Skip to main content
Top
Published in: Quality of Life Research 6/2016

Open Access 01-06-2016 | Special Section: Response Shift Effects at Item Level (by invitation only)

Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36

Authors: Mathilde G. E. Verdam, Frans J. Oort, Mirjam A. G. Sprangers

Published in: Quality of Life Research | Issue 6/2016

Login to get access

Abstract

Purpose

The structural equation modeling (SEM) approach for detection of response shift (Oort in Qual Life Res 14:587–598, 2005. doi:10.​1007/​s11136-004-0830-y) is especially suited for continuous data, e.g., questionnaire scales. The present objective is to explain how the SEM approach can be applied to discrete data and to illustrate response shift detection in items measuring health-related quality of life (HRQL) of cancer patients.

Methods

The SEM approach for discrete data includes two stages: (1) establishing a model of underlying continuous variables that represent the observed discrete variables, (2) using these underlying continuous variables to establish a common factor model for the detection of response shift and to assess true change. The proposed SEM approach was illustrated with data of 485 cancer patients whose HRQL was measured with the SF-36, before and after start of antineoplastic treatment.

Results

Response shift effects were detected in items of the subscales mental health, physical functioning, role limitations due to physical health, and bodily pain. Recalibration response shifts indicated that patients experienced relatively fewer limitations with “bathing or dressing yourself” (effect size d = 0.51) and less “nervousness” (d = 0.30), but more “pain” (d = −0.23) and less “happiness” (d = −0.16) after antineoplastic treatment as compared to the other symptoms of the same subscale. Overall, patients’ mental health improved, while their physical health, vitality, and social functioning deteriorated. No change was found for the other subscales of the SF-36.

Conclusion

The proposed SEM approach to discrete data enables response shift detection at the item level. This will lead to a better understanding of the response shift phenomena at the item level and therefore enhances interpretation of change in the area of HRQL.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aaronson, N. K., Muller, M., Cohen, P. D. A., Essink-Bot, M.-L., Fekkes, M., Sanderman, R., et al. (1998). Translation, validation, and norming of the Dutch language version of the SF-36 health survey in community and chronic disease populations. Journal of Clinical Epidemiology, 51(11), 1055–1068. doi:10.1016/S0895-4356(98)00097-3.CrossRefPubMed Aaronson, N. K., Muller, M., Cohen, P. D. A., Essink-Bot, M.-L., Fekkes, M., Sanderman, R., et al. (1998). Translation, validation, and norming of the Dutch language version of the SF-36 health survey in community and chronic disease populations. Journal of Clinical Epidemiology, 51(11), 1055–1068. doi:10.​1016/​S0895-4356(98)00097-3.CrossRefPubMed
2.
3.
go back to reference Benson, J., & Fleishman, J. A. (1994). The robustness of maximum likelihood and distribution-free estimators to non-normality in confirmatory factor analysis. Quality and Quantity, 28, 117–136. doi:10.1007/BF01102757.CrossRef Benson, J., & Fleishman, J. A. (1994). The robustness of maximum likelihood and distribution-free estimators to non-normality in confirmatory factor analysis. Quality and Quantity, 28, 117–136. doi:10.​1007/​BF01102757.CrossRef
4.
go back to reference Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. Du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future (pp. 139–168). Lincolnwood, IL: Scientific Software. Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. Du Toit, & D. Sorbom (Eds.), Structural equation modeling: Present and future (pp. 139–168). Lincolnwood, IL: Scientific Software.
9.
11.
go back to reference Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). NJ: Lawrence Erlbaum. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). NJ: Lawrence Erlbaum.
12.
go back to reference Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society (Series B), 39, 1–38. doi:10.1.1.133.4884. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society (Series B), 39, 1–38. doi:10.1.1.133.4884.
13.
go back to reference Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5 and 7 response categories: A comparison of categorical variable estimators using simulated data. British Journal of Mathematical and Statistical Psychology, 47, 309–326. doi: 10.1111/j.2044-8317.1994.tb01039.x. Dolan, C. V. (1994). Factor analysis of variables with 2, 3, 5 and 7 response categories: A comparison of categorical variable estimators using simulated data. British Journal of Mathematical and Statistical Psychology, 47, 309–326. doi: 10.​1111/​j.​2044-8317.​1994.​tb01039.​x.
15.
go back to reference Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625–641. doi:10.1080/10705510903203573.CrossRef Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625–641. doi:10.​1080/​1070551090320357​3.CrossRef
16.
go back to reference Gerhard, C., Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., Gäde, J., & Brandt, H. (2015). On the performance of likelihood-based difference tests in nonlinear structural equation modeling. Structural Equation Modeling, 22, 276–287. doi:10.1080/10705511.2014.935752.CrossRef Gerhard, C., Klein, A. G., Schermelleh-Engel, K., Moosbrugger, H., Gäde, J., & Brandt, H. (2015). On the performance of likelihood-based difference tests in nonlinear structural equation modeling. Structural Equation Modeling, 22, 276–287. doi:10.​1080/​10705511.​2014.​935752.CrossRef
17.
go back to reference Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Schwartz, C. E., et al. (2015). Response shift algorithm in item response theory (ROSALI) for response shift detection with missing data in longitudinal patient-reported outcome studies. Quality of Life Research, 24, 553–564.CrossRefPubMed Guilleux, A., Blanchin, M., Vanier, A., Guillemin, F., Falissard, B., Schwartz, C. E., et al. (2015). Response shift algorithm in item response theory (ROSALI) for response shift detection with missing data in longitudinal patient-reported outcome studies. Quality of Life Research, 24, 553–564.CrossRefPubMed
18.
go back to reference Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality & Quantity, 24, 387–404. doi:10.1007/BF00152012.CrossRef Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality & Quantity, 24, 387–404. doi:10.​1007/​BF00152012.CrossRef
20.
go back to reference Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 users’guide (2nd ed.). Chcago, IL: Scientific software international Inc. Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 users’guide (2nd ed.). Chcago, IL: Scientific software international Inc.
22.
go back to reference Karnofsky, D. A., & Burchenal, J. H. (1949). The clinical evaluation of chemotherapeutic agents in cancer. In: C. MacLeod (Eds.), Evaluation of chemotherapeutic agents (pp. 191–205). New York: Columbia University. Karnofsky, D. A., & Burchenal, J. H. (1949). The clinical evaluation of chemotherapeutic agents in cancer. In: C. MacLeod  (Eds.), Evaluation of chemotherapeutic agents (pp. 191–205). New York: Columbia University.
23.
go back to reference Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley Publishing Company Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley Publishing Company
27.
go back to reference Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variables indicators. Psychometrika, 49, 115–132. doi:10.1007/BF02294210.CrossRef Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variables indicators. Psychometrika, 49, 115–132. doi:10.​1007/​BF02294210.CrossRef
28.
go back to reference Muthén, L. K., & Muthén, B. O. (1998). Mplus user’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén. Muthén, L. K., & Muthén, B. O. (1998). Mplus user’s guide (6th ed.). Los Angeles, CA: Muthén & Muthén.
30.
31.
go back to reference Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry. Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx: Statistical modeling (6th ed.). Richmond, VA: Department of Psychiatry.
34.
go back to reference Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.CrossRef Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.CrossRef
35.
go back to reference Satorra, A., & Bentler, P. M. (1988). Scaling corrections for Chi square statistics in covariance structure analysis. In Proceedings of the business and economic statistics section of the American Statistical Association, pp. 308–313. Satorra, A., & Bentler, P. M. (1988). Scaling corrections for Chi square statistics in covariance structure analysis. In Proceedings of the business and economic statistics section of the American Statistical Association, pp. 308–313.
36.
39.
go back to reference Takane, Y., & De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408. doi:10.1007/BF02294363.CrossRef Takane, Y., & De Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408. doi:10.​1007/​BF02294363.CrossRef
40.
go back to reference Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: Manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: Manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center.
Metadata
Title
Using structural equation modeling to detect response shifts and true change in discrete variables: an application to the items of the SF-36
Authors
Mathilde G. E. Verdam
Frans J. Oort
Mirjam A. G. Sprangers
Publication date
01-06-2016
Publisher
Springer International Publishing
Published in
Quality of Life Research / Issue 6/2016
Print ISSN: 0962-9343
Electronic ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-015-1195-0

Other articles of this Issue 6/2016

Quality of Life Research 6/2016 Go to the issue

Special Section: Response Shift Effects at Item Level (by invitation only)

The Guttman errors as a tool for response shift detection at subgroup and item levels