and NK cells are activated, develop, and eliminate their targets. Immunol Rev. 2010;235(1):5–9.PubMedCrossRef
96.
go back to reference Inzaugarat ME, Ferreyra Solari NE, Billordo LA, et al. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol. 2011;31(6):1120–30.PubMedCrossRef Inzaugarat ME, Ferreyra Solari NE, Billordo LA, et al. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol. 2011;31(6):1120–30.PubMedCrossRef
97.
go back to reference Ljunggren H-G, Glas R, Sandberg JK, Kärre K. Reactivity and specificity of CD8+ T cells in mice with defects in the MHC class I antigen-presenting pathway. Immunol Rev. 1996;151(1):123–48.PubMedCrossRef Ljunggren H-G, Glas R, Sandberg JK, Kärre K. Reactivity and specificity of CD8+ T cells in mice with defects in the MHC class I antigen-presenting pathway. Immunol Rev. 1996;151(1):123–48.PubMedCrossRef
98.
go back to reference Arindkar S, Bhattacharjee J, Kumar JM, et al. Antigen peptide transporter 1 is involved in the development of fructose-induced hepatic steatosis in mice. J Gastroenterol Hepatol. 2013;28(8):1403–9.PubMedCrossRef Arindkar S, Bhattacharjee J, Kumar JM, et al. Antigen peptide transporter 1 is involved in the development of fructose-induced hepatic steatosis in mice. J Gastroenterol Hepatol. 2013;28(8):1403–9.PubMedCrossRef
99.
go back to reference Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol. 2007;19(6):353–61.PubMedCrossRef Stockinger B, Veldhoen M, Martin B. Th17 T cells: linking innate and adaptive immunity. Semin Immunol. 2007;19(6):353–61.PubMedCrossRef
100.
go back to reference Tan Z, Qian X, Jiang R, et al. IL-17 a plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol. 2013;191(4):1835–44.PubMedCrossRef Tan Z, Qian X, Jiang R, et al. IL-17 a plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol. 2013;191(4):1835–44.PubMedCrossRef
101.
go back to reference Du WJ, Zhen JH, Zeng Z-Q, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol. 2013;8(1):40.PubMedPubMedCentralCrossRef Du WJ, Zhen JH, Zeng Z-Q, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol. 2013;8(1):40.PubMedPubMedCentralCrossRef
102.
go back to reference Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143(3):765–76.e1–3.PubMedPubMedCentralCrossRef Meng F, Wang K, Aoyama T, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143(3):765–76.e1–3.PubMedPubMedCentralCrossRef
104.
go back to reference Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.PubMedCrossRef Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.PubMedCrossRef
105.
go back to reference Wagner NM, Brandhorst G, Czepluch F, et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity. 2013;21(3):461–8.PubMedCrossRef Wagner NM, Brandhorst G, Czepluch F, et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity. 2013;21(3):461–8.PubMedCrossRef
106.
go back to reference Cipolletta D Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.PubMedPubMedCentralCrossRef Cipolletta D Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25.PubMedPubMedCentralCrossRef
107.
go back to reference Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.PubMedPubMedCentralCrossRef Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15(8):930–9.PubMedPubMedCentralCrossRef
108.
go back to reference Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature. 2012;486(7404):549–53.PubMedPubMedCentral Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature. 2012;486(7404):549–53.PubMedPubMedCentral
109.
go back to reference Bapat SP, Myoung Suh J, Fang S, et al. Depletion of fat-resident treg cells prevents age-associated insulin resistance. Nature. 2015;528(7580):137–41.PubMedPubMedCentral Bapat SP, Myoung Suh J, Fang S, et al. Depletion of fat-resident treg cells prevents age-associated insulin resistance. Nature. 2015;528(7580):137–41.PubMedPubMedCentral
110.
go back to reference Ma X, Hua J, Mohamood AR, et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology. 2007;46(5):1519–29.PubMedCrossRef Ma X, Hua J, Mohamood AR, et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology. 2007;46(5):1519–29.PubMedCrossRef
111.
go back to reference Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40. Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12(4):431–40.
112.
go back to reference Poggi M, Morin SO, Bastelica D, et al. CD28 deletion improves obesity-induced liver steatosis but increases adiposity in mice. Int J Obes. 2015;39(6):977–85.CrossRef Poggi M, Morin SO, Bastelica D, et al. CD28 deletion improves obesity-induced liver steatosis but increases adiposity in mice. Int J Obes. 2015;39(6):977–85.CrossRef
113.
go back to reference Chatzigeorgiou A, Chung K-J, Garcia-Martin R, et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology. 2014;60(4):1196–210.PubMedCrossRef Chatzigeorgiou A, Chung K-J, Garcia-Martin R, et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology. 2014;60(4):1196–210.PubMedCrossRef
114.
go back to reference Zhong J, Rao X, Braunstein Z, et al. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes. 2014;63(4):1289–302.PubMedPubMedCentralCrossRef Zhong J, Rao X, Braunstein Z, et al. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes. 2014;63(4):1289–302.PubMedPubMedCentralCrossRef
115.
go back to reference Chatzigeorgiou A, Seijkens T, Zarzycka B, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.PubMedPubMedCentralCrossRef Chatzigeorgiou A, Seijkens T, Zarzycka B, et al. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance. Proc Natl Acad Sci U S A. 2014;111(7):2686–91.PubMedPubMedCentralCrossRef
116.
go back to reference Guo CA, Kogan S, Amano SU, et al. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab. 2013;304(9):E951–63.PubMedPubMedCentralCrossRef Guo CA, Kogan S, Amano SU, et al. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am J Physiol Endocrinol Metab. 2013;304(9):E951–63.PubMedPubMedCentralCrossRef
117.
go back to reference Wolf D, Jehle F, Michel NA, et al. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.PubMedCrossRef Wolf D, Jehle F, Michel NA, et al. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation. 2014;129(23):2414–25.PubMedCrossRef
118.
go back to reference van den Berg SM, Seijkens TT, Kusters PJ, et al. Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int J Obes. 2015;39(5):782–90.CrossRef van den Berg SM, Seijkens TT, Kusters PJ, et al. Blocking CD40-TRAF6 interactions by small-molecule inhibitor 6860766 ameliorates the complications of diet-induced obesity in mice. Int J Obes. 2015;39(5):782–90.CrossRef
119.
go back to reference Poggi M, Engel D, Christ A, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–60.PubMedCrossRef Poggi M, Engel D, Christ A, et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol. 2011;31(10):2251–60.PubMedCrossRef
120.
121.
go back to reference Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12 dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–41.PubMedPubMedCentralCrossRef Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12 dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–41.PubMedPubMedCentralCrossRef
122.
go back to reference Wu L, Parekh VV, Gabriel CL, et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A. 2012;109(19):E1143–52.PubMedPubMedCentralCrossRef Wu L, Parekh VV, Gabriel CL, et al. Activation of invariant natural killer T cells by lipid excess promotes tissue inflammation, insulin resistance, and hepatic steatosis in obese mice. Proc Natl Acad Sci U S A. 2012;109(19):E1143–52.PubMedPubMedCentralCrossRef
123.
124.
go back to reference Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106–15.PubMedPubMedCentralCrossRef Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106–15.PubMedPubMedCentralCrossRef
126.
go back to reference Carpino G, Renzi A, Onori P, Gaudio E. Role of hepatic progenitor cells in nonalcoholic fatty liver disease development: cellular cross-talks and molecular networks. Int J Mol Sci. 2013;14(10):20112–30.PubMedPubMedCentralCrossRef Carpino G, Renzi A, Onori P, Gaudio E. Role of hepatic progenitor cells in nonalcoholic fatty liver disease development: cellular cross-talks and molecular networks. Int J Mol Sci. 2013;14(10):20112–30.PubMedPubMedCentralCrossRef
127.
go back to reference Blaner WS, O’Byrne SM, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta. 2009;1791(6):467–73.PubMedPubMedCentralCrossRef Blaner WS, O’Byrne SM, Wongsiriroj N, et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta. 2009;1791(6):467–73.PubMedPubMedCentralCrossRef
128.
go back to reference Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology. 2000;31(1):101–8.PubMedCrossRef Galli A, Crabb D, Price D, et al. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells. Hepatology. 2000;31(1):101–8.PubMedCrossRef
129.
go back to reference Tsukamoto H Adipogenic Phenotype of Hepatic Stellate Cells. Alcohol Clin Exp Res. 2005;29(Supplement):132S–3S.PubMedCrossRef Tsukamoto H Adipogenic Phenotype of Hepatic Stellate Cells. Alcohol Clin Exp Res. 2005;29(Supplement):132S–3S.PubMedCrossRef
130.
go back to reference Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119(2):466–78.PubMedCrossRef Marra F, Efsen E, Romanelli RG, et al. Ligands of peroxisome proliferator-activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology. 2000;119(2):466–78.PubMedCrossRef
131.
go back to reference Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122(7):1924–40.PubMedCrossRef Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122(7):1924–40.PubMedCrossRef
132.
go back to reference Enzan H, Himeno H, Iwamura S, et al. Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch. 1994;424(3):249–56. Enzan H, Himeno H, Iwamura S, et al. Immunohistochemical identification of Ito cells and their myofibroblastic transformation in adult human liver. Virchows Arch. 1994;424(3):249–56.
133.
go back to reference Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol. 2008;43(6):419–28.PubMedCrossRef Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol. 2008;43(6):419–28.PubMedCrossRef
134.
go back to reference Nieto N, Friedman S. CYP2E1-mediated oxidative stress induces collagen type I expression in rat hepatic stellate cells. Hepatology. 1999;30(4):987–96.PubMedCrossRef Nieto N, Friedman S. CYP2E1-mediated oxidative stress induces collagen type I expression in rat hepatic stellate cells. Hepatology. 1999;30(4):987–96.PubMedCrossRef
135.
go back to reference Svegliati-Baroni G, Saccomanno S, Van Goor H, et al. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver. 2001;21(1):1–12.PubMedCrossRef Svegliati-Baroni G, Saccomanno S, Van Goor H, et al. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells. Liver. 2001;21(1):1–12.PubMedCrossRef
136.
go back to reference Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGFa and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96(November):2461–8.PubMedPubMedCentralCrossRef Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGFa and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96(November):2461–8.PubMedPubMedCentralCrossRef
137.
go back to reference Wheeler M The role of kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31(12):1544–9.PubMedCrossRef Wheeler M The role of kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31(12):1544–9.PubMedCrossRef
138.
go back to reference De Bleser PJ, Niki T, Rogiers V, Geerts A. Transforming growth factor-β gene expression in normal and fibrotic rat liver. J Hepatol 1997;26(4):886–893. De Bleser PJ, Niki T, Rogiers V, Geerts A. Transforming growth factor-β gene expression in normal and fibrotic rat liver. J Hepatol 1997;26(4):886–893.
139.
go back to reference Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30(1):77–87.PubMedCrossRef Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFβ1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30(1):77–87.PubMedCrossRef
140.
go back to reference Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta - Gen Subj. 2015;1850(1):178–85.CrossRef Yang Y, Kim B, Park YK, Koo SI, Lee JY. Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochim Biophys Acta - Gen Subj. 2015;1850(1):178–85.CrossRef
141.
go back to reference Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58(4):1461–73.PubMedCrossRef Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 2013;58(4):1461–73.PubMedCrossRef
142.
go back to reference Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128(1):108–20.PubMedCrossRef Oakley F, Meso M, Iredale JP, et al. Inhibition of inhibitor of κB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 2005;128(1):108–20.PubMedCrossRef
143.
144.
go back to reference Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 2014;3(6):344–63.PubMedPubMedCentral Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg Nutr. 2014;3(6):344–63.PubMedPubMedCentral
145.
go back to reference Potter JJ, Rennie-tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38(4):281–8.PubMedCrossRef Potter JJ, Rennie-tankesley L, Mezey E. Influence of leptin in the development of hepatic fibrosis produced in mice by Schistosoma mansoni infection and by chronic carbon tetrachloride administration. J Hepatol. 2003;38(4):281–8.PubMedCrossRef
146.
go back to reference Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36(2):403–9.PubMedCrossRef Chitturi S, Farrell G, Frost L, et al. Serum leptin in NASH correlates with hepatic steatosis but not fibrosis: a manifestation of lipotoxicity? Hepatology. 2002;36(2):403–9.PubMedCrossRef
147.
go back to reference Otte C, Otte JM, Strodthoff D, et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp Clin Endocrinol Diabetes. 2004;112(1):10–7.PubMedCrossRef Otte C, Otte JM, Strodthoff D, et al. Expression of leptin and leptin receptor during the development of liver fibrosis and cirrhosis. Exp Clin Endocrinol Diabetes. 2004;112(1):10–7.PubMedCrossRef
148.
go back to reference Ikejima K, Takei Y, Honda H, et al. Leptin receptor–mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122(5):1399–410.PubMedCrossRef Ikejima K, Takei Y, Honda H, et al. Leptin receptor–mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 2002;122(5):1399–410.PubMedCrossRef
150.
go back to reference Choi SS, Syn WK, Karaca GF, et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 2010;285(47):36551–60.PubMedPubMedCentralCrossRef Choi SS, Syn WK, Karaca GF, et al. Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 2010;285(47):36551–60.PubMedPubMedCentralCrossRef
151.
go back to reference Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275(46):35715–22.PubMedCrossRef Miyahara T, Schrum L, Rippe R, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem. 2000;275(46):35715–22.PubMedCrossRef
152.
go back to reference Tsukamoto H, She H, Hazra S, Cheng J, Miyahara T. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol. 2006;21(Suppl 3):S102–5.PubMedCrossRef Tsukamoto H, She H, Hazra S, Cheng J, Miyahara T. Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. J Gastroenterol Hepatol. 2006;21(Suppl 3):S102–5.PubMedCrossRef
153.
154.
go back to reference Fuchs CD, Claudel T, Trauner M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrinol Metab. 2015;25(11):576–85.CrossRef Fuchs CD, Claudel T, Trauner M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrinol Metab. 2015;25(11):576–85.CrossRef
155.
156.
go back to reference Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9.PubMedPubMedCentralCrossRef Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol. 2007;47(4):571–9.PubMedPubMedCentralCrossRef
157.
go back to reference Perry RJ, Camporez JP, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58.PubMedPubMedCentralCrossRef Perry RJ, Camporez JP, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58.PubMedPubMedCentralCrossRef
158.
go back to reference Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of fatty liver. Endocr Rev. 2008;29(7):939–60.PubMedCrossRef Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of fatty liver. Endocr Rev. 2008;29(7):939–60.PubMedCrossRef
159.
go back to reference Wehr A, Baeck C, Ulmer F, et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS ONE. 2014;9(11):e112327.PubMedPubMedCentralCrossRef Wehr A, Baeck C, Ulmer F, et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS ONE. 2014;9(11):e112327.PubMedPubMedCentralCrossRef
160.
go back to reference Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61(3):416–26.PubMedCrossRef Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61(3):416–26.PubMedCrossRef
161.
go back to reference Zhang X, Han J, Man K, et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol. 2016;64(1):160–70. Zhang X, Han J, Man K, et al. CXC chemokine receptor 3 promotes steatohepatitis in mice through mediating inflammatory cytokines, macrophages and autophagy. J Hepatol. 2016;64(1):160–70.
162.
go back to reference Zhang X, Shen J, Man K, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365–75.PubMedCrossRef Zhang X, Shen J, Man K, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365–75.PubMedCrossRef
163.
go back to reference Deng YR, Ma HD, Tsuneyama K, et al. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 2013;46:25–34.PubMedCrossRef Deng YR, Ma HD, Tsuneyama K, et al. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. J Autoimmun. 2013;46:25–34.PubMedCrossRef
164.
go back to reference Beraza N, Malato Y, Vander Borght S, et al. Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. Gut. 2008;57(5):655–63.PubMedCrossRef Beraza N, Malato Y, Vander Borght S, et al. Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. Gut. 2008;57(5):655–63.PubMedCrossRef
165.
go back to reference Zhou Z, Liu Y, Chen X, Li F, Tong X, Ding Y, Tang C. Treatment of experimental non-alcoholic steatohepatitis by targeting α7 nicotinic acetylcholine receptor-mediated inflammatory responses in mice. Mol Med Rep. 2015;12(5):6925–31. Zhou Z, Liu Y, Chen X, Li F, Tong X, Ding Y, Tang C. Treatment of experimental non-alcoholic steatohepatitis by targeting α7 nicotinic acetylcholine receptor-mediated inflammatory responses in mice. Mol Med Rep. 2015;12(5):6925–31.
Metadata
Title
The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH)
Authors
Marina Nati
David Haddad
Andreas L. Birkenfeld
Christian A. Koch
Triantafyllos Chavakis
Antonios Chatzigeorgiou
Publication date
01-03-2016
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1/2016
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-016-9339-2

Other articles of this Issue 1/2016

Reviews in Endocrine and Metabolic Disorders 1/2016 Go to the issue