Skip to main content
Top
Published in: Neuropsychology Review 4/2010

Open Access 01-12-2010 | Review

The Basics of Brain Development

Authors: Joan Stiles, Terry L. Jernigan

Published in: Neuropsychology Review | Issue 4/2010

Login to get access

Abstract

Over the past several decades, significant advances have been made in our understanding of the basic stages and mechanisms of mammalian brain development. Studies elucidating the neurobiology of brain development span the levels of neural organization from the macroanatomic, to the cellular, to the molecular. Together this large body of work provides a picture of brain development as the product of a complex series of dynamic and adaptive processes operating within a highly constrained, genetically organized but constantly changing context. The view of brain development that has emerged from the developmental neurobiology literature presents both challenges and opportunities to psychologists seeking to understand the fundamental processes that underlie social and cognitive development, and the neural systems that mediate them. This chapter is intended to provide an overview of some very basic principles of brain development, drawn from contemporary developmental neurobiology, that may be of use to investigators from a wide range of disciplines.
Footnotes
1
Note that by convention gene names are italicized, and the name of proteins that are the products of gene expression are not.
 
Literature
go back to reference Anderson, S. A., Marin, O., et al. (2001). Distinct cortical migrations from the medial and lateral ganglionic eminences. Development, 128(3), 353–363.PubMed Anderson, S. A., Marin, O., et al. (2001). Distinct cortical migrations from the medial and lateral ganglionic eminences. Development, 128(3), 353–363.PubMed
go back to reference Barkovich, A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR. American Journal of Neuroradiology, 21(6), 1099–1109.PubMed Barkovich, A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR. American Journal of Neuroradiology, 21(6), 1099–1109.PubMed
go back to reference Barkovich, A. J. (2005). Magnetic resonance techniques in the assessment of myelin and myelination. Journal of Inherited Metabolic Disease, 28(3), 311–343.PubMedCrossRef Barkovich, A. J. (2005). Magnetic resonance techniques in the assessment of myelin and myelination. Journal of Inherited Metabolic Disease, 28(3), 311–343.PubMedCrossRef
go back to reference Barnea-Goraly, N., Menon, V., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854.PubMedCrossRef Barnea-Goraly, N., Menon, V., et al. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cerebral Cortex, 15(12), 1848–1854.PubMedCrossRef
go back to reference Basser, P. J., Mattiello, J., et al. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.PubMedCrossRef Basser, P. J., Mattiello, J., et al. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.PubMedCrossRef
go back to reference Bayer, S. A., Altman, J., et al. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology, 14(1), 83–144.PubMed Bayer, S. A., Altman, J., et al. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology, 14(1), 83–144.PubMed
go back to reference Bielle, F., Griveau, A., et al. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neuroscience, 8(8), 1002–1012.PubMedCrossRef Bielle, F., Griveau, A., et al. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature Neuroscience, 8(8), 1002–1012.PubMedCrossRef
go back to reference Bishop, K. M., Goudreau, G., et al. (2000). Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science, 288(5464), 344–349.PubMedCrossRef Bishop, K. M., Goudreau, G., et al. (2000). Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science, 288(5464), 344–349.PubMedCrossRef
go back to reference Bishop, K. M., Rubenstein, J. L., et al. (2002). Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. The Journal of Neuroscience, 22(17), 7627–7638.PubMed Bishop, K. M., Rubenstein, J. L., et al. (2002). Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. The Journal of Neuroscience, 22(17), 7627–7638.PubMed
go back to reference Black, J. E., Sirevaag, A. M., et al. (1987). Complex experience promotes capillary formation in young rat visual cortex. Neuroscience Letters, 83(3), 351–355.PubMedCrossRef Black, J. E., Sirevaag, A. M., et al. (1987). Complex experience promotes capillary formation in young rat visual cortex. Neuroscience Letters, 83(3), 351–355.PubMedCrossRef
go back to reference Bourgeois, J. P., Goldman-Rakic, P. S., et al. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4(1), 78–96.PubMedCrossRef Bourgeois, J. P., Goldman-Rakic, P. S., et al. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4(1), 78–96.PubMedCrossRef
go back to reference Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. The Journal of Neuroscience, 13(7), 2801–2820.PubMed Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. The Journal of Neuroscience, 13(7), 2801–2820.PubMed
go back to reference Brodal, P. (2010). The central nervous system: Structure and function. New York: NY, Oxford University Press. Brodal, P. (2010). The central nervous system: Structure and function. New York: NY, Oxford University Press.
go back to reference Brown, M., Keynes, R., et al. (2001). The developing brain. Oxford: Oxford University Press. Brown, M., Keynes, R., et al. (2001). The developing brain. Oxford: Oxford University Press.
go back to reference Buss, R. R., & Oppenheim, R. W. (2004). Role of programmed cell death in normal neuronal development and function. Anatomical Science International, 79(4), 191–197.PubMedCrossRef Buss, R. R., & Oppenheim, R. W. (2004). Role of programmed cell death in normal neuronal development and function. Anatomical Science International, 79(4), 191–197.PubMedCrossRef
go back to reference Buss, R. R., Sun, W., et al. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1–35.PubMedCrossRef Buss, R. R., Sun, W., et al. (2006). Adaptive roles of programmed cell death during nervous system development. Annual Review of Neuroscience, 29, 1–35.PubMedCrossRef
go back to reference Bystron, I., Blakemore, C., et al. (2008). Development of the human cerebral cortex: boulder committee revisited. Nature Reviews. Neuroscience, 9(2), 110–122.PubMedCrossRef Bystron, I., Blakemore, C., et al. (2008). Development of the human cerebral cortex: boulder committee revisited. Nature Reviews. Neuroscience, 9(2), 110–122.PubMedCrossRef
go back to reference Cascio, C. J., Gerig, G., et al. (2007). Diffusion tensor imaging: Application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46(2), 213–223.PubMedCrossRef Cascio, C. J., Gerig, G., et al. (2007). Diffusion tensor imaging: Application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46(2), 213–223.PubMedCrossRef
go back to reference Cayre, M., Canoll, P., et al. (2009). Cell migration in the normal and pathological postnatal mammalian brain. Progress in Neurobiology, 88(1), 41–63.PubMedCrossRef Cayre, M., Canoll, P., et al. (2009). Cell migration in the normal and pathological postnatal mammalian brain. Progress in Neurobiology, 88(1), 41–63.PubMedCrossRef
go back to reference Chi, J. G., Dooling, E. C., et al. (1977). Gyral development of the human brain. Annals of Neurology, 1(1), 86–93.PubMedCrossRef Chi, J. G., Dooling, E. C., et al. (1977). Gyral development of the human brain. Annals of Neurology, 1(1), 86–93.PubMedCrossRef
go back to reference Clancy, B., Darlington, R. B., et al. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17.PubMedCrossRef Clancy, B., Darlington, R. B., et al. (2001). Translating developmental time across mammalian species. Neuroscience, 105(1), 7–17.PubMedCrossRef
go back to reference Cooper, J. A. (2008). A mechanism for inside-out lamination in the neocortex. Trends in Neurosciences, 31(3), 113–119.PubMedCrossRef Cooper, J. A. (2008). A mechanism for inside-out lamination in the neocortex. Trends in Neurosciences, 31(3), 113–119.PubMedCrossRef
go back to reference Copp, A. J., Greene, N. D., et al. (2003). The genetic basis of mammalian neurulation. Nature Reviews. Genetics, 4(10), 784–793.PubMedCrossRef Copp, A. J., Greene, N. D., et al. (2003). The genetic basis of mammalian neurulation. Nature Reviews. Genetics, 4(10), 784–793.PubMedCrossRef
go back to reference Corbin, J. G., Nery, S., et al. (2001). Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nature Neuroscience, 4(Suppl), 1177–1182.PubMedCrossRef Corbin, J. G., Nery, S., et al. (2001). Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nature Neuroscience, 4(Suppl), 1177–1182.PubMedCrossRef
go back to reference Courchesne, E., Chisum, H. J., et al. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216(3), 672–682.PubMed Courchesne, E., Chisum, H. J., et al. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216(3), 672–682.PubMed
go back to reference Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development, 127(13), 2863–2872.PubMed Desai, A. R., & McConnell, S. K. (2000). Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development, 127(13), 2863–2872.PubMed
go back to reference de la Rosa, E. J., & de Pablo, F. (2000). Cell death in early neural development: beyond the neurotrophic theory. Trends in Neurosciences, 23(10), 454–458.PubMedCrossRef de la Rosa, E. J., & de Pablo, F. (2000). Cell death in early neural development: beyond the neurotrophic theory. Trends in Neurosciences, 23(10), 454–458.PubMedCrossRef
go back to reference Fields, R. D., & Burnstock, G. (2006). Purinergic signalling in neuron-glia interactions. Nature Reviews. Neuroscience, 7(6), 423–436.PubMedCrossRef Fields, R. D., & Burnstock, G. (2006). Purinergic signalling in neuron-glia interactions. Nature Reviews. Neuroscience, 7(6), 423–436.PubMedCrossRef
go back to reference Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17(1), 55–61.PubMedCrossRef Frantz, G. D., & McConnell, S. K. (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17(1), 55–61.PubMedCrossRef
go back to reference Gavalas, A., Ruhrberg, C., Livet, J., Henderson, C. E., & Krumlauf, R. (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb2 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development, 130(23) 5663–5679.PubMedCrossRef Gavalas, A., Ruhrberg, C., Livet, J., Henderson, C. E., & Krumlauf, R. (2003) Neuronal defects in the hindbrain of Hoxa1, Hoxb2 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development, 130(23) 5663–5679.PubMedCrossRef
go back to reference Giedd, J. N., Snell, J. W., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cerebral Cortex, 6(4), 551–560.PubMedCrossRef Giedd, J. N., Snell, J. W., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cerebral Cortex, 6(4), 551–560.PubMedCrossRef
go back to reference Giedd, J. N., Vaituzis, A. C., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. The Journal of Comparative Neurology, 366(2), 223–230.PubMedCrossRef Giedd, J. N., Vaituzis, A. C., et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. The Journal of Comparative Neurology, 366(2), 223–230.PubMedCrossRef
go back to reference Gogtay, N., Giedd, J. N., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.PubMedCrossRef Gogtay, N., Giedd, J. N., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.PubMedCrossRef
go back to reference Greenough, W. T., & Chang, F. F. (1988). Plasticity of synapse structure and pattern in the cerebral cortex. In A. Peters & E. G. Jones (Eds.), Cerebral cortex (pp. 391–440). New York: Plenum. Greenough, W. T., & Chang, F. F. (1988). Plasticity of synapse structure and pattern in the cerebral cortex. In A. Peters & E. G. Jones (Eds.), Cerebral cortex (pp. 391–440). New York: Plenum.
go back to reference Greenough, W. T., Black, J. E., et al. (1987). Experience and brain development. Child Development, 58(3), 539–559.PubMedCrossRef Greenough, W. T., Black, J. E., et al. (1987). Experience and brain development. Child Development, 58(3), 539–559.PubMedCrossRef
go back to reference Hamasaki, T., Leingartner, A., et al. (2004). EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron, 43(3), 359–372.PubMedCrossRef Hamasaki, T., Leingartner, A., et al. (2004). EMX2 regulates sizes and positioning of the primary sensory and motor areas in neocortex by direct specification of cortical progenitors. Neuron, 43(3), 359–372.PubMedCrossRef
go back to reference Hermoye, L., Saint-Martin, C., et al. (2006). Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage, 29(2), 493–504.PubMedCrossRef Hermoye, L., Saint-Martin, C., et al. (2006). Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage, 29(2), 493–504.PubMedCrossRef
go back to reference Hua, J. Y. & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7, 327–332.PubMedCrossRef Hua, J. Y. & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7, 327–332.PubMedCrossRef
go back to reference Huang, Z. (2009). Molecular regulation of neuronal migration during neocortical development. Molecular and Cellular Neurosciences, 42(1), 11–22.PubMedCrossRef Huang, Z. (2009). Molecular regulation of neuronal migration during neocortical development. Molecular and Cellular Neurosciences, 42(1), 11–22.PubMedCrossRef
go back to reference Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCrossRef Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCrossRef
go back to reference Hubel, D. H., & Wiesel, T. N. (1977). Ferrier Lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, 198, 1–59.CrossRef Hubel, D. H., & Wiesel, T. N. (1977). Ferrier Lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London. Series B, 198, 1–59.CrossRef
go back to reference Hubel, D. H., Wiesel, T. N., et al. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 278(961), 377–409.PubMedCrossRef Hubel, D. H., Wiesel, T. N., et al. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 278(961), 377–409.PubMedCrossRef
go back to reference Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal & Neonatal Medicine, 11(6), 489–497.CrossRef Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal & Neonatal Medicine, 11(6), 489–497.CrossRef
go back to reference Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167–178.PubMedCrossRef Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387(2), 167–178.PubMedCrossRef
go back to reference Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6(1), 1–9.PubMed Huttenlocher, P. R., & de Courten, C. (1987). The development of synapses in striate cortex of man. Human Neurobiology, 6(1), 1–9.PubMed
go back to reference Innocenti, G. M., & Price, D. J. (2005). Exuberance in the development of cortical networks. Nature Reviews. Neuroscience, 6(12), 955–965.PubMedCrossRef Innocenti, G. M., & Price, D. J. (2005). Exuberance in the development of cortical networks. Nature Reviews. Neuroscience, 6(12), 955–965.PubMedCrossRef
go back to reference Iwasaki, N., Hamano, K., et al. (1997). Volumetric quantification of brain development using MRI. Neuroradiology, 39, 841–846.PubMedCrossRef Iwasaki, N., Hamano, K., et al. (1997). Volumetric quantification of brain development using MRI. Neuroradiology, 39, 841–846.PubMedCrossRef
go back to reference Jernigan, T. L., & Tallal, P. (1990). Late childhood changes in brain morphology observable with MRI. Developmental Medicine and Child Neurology, 32(5), 379–385.PubMedCrossRef Jernigan, T. L., & Tallal, P. (1990). Late childhood changes in brain morphology observable with MRI. Developmental Medicine and Child Neurology, 32(5), 379–385.PubMedCrossRef
go back to reference Jernigan, T. L., & Gamst, A. C. (2005). Changes in volume with age--consistency and interpretation of observed effects. Neurobiol Aging, 26(9), 1271–1274. discussion 1275-1278.PubMedCrossRef Jernigan, T. L., & Gamst, A. C. (2005). Changes in volume with age--consistency and interpretation of observed effects. Neurobiol Aging, 26(9), 1271–1274. discussion 1275-1278.PubMedCrossRef
go back to reference Jernigan, T. L., Trauner, D. A., et al. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114(Pt 5), 2037–2049.PubMedCrossRef Jernigan, T. L., Trauner, D. A., et al. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114(Pt 5), 2037–2049.PubMedCrossRef
go back to reference Jones, T. A., & Greenough, W. T. (1996). Ultrastructural evidence for increased contact between astrocytes and synapses in rats reared in a complex environment. Neurobiology of Learning and Memory, 65(1), 48–56.PubMedCrossRef Jones, T. A., & Greenough, W. T. (1996). Ultrastructural evidence for increased contact between astrocytes and synapses in rats reared in a complex environment. Neurobiology of Learning and Memory, 65(1), 48–56.PubMedCrossRef
go back to reference Kennedy, H., & Dehay, C. (2001). Gradients and boundaries: limits of modularity and its influence on the isocortex. [Commentary]. Developmental Science, 4(2), 147–148. Kennedy, H., & Dehay, C. (2001). Gradients and boundaries: limits of modularity and its influence on the isocortex. [Commentary]. Developmental Science, 4(2), 147–148.
go back to reference Kennedy, D. N., Makris, N., et al. (2002). Basic principles of MRI and morphometry studies of human brain development. Developmental Science, 5(3), 268–278.CrossRef Kennedy, D. N., Makris, N., et al. (2002). Basic principles of MRI and morphometry studies of human brain development. Developmental Science, 5(3), 268–278.CrossRef
go back to reference Kiecker, C., & Lumsden, A. (2004). Hedgehog signaling from ZLI regulates diencephalic regional identity. Nature Neuroscience, 7(11), 1242–1249.PubMedCrossRef Kiecker, C., & Lumsden, A. (2004). Hedgehog signaling from ZLI regulates diencephalic regional identity. Nature Neuroscience, 7(11), 1242–1249.PubMedCrossRef
go back to reference Kostovic, I., & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal & Neonatal Medicine, 11(6), 415–422.CrossRef Kostovic, I., & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal & Neonatal Medicine, 11(6), 415–422.CrossRef
go back to reference Lebel, C., & Beaulieu, C. (2009). Longitudinal diffusion tensor imaging of healthy brain development in children. Honolulu: ISMRM Annual Meeting. Lebel, C., & Beaulieu, C. (2009). Longitudinal diffusion tensor imaging of healthy brain development in children. Honolulu: ISMRM Annual Meeting.
go back to reference Lebel, C., Walker, L., et al. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3), 1044–1055.PubMedCrossRef Lebel, C., Walker, L., et al. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3), 1044–1055.PubMedCrossRef
go back to reference Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729.PubMedCrossRef Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729.PubMedCrossRef
go back to reference Leone, D. P., Srinivasan, K., et al. (2008). The determination of projection neuron identity in the developing cerebral cortex. Current Opinion in Neurobiology, 18(1), 28–35.PubMedCrossRef Leone, D. P., Srinivasan, K., et al. (2008). The determination of projection neuron identity in the developing cerebral cortex. Current Opinion in Neurobiology, 18(1), 28–35.PubMedCrossRef
go back to reference LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191(1), 1–51.PubMedCrossRef LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191(1), 1–51.PubMedCrossRef
go back to reference Levi-Montalcini, R. (1964). The nerve growth factor. Annals of the New York Academy of Sciences, 118, 149–170.PubMedCrossRef Levi-Montalcini, R. (1964). The nerve growth factor. Annals of the New York Academy of Sciences, 118, 149–170.PubMedCrossRef
go back to reference Lin, S. C., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience, 7(1), 24–32.PubMedCrossRef Lin, S. C., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience, 7(1), 24–32.PubMedCrossRef
go back to reference Lumsden, A., & Keynes, R. (1989). Segmental patterns of neuronal development in the chick hindbrain. Nature, 337(6206), 424–428.PubMedCrossRef Lumsden, A., & Keynes, R. (1989). Segmental patterns of neuronal development in the chick hindbrain. Nature, 337(6206), 424–428.PubMedCrossRef
go back to reference Marin, O., & Rubenstein, J. L. (2001). A long, remarkable journey: tangential migration in the telencephalon. Nature Reviews. Neuroscience, 2(11), 780–790.PubMedCrossRef Marin, O., & Rubenstein, J. L. (2001). A long, remarkable journey: tangential migration in the telencephalon. Nature Reviews. Neuroscience, 2(11), 780–790.PubMedCrossRef
go back to reference Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology, 1(4), 351–363.PubMedCrossRef Markham, J. A., & Greenough, W. T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biology, 1(4), 351–363.PubMedCrossRef
go back to reference McConnell, S. K., & Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science, 254(5029), 282–285.PubMedCrossRef McConnell, S. K., & Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science, 254(5029), 282–285.PubMedCrossRef
go back to reference McTigue, D. M., & Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry, 107(1), 1–19.PubMedCrossRef McTigue, D. M., & Tripathi, R. B. (2008). The life, death, and replacement of oligodendrocytes in the adult CNS. Journal of Neurochemistry, 107(1), 1–19.PubMedCrossRef
go back to reference Miyata, T., Kawaguchi, A., et al. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31(5), 727–741.PubMedCrossRef Miyata, T., Kawaguchi, A., et al. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31(5), 727–741.PubMedCrossRef
go back to reference Molyneaux, B. J., Arlotta, P., et al. (2007). Neuronal subtype specification in the cerebral cortex. Nature Reviews. Neuroscience, 8(6), 427–437.PubMedCrossRef Molyneaux, B. J., Arlotta, P., et al. (2007). Neuronal subtype specification in the cerebral cortex. Nature Reviews. Neuroscience, 8(6), 427–437.PubMedCrossRef
go back to reference Morange, M. (2001). The misunderstood gene. Cambridge: MA, Harvard University Press. Morange, M. (2001). The misunderstood gene. Cambridge: MA, Harvard University Press.
go back to reference Mori, S., & van Zijl, P. C. (1995). Diffusion weighting by the trace of the diffusion tensor within a single scan. Magnetic Resonance in Medicine, 33(1), 41–52.PubMedCrossRef Mori, S., & van Zijl, P. C. (1995). Diffusion weighting by the trace of the diffusion tensor within a single scan. Magnetic Resonance in Medicine, 33(1), 41–52.PubMedCrossRef
go back to reference Mukherjee, P., & McKinstry, R. C. (2006). Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 16(1), 19–43.PubMedCrossRef Mukherjee, P., & McKinstry, R. C. (2006). Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clinics of North America, 16(1), 19–43.PubMedCrossRef
go back to reference Nadarajah, B., Alifragis, P., Wong, R. O., & Parnavelas, J. G. (2003). Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cerebral Cortex, 13(6), 607–611.PubMedCrossRef Nadarajah, B., Alifragis, P., Wong, R. O., & Parnavelas, J. G. (2003). Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cerebral Cortex, 13(6), 607–611.PubMedCrossRef
go back to reference Nadarajah, B., & Parnavelas, J. G. (2002). Modes of neuronal migration in the developing cerebral cortex. Nature Reviews. Neuroscience, 3(6), 423–432.PubMedCrossRef Nadarajah, B., & Parnavelas, J. G. (2002). Modes of neuronal migration in the developing cerebral cortex. Nature Reviews. Neuroscience, 3(6), 423–432.PubMedCrossRef
go back to reference Nakamura, H., Katahira, T., Matsunaga, E., & Sato, T. (2005). Isthmus organizer for midbrain and hindbrain development. Brain Research Reviews, 49(2), 120–126.CrossRef Nakamura, H., Katahira, T., Matsunaga, E., & Sato, T. (2005). Isthmus organizer for midbrain and hindbrain development. Brain Research Reviews, 49(2), 120–126.CrossRef
go back to reference Nery, S., Fishell, G., et al. (2002). The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience, 5(12), 1279–1287.PubMedCrossRef Nery, S., Fishell, G., et al. (2002). The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nature Neuroscience, 5(12), 1279–1287.PubMedCrossRef
go back to reference Noctor, S. C., Flint, A. C., et al. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714–720.PubMedCrossRef Noctor, S. C., Flint, A. C., et al. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714–720.PubMedCrossRef
go back to reference Noctor, S. C., Flint, A. C., et al. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. The Journal of Neuroscience, 22(8), 3161–3173.PubMed Noctor, S. C., Flint, A. C., et al. (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. The Journal of Neuroscience, 22(8), 3161–3173.PubMed
go back to reference O’Leary, D. D., & Sahara, S. (2008). Genetic regulation of arealization of the neocortex. Current Opinion in Neurobiology, 18(1), 90–100.PubMedCrossRef O’Leary, D. D., & Sahara, S. (2008). Genetic regulation of arealization of the neocortex. Current Opinion in Neurobiology, 18(1), 90–100.PubMedCrossRef
go back to reference O’Leary, D. D., Chou, S. J., et al. (2007). Area patterning of the mammalian cortex. Neuron, 56(2), 252–269.PubMedCrossRef O’Leary, D. D., Chou, S. J., et al. (2007). Area patterning of the mammalian cortex. Neuron, 56(2), 252–269.PubMedCrossRef
go back to reference Oppenheim, R. W. (1989). The neurotrophic theory and naturally occurring motoneuron death [see comments]. Trends in Neurosciences, 12(7). Oppenheim, R. W. (1989). The neurotrophic theory and naturally occurring motoneuron death [see comments]. Trends in Neurosciences, 12(7).
go back to reference Ostby, Y., Tamnes, C. K., et al. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. The Journal of Neuroscience, 29(38), 11772–11782.PubMedCrossRef Ostby, Y., Tamnes, C. K., et al. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. The Journal of Neuroscience, 29(38), 11772–11782.PubMedCrossRef
go back to reference Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: effect of sex and age. The Journal of Comparative Neurology, 384(2), 312–320.PubMedCrossRef Pakkenberg, B., & Gundersen, H. J. (1997). Neocortical neuron number in humans: effect of sex and age. The Journal of Comparative Neurology, 384(2), 312–320.PubMedCrossRef
go back to reference Pallas, S. L., Roe, A. W., et al. (1990). Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. The Journal of Comparative Neurology, 298(1), 50–68.PubMedCrossRef Pallas, S. L., Roe, A. W., et al. (1990). Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar complex and the topography of the MGN-AI projection. The Journal of Comparative Neurology, 298(1), 50–68.PubMedCrossRef
go back to reference Parnavelas, J. G., Alifragis, P., et al. (2002). The origin and migration of cortical neurons. Progress in Brain Research, 136, 73–80.PubMedCrossRef Parnavelas, J. G., Alifragis, P., et al. (2002). The origin and migration of cortical neurons. Progress in Brain Research, 136, 73–80.PubMedCrossRef
go back to reference Paus, T., Collins, D. L., et al. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin, 54(3), 255–266.PubMedCrossRef Paus, T., Collins, D. L., et al. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Research Bulletin, 54(3), 255–266.PubMedCrossRef
go back to reference Pfefferbaum, A., Mathalon, D. H., et al. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887.PubMed Pfefferbaum, A., Mathalon, D. H., et al. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874–887.PubMed
go back to reference Rabinowicz, T., de Courten-Myers, G. M., et al. (1996). Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. Journal of Neuropathology and Experimental Neurology, 55(3), 320–328.PubMedCrossRef Rabinowicz, T., de Courten-Myers, G. M., et al. (1996). Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. Journal of Neuropathology and Experimental Neurology, 55(3), 320–328.PubMedCrossRef
go back to reference Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. The Journal of Comparative Neurology, 145(1), 61–83.PubMedCrossRef Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. The Journal of Comparative Neurology, 145(1), 61–83.PubMedCrossRef
go back to reference Rakic, P. (1995). Corticogenesis in human and nonhuman primates. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 127–145). Cambridge: The MIT Press. Rakic, P. (1995). Corticogenesis in human and nonhuman primates. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 127–145). Cambridge: The MIT Press.
go back to reference Rakic, S., & Zecevic, N. (2000). Programmed cell death in the developing human telencephalon. The European Journal of Neuroscience, 12(8), 2721–2734.PubMedCrossRef Rakic, S., & Zecevic, N. (2000). Programmed cell death in the developing human telencephalon. The European Journal of Neuroscience, 12(8), 2721–2734.PubMedCrossRef
go back to reference Reiss, A. L., Abrams, M. T., et al. (1996). Brain development, gender and IQ in children: a volumetric imaging study. Brain, 119(5), 1763–1774.PubMedCrossRef Reiss, A. L., Abrams, M. T., et al. (1996). Brain development, gender and IQ in children: a volumetric imaging study. Brain, 119(5), 1763–1774.PubMedCrossRef
go back to reference Rice, D. S., & Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annual Review of Neuroscience, 24, 1005–1039.PubMedCrossRef Rice, D. S., & Curran, T. (2001). Role of the reelin signaling pathway in central nervous system development. Annual Review of Neuroscience, 24, 1005–1039.PubMedCrossRef
go back to reference Sansom, S. N., & Livesey, F. J. (2009). Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol, 1(2), a002519.PubMedCrossRef Sansom, S. N., & Livesey, F. J. (2009). Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harb Perspect Biol, 1(2), a002519.PubMedCrossRef
go back to reference Schneider, J. F., Il’yasov, K. A., et al. (2004). Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology, 46(4), 258–266.PubMedCrossRef Schneider, J. F., Il’yasov, K. A., et al. (2004). Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology, 46(4), 258–266.PubMedCrossRef
go back to reference Shen, Q., Wang, Y., et al. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 9(6), 743–751.PubMedCrossRef Shen, Q., Wang, Y., et al. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 9(6), 743–751.PubMedCrossRef
go back to reference Snook, L., Paulson, L. A., et al. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage, 26(4), 1164–1173.PubMedCrossRef Snook, L., Paulson, L. A., et al. (2005). Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage, 26(4), 1164–1173.PubMedCrossRef
go back to reference Sowell, E. R., Thompson, P. M., et al. (1999a). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 9(6 Pt 1), 587–597.PubMedCrossRef Sowell, E. R., Thompson, P. M., et al. (1999a). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 9(6 Pt 1), 587–597.PubMedCrossRef
go back to reference Sowell, E. R., Thompson, P. M., et al. (1999b). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861.PubMedCrossRef Sowell, E. R., Thompson, P. M., et al. (1999b). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2(10), 859–861.PubMedCrossRef
go back to reference Sowell, E. R., Trauner, D. A., et al. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Developmental Medicine and Child Neurology, 44(1), 4–16.PubMedCrossRef Sowell, E. R., Trauner, D. A., et al. (2002). Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Developmental Medicine and Child Neurology, 44(1), 4–16.PubMedCrossRef
go back to reference Sowell, E. R., Thompson, P. M., et al. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.PubMedCrossRef Sowell, E. R., Thompson, P. M., et al. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.PubMedCrossRef
go back to reference Stanfield, B. B., & D. D. O'Leary (1985). The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. Journal of Comparative Neurology, 238(2). Stanfield, B. B., & D. D. O'Leary (1985). The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. Journal of Comparative Neurology, 238(2).
go back to reference Stanfield, B. B., D. D. O'Leary, et al. (1982). Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature, 298(5872). Stanfield, B. B., D. D. O'Leary, et al. (1982). Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature, 298(5872).
go back to reference Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Cambridge: MA, Harvard University Press. Stiles, J. (2008). The fundamentals of brain development: Integrating nature and nurture. Cambridge: MA, Harvard University Press.
go back to reference Sur, M., Garraghty, P. E., et al. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242(4884), 1437–1441.PubMedCrossRef Sur, M., Garraghty, P. E., et al. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242(4884), 1437–1441.PubMedCrossRef
go back to reference Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews. Neuroscience, 2(4), 251–262.PubMedCrossRef Sur, M., & Leamey, C. A. (2001). Development and plasticity of cortical areas and networks. Nature Reviews. Neuroscience, 2(4), 251–262.PubMedCrossRef
go back to reference Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex. Science, 310(5749), 805–810.PubMedCrossRef Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex. Science, 310(5749), 805–810.PubMedCrossRef
go back to reference Suzuki, Y., Matsuzawa, H., et al. (2003). Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR in Biomedicine, 16(5), 257–260.PubMedCrossRef Suzuki, Y., Matsuzawa, H., et al. (2003). Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR in Biomedicine, 16(5), 257–260.PubMedCrossRef
go back to reference Toga, A. W., Thompson, P. M., et al. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148–159.PubMedCrossRef Toga, A. W., Thompson, P. M., et al. (2006). Mapping brain maturation. Trends in Neurosciences, 29(3), 148–159.PubMedCrossRef
go back to reference Valiente, M., & Marin, O. (2010). Neuronal migration mechanisms in development and disease. Current Opinion in Neurobiology, 20(1), 68–78.PubMedCrossRef Valiente, M., & Marin, O. (2010). Neuronal migration mechanisms in development and disease. Current Opinion in Neurobiology, 20(1), 68–78.PubMedCrossRef
go back to reference von Melchner, L., Pallas, S. L., et al. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404(6780), 871–876.CrossRef von Melchner, L., Pallas, S. L., et al. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404(6780), 871–876.CrossRef
go back to reference Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan. Waddington, C. H. (1939). An introduction to modern genetics. New York: Macmillan.
go back to reference Weissman, T., Noctor, S. C., et al. (2003). Neurogenic Radial Glial Cells in Reptile, Rodent and Human: from Mitosis to Migration. Cerebral Cortex, 13(6), 550–559.PubMedCrossRef Weissman, T., Noctor, S. C., et al. (2003). Neurogenic Radial Glial Cells in Reptile, Rodent and Human: from Mitosis to Migration. Cerebral Cortex, 13(6), 550–559.PubMedCrossRef
go back to reference Wodarz, A., & Huttner, W. B. (2003). Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mechanisms of Development, 120(11). 1297–1309.CrossRef Wodarz, A., & Huttner, W. B. (2003). Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mechanisms of Development, 120(11). 1297–1309.CrossRef
go back to reference Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific. Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life (pp. 3–70). Oxford: Blackwell Scientific.
go back to reference Yeo, W., & Gautier, J. (2004). Early neural cell death: dying to become neurons. Developmental Biology, 274(2), 233–244.PubMedCrossRef Yeo, W., & Gautier, J. (2004). Early neural cell death: dying to become neurons. Developmental Biology, 274(2), 233–244.PubMedCrossRef
go back to reference Zecevic, N., Bourgeois, J. P., et al. (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Research. Developmental Brain Research, 50(1), 11–32.PubMedCrossRef Zecevic, N., Bourgeois, J. P., et al. (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Research. Developmental Brain Research, 50(1), 11–32.PubMedCrossRef
go back to reference Zembrzycki, A., Griesel, G., et al. (2007). Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Development, 2, 8.PubMedCrossRef Zembrzycki, A., Griesel, G., et al. (2007). Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain. Neural Development, 2, 8.PubMedCrossRef
Metadata
Title
The Basics of Brain Development
Authors
Joan Stiles
Terry L. Jernigan
Publication date
01-12-2010
Publisher
Springer US
Published in
Neuropsychology Review / Issue 4/2010
Print ISSN: 1040-7308
Electronic ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-010-9148-4

Other articles of this Issue 4/2010

Neuropsychology Review 4/2010 Go to the issue