Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 1/2015

01-03-2015

The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity

Authors: Ningwen Tai, F. Susan Wong, Li Wen

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 1/2015

Login to get access

Abstract

Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.
Literature
1.
go back to reference Kamada N et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.CrossRefPubMed Kamada N et al. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.CrossRefPubMed
2.
go back to reference Geuking MB, et al. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5(3). Geuking MB, et al. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5(3).
3.
go back to reference Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23(6):518–26.CrossRefPubMed Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23(6):518–26.CrossRefPubMed
4.
go back to reference Nielsen DS, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014. Nielsen DS, et al. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes. FEBS Lett. 2014.
5.
go back to reference Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diabetes Rep. 2013;13(5):601–7.CrossRef Vaarala O. Human intestinal microbiota and type 1 diabetes. Curr Diabetes Rep. 2013;13(5):601–7.CrossRef
7.
go back to reference Alkanani AK et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome. Diabetes. 2014;63(2):619–31.CrossRefPubMed Alkanani AK et al. Induction of diabetes in the RIP-B7.1 mouse model is critically dependent on TLR3 and MyD88 pathways and is associated with alterations in the intestinal microbiome. Diabetes. 2014;63(2):619–31.CrossRefPubMed
8.
9.
go back to reference Hara N et al. Prevention of virus-induced type 1 diabetes with antibiotic therapy. J Immunol. 2012;189(8):3805–14.CrossRefPubMed Hara N et al. Prevention of virus-induced type 1 diabetes with antibiotic therapy. J Immunol. 2012;189(8):3805–14.CrossRefPubMed
10.
go back to reference Peng J, et al. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun. 2014. Peng J, et al. Long term effect of gut microbiota transfer on diabetes development. J Autoimmun. 2014.
11.
go back to reference Dahlquist G, Kallen B. Maternal-child blood group incompatibility and other perinatal events increase the risk for early-onset type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(7):671–5.CrossRefPubMed Dahlquist G, Kallen B. Maternal-child blood group incompatibility and other perinatal events increase the risk for early-onset type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(7):671–5.CrossRefPubMed
13.
go back to reference Rosenbauer J, Herzig P, Giani G. Early infant feeding and risk of type 1 diabetes mellitus-a nationwide population-based case–control study in pre-school children. Diabetes Metab Res Rev. 2008;24(3):211–22.CrossRefPubMed Rosenbauer J, Herzig P, Giani G. Early infant feeding and risk of type 1 diabetes mellitus-a nationwide population-based case–control study in pre-school children. Diabetes Metab Res Rev. 2008;24(3):211–22.CrossRefPubMed
14.
go back to reference Funda DP et al. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev. 1999;15(5):323–7.CrossRefPubMed Funda DP et al. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev. 1999;15(5):323–7.CrossRefPubMed
15.
go back to reference Lefebvre DE et al. Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr. 2006;26:175–202.CrossRefPubMed Lefebvre DE et al. Dietary proteins as environmental modifiers of type 1 diabetes mellitus. Annu Rev Nutr. 2006;26:175–202.CrossRefPubMed
16.
go back to reference Schmid S et al. Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol. 2004;111(1):108–18.CrossRefPubMed Schmid S et al. Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clin Immunol. 2004;111(1):108–18.CrossRefPubMed
17.
go back to reference Marietta EV et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. 2013;8(11):e78687.CrossRefPubMedCentralPubMed Marietta EV et al. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome. PLoS One. 2013;8(11):e78687.CrossRefPubMedCentralPubMed
18.
go back to reference Hansen CH et al. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes. 2014;63(8):2821–32.CrossRefPubMed Hansen CH et al. A maternal gluten-free diet reduces inflammation and diabetes incidence in the offspring of NOD mice. Diabetes. 2014;63(8):2821–32.CrossRefPubMed
19.
go back to reference Ejsing-Duun M et al. Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol. 2008;67(6):553–9.CrossRefPubMed Ejsing-Duun M et al. Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol. 2008;67(6):553–9.CrossRefPubMed
20.
go back to reference Adlercreutz EH et al. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin Exp Immunol. 2014;177(2):391–403.CrossRefPubMedCentralPubMed Adlercreutz EH et al. A gluten-free diet lowers NKG2D and ligand expression in BALB/c and non-obese diabetic (NOD) mice. Clin Exp Immunol. 2014;177(2):391–403.CrossRefPubMedCentralPubMed
21.
go back to reference Larsen J, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014. Larsen J, et al. Dietary gluten increases natural killer cell cytotoxicity and cytokine secretion. Eur J Immunol. 2014.
22.
go back to reference Gur C et al. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol. 2010;11(2):121–8.CrossRefPubMed Gur C et al. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol. 2010;11(2):121–8.CrossRefPubMed
23.
go back to reference Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci U S A. 2004;101(21):8102–7.CrossRefPubMedCentralPubMed Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci U S A. 2004;101(21):8102–7.CrossRefPubMedCentralPubMed
24.
25.
go back to reference Abid N et al. Clinical and metabolic effects of gluten free diet in children with type 1 diabetes and coeliac disease. Pediatr Diabetes. 2011;12(4 Pt 1):322–5.CrossRefPubMed Abid N et al. Clinical and metabolic effects of gluten free diet in children with type 1 diabetes and coeliac disease. Pediatr Diabetes. 2011;12(4 Pt 1):322–5.CrossRefPubMed
27.
go back to reference Hummel S et al. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care. 2011;34(6):1301–5.CrossRefPubMedCentralPubMed Hummel S et al. Primary dietary intervention study to reduce the risk of islet autoimmunity in children at increased risk for type 1 diabetes: the BABYDIET study. Diabetes Care. 2011;34(6):1301–5.CrossRefPubMedCentralPubMed
28.
go back to reference Kaukinen K et al. No effect of gluten-free diet on the metabolic control of type 1 diabetes in patients with diabetes and celiac disease. Retrospective and controlled prospective survey. Diabetes Care. 1999;22(10):1747–8.CrossRefPubMed Kaukinen K et al. No effect of gluten-free diet on the metabolic control of type 1 diabetes in patients with diabetes and celiac disease. Retrospective and controlled prospective survey. Diabetes Care. 1999;22(10):1747–8.CrossRefPubMed
29.
go back to reference Leeds JS et al. High prevalence of microvascular complications in adults with type 1 diabetes and newly diagnosed celiac disease. Diabetes Care. 2011;34(10):2158–63.CrossRefPubMedCentralPubMed Leeds JS et al. High prevalence of microvascular complications in adults with type 1 diabetes and newly diagnosed celiac disease. Diabetes Care. 2011;34(10):2158–63.CrossRefPubMedCentralPubMed
30.
31.
32.
go back to reference Wolf KJ et al. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice. J Histochem Cytochem. 2014;62(4):237–50.CrossRefPubMed Wolf KJ et al. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice. J Histochem Cytochem. 2014;62(4):237–50.CrossRefPubMed
33.
go back to reference Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347–69.CrossRefPubMed Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347–69.CrossRefPubMed
34.
go back to reference Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. Autoimmun Rev. 2007;6(6):366–72.CrossRefPubMed Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. Autoimmun Rev. 2007;6(6):366–72.CrossRefPubMed
35.
go back to reference Yurkovetskiy L et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12.CrossRefPubMed Yurkovetskiy L et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400–12.CrossRefPubMed
36.
go back to reference Markle JG et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.CrossRefPubMed Markle JG et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.CrossRefPubMed
39.
40.
go back to reference Brown CT et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792.CrossRefPubMedCentralPubMed Brown CT et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6(10):e25792.CrossRefPubMedCentralPubMed
41.
go back to reference de Goffau MC et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013;62(4):1238–44.CrossRefPubMedCentralPubMed de Goffau MC et al. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes. 2013;62(4):1238–44.CrossRefPubMedCentralPubMed
43.
go back to reference Ringel-Kulka T et al. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis. PLoS One. 2013;8(5):e64315.CrossRefPubMedCentralPubMed Ringel-Kulka T et al. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis. PLoS One. 2013;8(5):e64315.CrossRefPubMedCentralPubMed
44.
go back to reference de Goffau MC et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569–77.CrossRefPubMed de Goffau MC et al. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia. 2014;57(8):1569–77.CrossRefPubMed
45.
go back to reference Van den Abbeele P et al. Butyrate-producing clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7(5):949–61.CrossRefPubMedCentralPubMed Van den Abbeele P et al. Butyrate-producing clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7(5):949–61.CrossRefPubMedCentralPubMed
46.
go back to reference Van Immerseel F et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol. 2010;59(Pt 2):141–3.CrossRefPubMed Van Immerseel F et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol. 2010;59(Pt 2):141–3.CrossRefPubMed
47.
go back to reference Endesfelder D et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014;63(6):2006–14.CrossRefPubMed Endesfelder D et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes. 2014;63(6):2006–14.CrossRefPubMed
48.
go back to reference Kriegel MA et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108(28):11548–53.CrossRefPubMedCentralPubMed Kriegel MA et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108(28):11548–53.CrossRefPubMedCentralPubMed
50.
go back to reference Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.CrossRefPubMed Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.CrossRefPubMed
51.
go back to reference Ochoa-Reparaz J et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487–95.CrossRefPubMed Ochoa-Reparaz J et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487–95.CrossRefPubMed
53.
go back to reference Ochoa-Reparaz J et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185(7):4101–8.CrossRefPubMed Ochoa-Reparaz J et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185(7):4101–8.CrossRefPubMed
54.
go back to reference Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.CrossRefPubMedCentralPubMed Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.CrossRefPubMedCentralPubMed
55.
go back to reference Mazmanian SK et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.CrossRefPubMed Mazmanian SK et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.CrossRefPubMed
56.
go back to reference Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab. 2004;89(6):2595–600.CrossRefPubMed Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab. 2004;89(6):2595–600.CrossRefPubMed
58.
59.
go back to reference Lau DC et al. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ. 2007;176(8):S1–13.CrossRefPubMedCentralPubMed Lau DC et al. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ. 2007;176(8):S1–13.CrossRefPubMedCentralPubMed
60.
go back to reference Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.CrossRefPubMed Musso G, Gambino R, Cassader M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med. 2011;62:361–80.CrossRefPubMed
61.
go back to reference Remely M et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92.CrossRefPubMed Remely M et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92.CrossRefPubMed
62.
go back to reference Fava F et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond). 2013;37(2):216–23.CrossRef Fava F et al. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes (Lond). 2013;37(2):216–23.CrossRef
64.
go back to reference Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G. Obesity as a consequence of gut bacteria and diet interactions. ISRN Obes. 2014;2014:651895.PubMedCentralPubMed Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G. Obesity as a consequence of gut bacteria and diet interactions. ISRN Obes. 2014;2014:651895.PubMedCentralPubMed
65.
68.
go back to reference Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11(9):639–47.CrossRefPubMed Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11(9):639–47.CrossRefPubMed
69.
go back to reference Armougom F et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009;4(9):e7125.CrossRefPubMedCentralPubMed Armougom F et al. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009;4(9):e7125.CrossRefPubMedCentralPubMed
70.
go back to reference Ley RE et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.CrossRefPubMed Ley RE et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.CrossRefPubMed
71.
go back to reference Duncan SH et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4.CrossRef Duncan SH et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32(11):1720–4.CrossRef
72.
go back to reference Schwiertz A et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.CrossRef Schwiertz A et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.CrossRef
73.
go back to reference Zhang C et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.CrossRefPubMed Zhang C et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.CrossRefPubMed
74.
go back to reference Parks BW et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17(1):141–52.CrossRefPubMedCentralPubMed Parks BW et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013;17(1):141–52.CrossRefPubMedCentralPubMed
76.
go back to reference Tang T et al. Uncoupling of inflammation and insulin resistance by NF-kappa B in transgenic mice through elevated energy expenditure. J Biol Chem. 2010;285(7):4637–44.CrossRefPubMedCentralPubMed Tang T et al. Uncoupling of inflammation and insulin resistance by NF-kappa B in transgenic mice through elevated energy expenditure. J Biol Chem. 2010;285(7):4637–44.CrossRefPubMedCentralPubMed
77.
78.
go back to reference Lee JY, Zhao L, Hwang DH. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr Rev. 2010;68(1):38–61.CrossRefPubMed Lee JY, Zhao L, Hwang DH. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr Rev. 2010;68(1):38–61.CrossRefPubMed
80.
go back to reference Vijay-Kumar M et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.CrossRefPubMed Vijay-Kumar M et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.CrossRefPubMed
81.
go back to reference Davis JE et al. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem. 2011;22(2):136–41.CrossRefPubMed Davis JE et al. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J Nutr Biochem. 2011;22(2):136–41.CrossRefPubMed
82.
go back to reference Ehses JA et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53(8):1795–806.CrossRefPubMed Ehses JA et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia. 2010;53(8):1795–806.CrossRefPubMed
84.
go back to reference Ubeda C et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med. 2012;209(8):1445–56.CrossRefPubMedCentralPubMed Ubeda C et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J Exp Med. 2012;209(8):1445–56.CrossRefPubMedCentralPubMed
85.
go back to reference Azad MB, et al., Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014. Azad MB, et al., Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014.
86.
go back to reference Million M, Raoult D. The role of the manipulation of the gut microbiota in obesity. Curr Infect Dis Rep. 2013;15(1):25–30.CrossRefPubMed Million M, Raoult D. The role of the manipulation of the gut microbiota in obesity. Curr Infect Dis Rep. 2013;15(1):25–30.CrossRefPubMed
87.
go back to reference Murphy R, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2013. Murphy R, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes (Lond). 2013.
88.
go back to reference Million M et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr Diabetes. 2013;3:e87.CrossRefPubMedCentralPubMed Million M et al. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr Diabetes. 2013;3:e87.CrossRefPubMedCentralPubMed
89.
go back to reference Murphy EF et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220–6.CrossRefPubMed Murphy EF et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220–6.CrossRefPubMed
90.
91.
go back to reference Ridaura VK et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.CrossRefPubMed Ridaura VK et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.CrossRefPubMed
92.
go back to reference Duca FA et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes. 2014;63(5):1624–36.CrossRefPubMed Duca FA et al. Replication of obesity and associated signaling pathways through transfer of microbiota from obese-prone rats. Diabetes. 2014;63(5):1624–36.CrossRefPubMed
94.
go back to reference Brunetti P. The lean patient with type 2 diabetes: characteristics and therapy challenge. Int J Clin Pract Suppl. 2007;153:3–9. Brunetti P. The lean patient with type 2 diabetes: characteristics and therapy challenge. Int J Clin Pract Suppl. 2007;153:3–9.
95.
go back to reference Camhi SM, Katzmarzyk PT. Differences in body composition between metabolically healthy obese and metabolically abnormal obese adults. Int J Obes (Lond). 2014;38(8):1142–5.CrossRef Camhi SM, Katzmarzyk PT. Differences in body composition between metabolically healthy obese and metabolically abnormal obese adults. Int J Obes (Lond). 2014;38(8):1142–5.CrossRef
96.
99.
go back to reference Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.CrossRefPubMed Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.CrossRefPubMed
100.
go back to reference Karlsson FH et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.CrossRefPubMed Karlsson FH et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.CrossRefPubMed
Metadata
Title
The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity
Authors
Ningwen Tai
F. Susan Wong
Li Wen
Publication date
01-03-2015
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 1/2015
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-015-9309-0

Other articles of this Issue 1/2015

Reviews in Endocrine and Metabolic Disorders 1/2015 Go to the issue