Skip to main content
Top
Published in: Quality of Life Research 6/2017

Open Access 01-06-2017

Item bias detection in the Hospital Anxiety and Depression Scale using structural equation modeling: comparison with other item bias detection methods

Authors: Mathilde G. E. Verdam, Frans J. Oort, Mirjam A. G. Sprangers

Published in: Quality of Life Research | Issue 6/2017

Login to get access

Abstract

Purpose

Comparison of patient-reported outcomes may be invalidated by the occurrence of item bias, also known as differential item functioning. We show two ways of using structural equation modeling (SEM) to detect item bias: (1) multigroup SEM, which enables the detection of both uniform and nonuniform bias, and (2) multidimensional SEM, which enables the investigation of item bias with respect to several variables simultaneously.

Method

Gender- and age-related bias in the items of the Hospital Anxiety and Depression Scale (HADS; Zigmond and Snaith in Acta Psychiatr Scand 67:361–370, 1983) from a sample of 1068 patients was investigated using the multigroup SEM approach and the multidimensional SEM approach. Results were compared to the results of the ordinal logistic regression, item response theory, and contingency tables methods reported by Cameron et al. (Qual Life Res 23:2883–2888, 2014).

Results

Both SEM approaches identified two items with gender-related bias and two items with age-related bias in the Anxiety subscale, and four items with age-related bias in the Depression subscale. Results from the SEM approaches generally agreed with the results of Cameron et al., although the SEM approaches identified more items as biased.

Conclusion

SEM provides a flexible tool for the investigation of item bias in health-related questionnaires. Multidimensional SEM has practical and statistical advantages over multigroup SEM, and over other item bias detection methods, as it enables item bias detection with respect to multiple variables, of various measurement levels, and with more statistical power, ultimately providing more valid comparisons of patients’ well-being in both research and clinical practice.
Appendix
Available only for authorised users
Literature
7.
go back to reference Cameron, I. M., Scott, N. W., Adler, M., & Reid, I. C. (2014). A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi square procedure. Quality of Life Research, 23, 2883–2888. doi:10.1007/s11136-014-0719-3.CrossRefPubMed Cameron, I. M., Scott, N. W., Adler, M., & Reid, I. C. (2014). A comparison of three methods of assessing differential item functioning (DIF) in the Hospital Anxiety Depression Scale: ordinal logistic regression, Rasch analysis and the Mantel chi square procedure. Quality of Life Research, 23, 2883–2888. doi:10.​1007/​s11136-014-0719-3.CrossRefPubMed
8.
go back to reference Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
10.
go back to reference Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625–641. doi:10.1080/10705510903203573.CrossRef Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625–641. doi:10.​1080/​1070551090320357​3.CrossRef
11.
go back to reference Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality and Quantity, 24, 387–404. doi:10.1007/BF00152012.CrossRef Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality and Quantity, 24, 387–404. doi:10.​1007/​BF00152012.CrossRef
14.
go back to reference Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631–639. doi:10.2307/2285946. Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631–639. doi:10.​2307/​2285946.
15.
go back to reference Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 users’ guide (2nd ed.). Chicago, IL: Scientific software international Inc. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 users’ guide (2nd ed.). Chicago, IL: Scientific software international Inc.
19.
go back to reference Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variables indicators. Psychometrika, 49, 115–132. doi:10.1007/BF02294210.CrossRef Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variables indicators. Psychometrika, 49, 115–132. doi:10.​1007/​BF02294210.CrossRef
20.
go back to reference Oort, F. J. (1992). Using restricted factor analysis to detect item bias. Methodika, 6, 150–166. Oort, F. J. (1992). Using restricted factor analysis to detect item bias. Methodika, 6, 150–166.
21.
go back to reference Oort, F. J. (1998). Simulation study of item bias detection with restricted factor analysis. Structural Equation Modeling, 5, 107–124.CrossRef Oort, F. J. (1998). Simulation study of item bias detection with restricted factor analysis. Structural Equation Modeling, 5, 107–124.CrossRef
24.
go back to reference Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors. In Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA. Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors. In Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
26.
go back to reference Verdam, M. G. E., Oort, F. J., & Sprangers, M. A. G. (2016). Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36. Quality of Life Research, 25, 1361–1383. doi:10.1007/s11136-015-1195-0.CrossRefPubMed Verdam, M. G. E., Oort, F. J., & Sprangers, M. A. G. (2016). Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36. Quality of Life Research, 25, 1361–1383. doi:10.​1007/​s11136-015-1195-0.CrossRefPubMed
Metadata
Title
Item bias detection in the Hospital Anxiety and Depression Scale using structural equation modeling: comparison with other item bias detection methods
Authors
Mathilde G. E. Verdam
Frans J. Oort
Mirjam A. G. Sprangers
Publication date
01-06-2017
Publisher
Springer International Publishing
Published in
Quality of Life Research / Issue 6/2017
Print ISSN: 0962-9343
Electronic ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-016-1469-1

Other articles of this Issue 6/2017

Quality of Life Research 6/2017 Go to the issue