Skip to main content
Top
Published in: Reviews in Endocrine and Metabolic Disorders 2/2014

01-06-2014

The role of adiponectin signaling in metabolic syndrome and cancer

Authors: Michael P. Scheid, Gary Sweeney

Published in: Reviews in Endocrine and Metabolic Disorders | Issue 2/2014

Login to get access

Abstract

The increased prevalence of obesity has mandated extensive research focused on mechanisms responsible for associated clinical complications. Emerging from the focus on adipose tissue biology as a vitally important adipokine is adiponectin which is now believed to mediate anti-diabetic, anti-atherosclerotic, anti-inflammatory, cardioprotective and cancer modifying actions. Adiponectin mediates these primarily beneficial effects via direct signaling effects and via enhancing insulin sensitivity via crosstalk with insulin signaling pathways. Reduced adiponectin action is detrimental and occurs in obesity via decreased circulating levels of adiponectin action or development of adiponectin resistance. This review will focus on cellular mechanisms of adiponectin action, their crosstalk with insulin signaling and the resultant role of adiponectin in cardiovascular disease, diabetes and cancer and reviews data from in vitro cell based studies through animal models to clinical observations.
Literature
7.
go back to reference Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate Antidiabetic metabolic effects. [Research support, Non-U.S. Gov’t]. Nature. 2003;423(6941):762–9. doi:10.1038/nature01705.PubMed Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate Antidiabetic metabolic effects. [Research support, Non-U.S. Gov’t]. Nature. 2003;423(6941):762–9. doi:10.​1038/​nature01705.PubMed
8.
go back to reference Hall J, Roberts R, Vora N. Energy homoeostasis: The roles of adipose tissue-derived hormones, peptide YY and Ghrelin. Obesity Facts. 2009;2(2):117–25.PubMed Hall J, Roberts R, Vora N. Energy homoeostasis: The roles of adipose tissue-derived hormones, peptide YY and Ghrelin. Obesity Facts. 2009;2(2):117–25.PubMed
11.
go back to reference Nemoto S, Fergusson MM, Finkel T. SIRT1 Functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1Œ±. J Biol Chem. 2005;280(16):16456–60. doi:10.1074/jbc.M501485200.PubMed Nemoto S, Fergusson MM, Finkel T. SIRT1 Functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1Œ±. J Biol Chem. 2005;280(16):16456–60. doi:10.​1074/​jbc.​M501485200.PubMed
12.
go back to reference Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. doi:10.1038/nature03354.PubMed Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8. doi:10.​1038/​nature03354.PubMed
13.
16.
go back to reference Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14. doi:10.1093/emboj/cdg490.PubMedCentralPubMed Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22(19):5102–14. doi:10.​1093/​emboj/​cdg490.PubMedCentralPubMed
18.
go back to reference Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33. doi:10.1016/j.cmet.2005.06.005.PubMed Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33. doi:10.​1016/​j.​cmet.​2005.​06.​005.PubMed
19.
go back to reference Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2(1):9–19. doi:10.1016/j.cmet.2005.05.009.PubMed Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2005;2(1):9–19. doi:10.​1016/​j.​cmet.​2005.​05.​009.PubMed
20.
21.
go back to reference Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006;281(35):25336–43. doi:10.1074/jbc.M604399200.PubMed Momcilovic M, Hong SP, Carlson M. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem. 2006;281(35):25336–43. doi:10.​1074/​jbc.​M604399200.PubMed
22.
go back to reference Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.PubMedCentralPubMed Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.PubMedCentralPubMed
24.
go back to reference Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. [Research support, Non-U.S. Gov’t]. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.PubMed Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. [Research support, Non-U.S. Gov’t]. Nature. 2010;464(7293):1313–9. doi:10.​1038/​nature08991.PubMed
25.
go back to reference Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2007;282(11):7991–6. doi:10.1074/jbc.M700098200.PubMed Wang C, Mao X, Wang L, Liu M, Wetzel MD, Guan KL, et al. Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2007;282(11):7991–6. doi:10.​1074/​jbc.​M700098200.PubMed
26.
go back to reference Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer prevention research. 2008;1(1):65–76. doi:10.1158/1940-6207.capr-08-0022.PubMed Moore T, Beltran L, Carbajal S, Strom S, Traag J, Hursting SD, et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer prevention research. 2008;1(1):65–76. doi:10.​1158/​1940-6207.​capr-08-0022.PubMed
27.
go back to reference Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28(29):2621–33. doi:10.1038/onc.2009.129.PubMedCentralPubMed Taliaferro-Smith L, Nagalingam A, Zhong D, Zhou W, Saxena NK, Sharma D. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28(29):2621–33. doi:10.​1038/​onc.​2009.​129.PubMedCentralPubMed
28.
go back to reference Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature cell biology. 2006;8(5):516–23. doi:10.1038/ncb1404.PubMed Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature cell biology. 2006;8(5):516–23. doi:10.​1038/​ncb1404.PubMed
29.
30.
go back to reference Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine. 2002;8(11):1288–95. doi:10.1038/nm788.PubMed Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine. 2002;8(11):1288–95. doi:10.​1038/​nm788.PubMed
31.
go back to reference Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426–35. doi:10.1074/jbc.M109.028357.PubMedCentralPubMed Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and Phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284(33):22426–35. doi:10.​1074/​jbc.​M109.​028357.PubMedCentralPubMed
32.
go back to reference Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene. 1999;18(35):4891–8. doi:10.1038/sj.onc.1203080.PubMed Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene. 1999;18(35):4891–8. doi:10.​1038/​sj.​onc.​1203080.PubMed
33.
go back to reference Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, et al. Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci. 2004;117(Pt 26):6365–75. doi:10.1242/jcs.01571.PubMed Boudeau J, Scott JW, Resta N, Deak M, Kieloch A, Komander D, et al. Analysis of the LKB1-STRAD-MO25 complex. J Cell Sci. 2004;117(Pt 26):6365–75. doi:10.​1242/​jcs.​01571.PubMed
34.
go back to reference Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol. 2009;29(13):3582–96. doi:10.1128/mcb.01417-08.PubMedCentralPubMed Xie Z, Dong Y, Zhang J, Scholz R, Neumann D, Zou MH. Identification of the serine 307 of LKB1 as a novel phosphorylation site essential for its nucleocytoplasmic transport and endothelial cell angiogenesis. Mol Cell Biol. 2009;29(13):3582–96. doi:10.​1128/​mcb.​01417-08.PubMedCentralPubMed
35.
37.
go back to reference Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546(1):108–12.PubMed Scheid MP, Woodgett JR. Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Lett. 2003;546(1):108–12.PubMed
38.
go back to reference Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46. doi:10.1210/en.2012-1368.PubMedCentralPubMed Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, et al. Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 2012;153(11):5231–46. doi:10.​1210/​en.​2012-1368.PubMedCentralPubMed
39.
go back to reference Maruyama S, Shibata R, Ohashi K, Ohashi T, Daida H, Walsh K, et al. Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. [Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2011;286(37):32790–800. doi:10.1074/jbc.M111.245985.PubMedCentralPubMed Maruyama S, Shibata R, Ohashi K, Ohashi T, Daida H, Walsh K, et al. Adiponectin ameliorates doxorubicin-induced cardiotoxicity through Akt protein-dependent mechanism. [Research Support, Non-U.S. Gov’t]. The Journal of biological chemistry. 2011;286(37):32790–800. doi:10.​1074/​jbc.​M111.​245985.PubMedCentralPubMed
40.
go back to reference Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007;282(44):32280–7. doi:10.1074/jbc.M704150200.PubMed Saito T, Jones CC, Huang S, Czech MP, Pilch PF. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem. 2007;282(44):32280–7. doi:10.​1074/​jbc.​M704150200.PubMed
41.
go back to reference Cheng KKY, Iglesias MA, Lam KSL, Wang Y, Sweeney G, Zhu W, et al. APPL1 Potentiates Insulin-Mediated Inhibition of Hepatic Glucose Production and Alleviates Diabetes via Akt Activation in Mice. Cell Metab. 2009;9(5):417–27.PubMed Cheng KKY, Iglesias MA, Lam KSL, Wang Y, Sweeney G, Zhu W, et al. APPL1 Potentiates Insulin-Mediated Inhibition of Hepatic Glucose Production and Alleviates Diabetes via Akt Activation in Mice. Cell Metab. 2009;9(5):417–27.PubMed
42.
go back to reference Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285(44):33623–31. doi:10.1074/jbc.M109.085084.PubMedCentralPubMed Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB. Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic beta cell apoptosis and increases insulin gene expression and secretion. J Biol Chem. 2010;285(44):33623–31. doi:10.​1074/​jbc.​M109.​085084.PubMedCentralPubMed
43.
go back to reference Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.1074/jbc.M402367200.PubMed Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.​1074/​jbc.​M402367200.PubMed
44.
go back to reference Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11(9):3469–79.PubMedCentralPubMed Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11(9):3469–79.PubMedCentralPubMed
46.
go back to reference Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem J. 2012;441(1):1–21. doi:10.1042/bj20110892.PubMed Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signaling networks. Biochem J. 2012;441(1):1–21. doi:10.​1042/​bj20110892.PubMed
47.
go back to reference Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. Insulin resistance Due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem. 2004;279(34):35298–305. doi:10.1074/jbc.M405203200.PubMed Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. Insulin resistance Due to phosphorylation of insulin receptor substrate-1 at serine 302. J Biol Chem. 2004;279(34):35298–305. doi:10.​1074/​jbc.​M405203200.PubMed
48.
go back to reference Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin‚ÄìPI3K signaling via regulation of IRS proteins. The Journal of Cell Biology. 2004;166(2):213–23. doi:10.1083/jcb.200403069.PubMedCentralPubMed Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin‚ÄìPI3K signaling via regulation of IRS proteins. The Journal of Cell Biology. 2004;166(2):213–23. doi:10.​1083/​jcb.​200403069.PubMedCentralPubMed
49.
go back to reference Vu V, Kim W, Fang X, Liu YT, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not Streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. [Research support, Non-U.S. Gov’t]. Endocrinology. 2007;148(9):4411–9. doi:10.1210/en.2007-0020.PubMed Vu V, Kim W, Fang X, Liu YT, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not Streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. [Research support, Non-U.S. Gov’t]. Endocrinology. 2007;148(9):4411–9. doi:10.​1210/​en.​2007-0020.PubMed
51.
go back to reference Anker SD, von Haehling S. The obesity paradox in heart failure: Accepting reality and making rational decisions. [Research support, Non-U.S. Gov’t Review]. Clin Pharmacol Ther. 2011;90(1):188–90. doi:10.1038/clpt.2011.72.PubMed Anker SD, von Haehling S. The obesity paradox in heart failure: Accepting reality and making rational decisions. [Research support, Non-U.S. Gov’t Review]. Clin Pharmacol Ther. 2011;90(1):188–90. doi:10.​1038/​clpt.​2011.​72.PubMed
53.
go back to reference Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol. 2008;28(5):863–70.PubMed Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin II-induced cardiac fibrosis through activation of PPAR-alpha. Arterioscler Thromb Vasc Biol. 2008;28(5):863–70.PubMed
54.
go back to reference Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.PubMedCentralPubMed Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med. 2005;11(10):1096–103.PubMedCentralPubMed
55.
go back to reference Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.PubMedCentralPubMed Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med. 2004;10(12):1384–9.PubMedCentralPubMed
56.
go back to reference Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol. 2007;42(6):1065–74.PubMedCentralPubMed Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J Mol Cell Cardiol. 2007;42(6):1065–74.PubMedCentralPubMed
57.
go back to reference Sam F, Duhaney TA, Sato K, Wilson RM, Ohashi K, Sono-Romanelli S, et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Endocrinology. 2010;151(1):322–31. doi:10.1210/en.2009-0806.PubMedCentralPubMed Sam F, Duhaney TA, Sato K, Wilson RM, Ohashi K, Sono-Romanelli S, et al. Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Endocrinology. 2010;151(1):322–31. doi:10.​1210/​en.​2009-0806.PubMedCentralPubMed
58.
go back to reference Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, et al. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Mol Cell Cardiol. 2010;49(2):210–20. doi:10.1016/j.yjmcc.2010.02.021.PubMedCentralPubMed Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, et al. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Mol Cell Cardiol. 2010;49(2):210–20. doi:10.​1016/​j.​yjmcc.​2010.​02.​021.PubMedCentralPubMed
61.
go back to reference Despres JP, Cartier A, Cote M, Arsenault BJ. The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. [Research Support, Non-U.S. Gov’t Review]. Ann Med. 2008;40(7):514–23. doi:10.1080/07853890802004959.PubMed Despres JP, Cartier A, Cote M, Arsenault BJ. The concept of cardiometabolic risk: Bridging the fields of diabetology and cardiology. [Research Support, Non-U.S. Gov’t Review]. Ann Med. 2008;40(7):514–23. doi:10.​1080/​0785389080200495​9.PubMed
62.
go back to reference Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Physiol Endocrinol Metab. 2010;299(5):E721–729. doi:10.1152/ajpendo.00086.2010.PubMedCentralPubMed Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Am J Physiol Endocrinol Metab. 2010;299(5):E721–729. doi:10.​1152/​ajpendo.​00086.​2010.PubMedCentralPubMed
63.
go back to reference Palanivel R, Fang X, Park M, Eguchi M, Pallan S, De Girolamo S, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc Res. 2007;75(1):148–57.PubMed Palanivel R, Fang X, Park M, Eguchi M, Pallan S, De Girolamo S, et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc Res. 2007;75(1):148–57.PubMed
68.
go back to reference Skurk C, Wittchen F, Suckau L, Witt H, Noutsias M, Fechner H, et al. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. [Research Support, Non-U.S. Gov’t]. Eur Heart J. 2008;29(9):1168–80. doi:10.1093/eurheartj/ehn136.PubMed Skurk C, Wittchen F, Suckau L, Witt H, Noutsias M, Fechner H, et al. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. [Research Support, Non-U.S. Gov’t]. Eur Heart J. 2008;29(9):1168–80. doi:10.​1093/​eurheartj/​ehn136.PubMed
69.
go back to reference Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, et al. Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab. 2011;301(3):E447–455. doi:10.1152/ajpendo.00687.2010.PubMed Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, et al. Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab. 2011;301(3):E447–455. doi:10.​1152/​ajpendo.​00687.​2010.PubMed
71.
go back to reference Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. [Research Support, Non-U.S. Gov’t]. Cardiovasc Res. 2012;93(1):69–78. doi:10.1093/cvr/cvr273.PubMed Cui XB, Wang C, Li L, Fan D, Zhou Y, Wu D, et al. Insulin decreases myocardial adiponectin receptor 1 expression via PI3K/Akt and FoxO1 pathway. [Research Support, Non-U.S. Gov’t]. Cardiovasc Res. 2012;93(1):69–78. doi:10.​1093/​cvr/​cvr273.PubMed
72.
go back to reference Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. [Research Support, Non-U.S. Gov’t]. J Mol Endocrinol. 2005;35(3):465–76. doi:10.1677/jme.1.01877.PubMed Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia-and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. [Research Support, Non-U.S. Gov’t]. J Mol Endocrinol. 2005;35(3):465–76. doi:10.​1677/​jme.​1.​01877.PubMed
73.
go back to reference Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, et al. Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Antioxid Redox Signal. 2011;15(7):1779–88. doi:10.1089/ars.2010.3722.PubMedCentralPubMed Yi W, Sun Y, Gao E, Wei X, Lau WB, Zheng Q, et al. Reduced cardioprotective action of adiponectin in high-fat diet-induced type II diabetic mice and its underlying mechanisms. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Antioxid Redox Signal. 2011;15(7):1779–88. doi:10.​1089/​ars.​2010.​3722.PubMedCentralPubMed
74.
go back to reference Wang C, Li L, Zhang ZG, Fan D, Zhu Y, Wu LL. Globular adiponectin inhibits angiotensin II-induced nuclear factor kappaB activation through AMP-activated protein kinase in cardiac hypertrophy. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2010;222(1):149–55. doi:10.1002/jcp.21931.PubMed Wang C, Li L, Zhang ZG, Fan D, Zhu Y, Wu LL. Globular adiponectin inhibits angiotensin II-induced nuclear factor kappaB activation through AMP-activated protein kinase in cardiac hypertrophy. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2010;222(1):149–55. doi:10.​1002/​jcp.​21931.PubMed
75.
go back to reference Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.PubMed Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.​2337/​db06-1580.PubMed
76.
go back to reference Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ, Goldstein BJ. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab. 2007;293(6):E1836–1844. doi:10.1152/ajpendo.00115.2007.PubMed Wu X, Mahadev K, Fuchsel L, Ouedraogo R, Xu SQ, Goldstein BJ. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab. 2007;293(6):E1836–1844. doi:10.​1152/​ajpendo.​00115.​2007.PubMed
77.
go back to reference Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296–301.PubMed Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation. 2000;102(11):1296–301.PubMed
78.
go back to reference Wang Y, Cheng KK, Lam KS, Wu D, Huang Y, Vanhoutte PM, et al. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60(11):3044–54. doi:10.2337/db11-0666.PubMedCentralPubMed Wang Y, Cheng KK, Lam KS, Wu D, Huang Y, Vanhoutte PM, et al. APPL1 counteracts obesity-induced vascular insulin resistance and endothelial dysfunction by modulating the endothelial production of nitric oxide and endothelin-1 in mice. Diabetes. 2011;60(11):3044–54. doi:10.​2337/​db11-0666.PubMedCentralPubMed
79.
go back to reference Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, et al. Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011;24(3):270–7. doi:10.1038/ajh.2010.239.PubMed Schmid PM, Resch M, Steege A, Fredersdorf-Hahn S, Stoelcker B, Birner C, et al. Globular and full-length adiponectin induce NO-dependent vasodilation in resistance arteries of Zucker lean but not Zucker diabetic fatty rats. Am J Hypertens. 2011;24(3):270–7. doi:10.​1038/​ajh.​2010.​239.PubMed
83.
go back to reference Ordelheide, A. M., Heni, M., Gommer, N., Gasse, L., Haas, C., Guirguis, A., et al. The myocyte expression of adiponectin receptors and PPARdelta is highly coordinated and reflects lipid metabolism of the human donors. [Research Support, Non-U.S. Gov’t]. Exp Diabetes Res, 2011, 692536, doi:10.1155/2011/692536. Ordelheide, A. M., Heni, M., Gommer, N., Gasse, L., Haas, C., Guirguis, A., et al. The myocyte expression of adiponectin receptors and PPARdelta is highly coordinated and reflects lipid metabolism of the human donors. [Research Support, Non-U.S. Gov’t]. Exp Diabetes Res, 2011, 692536, doi:10.​1155/​2011/​692536.
84.
go back to reference Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.1007/s00125-004-1609-y.PubMed Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.​1007/​s00125-004-1609-y.PubMed
85.
go back to reference Liu Y, Chewchuk S, Lavigne C, Brule S, Pilon G, Houde V, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment. Am J Physiol Endocrinol Metab. 2009;297(3):E657–664. doi:10.1152/ajpendo.00186.2009.PubMed Liu Y, Chewchuk S, Lavigne C, Brule S, Pilon G, Houde V, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment. Am J Physiol Endocrinol Metab. 2009;297(3):E657–664. doi:10.​1152/​ajpendo.​00186.​2009.PubMed
86.
go back to reference Wang Y, Zhou M, Lam KS, Xu A. Protective roles of adiponectin in obesity-related fatty liver diseases: Mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53(2):201–12.PubMed Wang Y, Zhou M, Lam KS, Xu A. Protective roles of adiponectin in obesity-related fatty liver diseases: Mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol. 2009;53(2):201–12.PubMed
87.
go back to reference Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, et al. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem. 2002;277(38):34658–61. doi:10.1074/jbc.C200362200.PubMed Ma K, Cabrero A, Saha PK, Kojima H, Li L, Chang BH, et al. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem. 2002;277(38):34658–61. doi:10.​1074/​jbc.​C200362200.PubMed
88.
go back to reference Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature medicine. 2002;8(7):731–7. doi:10.1038/nm724.PubMed Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature medicine. 2002;8(7):731–7. doi:10.​1038/​nm724.PubMed
89.
go back to reference Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6. doi:10.1074/jbc.C200251200.PubMed Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 2002;277(29):25863–6. doi:10.​1074/​jbc.​C200251200.PubMed
90.
go back to reference Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.1038/nm1557.PubMed Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.​1038/​nm1557.PubMed
91.
go back to reference Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.2337/db06-1432.PubMed Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.​2337/​db06-1432.PubMed
92.
go back to reference Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, et al. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signaling pathway. J Endocrinol. 2011. doi:10.1530/JOE-11-0039.PubMedCentralPubMed Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, et al. The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signaling pathway. J Endocrinol. 2011. doi:10.​1530/​JOE-11-0039.PubMedCentralPubMed
93.
94.
go back to reference Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J. Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Diabetes. 2012;61(6):1463–70. doi:10.2337/db11-1475.PubMedCentralPubMed Qiao L, Kinney B, Yoo HS, Lee B, Schaack J, Shao J. Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Diabetes. 2012;61(6):1463–70. doi:10.​2337/​db11-1475.PubMedCentralPubMed
96.
go back to reference Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.1002/dmrr.778.PubMed Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.​1002/​dmrr.​778.PubMed
97.
go back to reference Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2012;227(7):2917–26. doi:10.1002/jcp.23037.PubMed Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. [Research Support, Non-U.S. Gov’t]. J Cell Physiol. 2012;227(7):2917–26. doi:10.​1002/​jcp.​23037.PubMed
98.
go back to reference Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. [Research Support, Non-U.S. Gov’t]. Lipids Health Dis. 2012;11:134. doi:10.1186/1476-511X-11-134.PubMedCentralPubMed Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. [Research Support, Non-U.S. Gov’t]. Lipids Health Dis. 2012;11:134. doi:10.​1186/​1476-511X-11-134.PubMedCentralPubMed
99.
go back to reference Holmes RM, Yi Z, De Filippis E, Berria R, Shahani S, Sathyanarayana P, et al. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signaling. Diabetologia. 2011. doi:10.1007/s00125-011-2173-x. Holmes RM, Yi Z, De Filippis E, Berria R, Shahani S, Sathyanarayana P, et al. Increased abundance of the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL1) in patients with obesity and type 2 diabetes: evidence for altered adiponectin signaling. Diabetologia. 2011. doi:10.​1007/​s00125-011-2173-x.
100.
go back to reference Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. doi:10.1038/nrc3038.PubMed Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37. doi:10.​1038/​nrc3038.PubMed
103.
go back to reference Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. International journal of cancer. Journal international du cancer. 2001;91(3):421–30.PubMed Bergstrom A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. International journal of cancer. Journal international du cancer. 2001;91(3):421–30.PubMed
104.
go back to reference Kritchevsky D. Diet and cancer: What’s Next? The Journal of nutrition. 2003;133(11):3827S–9S.PubMed Kritchevsky D. Diet and cancer: What’s Next? The Journal of nutrition. 2003;133(11):3827S–9S.PubMed
105.
go back to reference Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: Regulation of its production and its role in human diseases. Hormones (Athens). 2012;11(1):8–20. Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: Regulation of its production and its role in human diseases. Hormones (Athens). 2012;11(1):8–20.
107.
go back to reference Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin Are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001;50(5):1126–33. doi:10.2337/diabetes.50.5.1126.PubMed Hotta K, Funahashi T, Bodkin NL, Ortmeyer HK, Arita Y, Hansen BC, et al. Circulating concentrations of the adipocyte protein adiponectin Are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. 2001;50(5):1126–33. doi:10.​2337/​diabetes.​50.​5.​1126.PubMed
108.
go back to reference Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, et al. Total and high-molecular-weight adiponectin in breast cancer: In vitro and in vivo studies. Journal of Clinical Endocrinology & Metabolism. 2007;92(3):1041–8. doi:10.1210/jc.2006-1858. Korner A, Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I, Williams CJ, Kaprara A, et al. Total and high-molecular-weight adiponectin in breast cancer: In vitro and in vivo studies. Journal of Clinical Endocrinology & Metabolism. 2007;92(3):1041–8. doi:10.​1210/​jc.​2006-1858.
109.
go back to reference Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. Journal of Clinical Endocrinology & Metabolism. 2004;89(3):1102–7. doi:10.1210/jc.2003-031804. Mantzoros C, Petridou E, Dessypris N, Chavelas C, Dalamaga M, Alexe DM, et al. Adiponectin and breast cancer risk. Journal of Clinical Endocrinology & Metabolism. 2004;89(3):1102–7. doi:10.​1210/​jc.​2003-031804.
110.
go back to reference Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9(15):5699–704.PubMed Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9(15):5699–704.PubMed
111.
go back to reference Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer letters. 2006;237(1):109–14.PubMed Chen D-C, Chung Y-F, Yeh Y-T, Chaung H-C, Kuo F-C, Fu O-Y, et al. Serum adiponectin and leptin levels in Taiwanese breast cancer patients. Cancer letters. 2006;237(1):109–14.PubMed
113.
go back to reference Dieudonne M-N, Bussiere M, Dos Santos E, Leneveu M-C, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345(1):271–9. doi:10.1016/j.bbrc.2006.04.076.PubMed Dieudonne M-N, Bussiere M, Dos Santos E, Leneveu M-C, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2006;345(1):271–9. doi:10.​1016/​j.​bbrc.​2006.​04.​076.PubMed
115.
go back to reference Li G, Cong L, Gasser J, Zhao J, Chen K, Li F. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7‚ÄìDependency on the cAMP/protein kinase-a pathway. Nutrition and Cancer. 2010;63(1):80–8. doi:10.1080/01635581.2010.516472. Li G, Cong L, Gasser J, Zhao J, Chen K, Li F. Mechanisms underlying the anti-proliferative actions of adiponectin in human breast cancer cells, MCF7‚ÄìDependency on the cAMP/protein kinase-a pathway. Nutrition and Cancer. 2010;63(1):80–8. doi:10.​1080/​01635581.​2010.​516472.
116.
go back to reference Pfeiler GH, Buechler C, Neumeier M, Schaffler A, Schmitz G, Ortmann O, et al. Adiponectin effects on human breast cancer cells are dependent on 17-beta estradiol. Oncol Rep. 2008;19(3):787–93.PubMed Pfeiler GH, Buechler C, Neumeier M, Schaffler A, Schmitz G, Ortmann O, et al. Adiponectin effects on human breast cancer cells are dependent on 17-beta estradiol. Oncol Rep. 2008;19(3):787–93.PubMed
117.
go back to reference Taliaferro-Smith L, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia. 2013;15(1):23–38.PubMedCentralPubMed Taliaferro-Smith L, Nagalingam A, Knight BB, Oberlick E, Saxena NK, Sharma D. Integral role of PTP1B in adiponectin-mediated inhibition of oncogenic actions of leptin in breast carcinogenesis. Neoplasia. 2013;15(1):23–38.PubMedCentralPubMed
118.
go back to reference Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009;21(6):1611–9.PubMed Nkhata KJ, Ray A, Schuster TF, Grossmann ME, Cleary MP. Effects of adiponectin and leptin co-treatment on human breast cancer cell growth. Oncol Rep. 2009;21(6):1611–9.PubMed
119.
go back to reference Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018–26. doi:10.1158/0008-5472.can-08-2641.PubMed Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, et al. Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res. 2009;69(9):4018–26. doi:10.​1158/​0008-5472.​can-08-2641.PubMed
120.
go back to reference Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi:10.1158/0008-5472.can-06-1969.PubMed Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, et al. Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 2006;66(23):11462–70. doi:10.​1158/​0008-5472.​can-06-1969.PubMed
121.
go back to reference Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT, et al. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis. 2008;29(11):2195–202. doi:10.1093/carcin/bgn194.PubMed Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT, et al. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1. Carcinogenesis. 2008;29(11):2195–202. doi:10.​1093/​carcin/​bgn194.PubMed
126.
go back to reference Inoki K, Zhu T, Guan K-L. TSC2 Mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed Inoki K, Zhu T, Guan K-L. TSC2 Mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed
127.
go back to reference Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells. 2003;8(1):65–79.PubMed Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, et al. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells. 2003;8(1):65–79.PubMed
128.
go back to reference Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer cell. 2004;6(1):91–9.PubMed Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer cell. 2004;6(1):91–9.PubMed
129.
131.
go back to reference Karaduman M, Bilici A, Ozet A, Sengul A, Musabak U, Alomeroglu M. Tissue levels of adiponectin in breast cancer patients. Med Oncol. 2007;24(4):361–6.PubMed Karaduman M, Bilici A, Ozet A, Sengul A, Musabak U, Alomeroglu M. Tissue levels of adiponectin in breast cancer patients. Med Oncol. 2007;24(4):361–6.PubMed
Metadata
Title
The role of adiponectin signaling in metabolic syndrome and cancer
Authors
Michael P. Scheid
Gary Sweeney
Publication date
01-06-2014
Publisher
Springer US
Published in
Reviews in Endocrine and Metabolic Disorders / Issue 2/2014
Print ISSN: 1389-9155
Electronic ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-013-9265-5

Other articles of this Issue 2/2014

Reviews in Endocrine and Metabolic Disorders 2/2014 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.