Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2018

01-08-2018 | Laboratory Investigation

Evidence for intrathecal sodium butyrate as a novel option for leptomeningeal metastasis

Authors: Hidemitsu Nakagawa, Yoshihiro Yui, Satoru Sasagawa, Kazuyuki Itoh

Published in: Journal of Neuro-Oncology | Issue 1/2018

Login to get access

Abstract

Introduction

The prognosis for leptomeningeal metastasis (LM) remains extremely poor regardless of intrathecal chemotherapy with various drugs, and thus, new treatments are necessary. Butyrate is an endogenous 4-carbon saturated fatty acid, has been investigated as an anti-tumor agent because of its multiple suppressive effects on several tumors. In this study, we investigated the cellular basis of sodium butyrate (SB), a sodium salt compound of butyrate, in vitro and evaluated the clinical potential of intrathecal SB administration for LM in vivo.

Methods

We examined SB’s effects on Walker 256 rat mammary tumor cells with regard to cytotoxicity, cell morphology, colony formation, migration, and invasion. We also examined SB’s neurotoxicity for primary neurons and primary astrocytes. We finally evaluated the potency of continuous intrathecal SB administration in rats with intrathecally transplanted breast tumors as an LM model.

Results

Physiological SB concentrations (2–4 mM) induced growth suppression, morphological changes, and inhibition of migration and invasion, but did not exhibit neurotoxic effects on primary neurons and astrocytes. Continuous intrathecal SB administration in a rat LM model significantly increased survival periods with little neurotoxicity.

Conclusions

Continuous intrathecal SB administration significantly improved prognoses in a rat LM model, which suggests that SB is a promising therapy for LM.
Appendix
Available only for authorised users
Literature
2.
go back to reference Le Rhun E, Taillibert S, Chamberlain MC (2017) Neoplastic meningitis due to lung, breast, and melanoma metastases. Cancer Control 24(1):22–32CrossRefPubMed Le Rhun E, Taillibert S, Chamberlain MC (2017) Neoplastic meningitis due to lung, breast, and melanoma metastases. Cancer Control 24(1):22–32CrossRefPubMed
4.
go back to reference Nakagawa H, Murasawa A, Kubo S et al (1992) Diagnosis and treatment of patients with meningeal carcinomatosis. J Neurooncol 13(1):81–89CrossRefPubMed Nakagawa H, Murasawa A, Kubo S et al (1992) Diagnosis and treatment of patients with meningeal carcinomatosis. J Neurooncol 13(1):81–89CrossRefPubMed
11.
go back to reference Sampson JH, Archer GE, Villavicencio AT et al (1999) Treatment of neoplastic meningitis with intrathecal temozolomide. Clin Cancer Res 5(5):1183–1188PubMed Sampson JH, Archer GE, Villavicencio AT et al (1999) Treatment of neoplastic meningitis with intrathecal temozolomide. Clin Cancer Res 5(5):1183–1188PubMed
12.
go back to reference Nakagawa H, Miyahara E, Suzuki T, Wada K, Tamura M, Fukushima Y (2005) Continuous intrathecal administration of 5-fluoro-2′-deoxyuridine for the treatment of neoplastic meningitis. Neurosurgery 57(2):266–280CrossRefPubMed Nakagawa H, Miyahara E, Suzuki T, Wada K, Tamura M, Fukushima Y (2005) Continuous intrathecal administration of 5-fluoro-2′-deoxyuridine for the treatment of neoplastic meningitis. Neurosurgery 57(2):266–280CrossRefPubMed
14.
go back to reference Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139CrossRefPubMed Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139CrossRefPubMed
18.
go back to reference Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl):2485S–2493SCrossRefPubMed Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133(7 Suppl):2485S–2493SCrossRefPubMed
21.
go back to reference Hara I, Miyake H, Hara S, Arakawa S, Kamidono S (2000) Sodium butyrate induces apoptosis in human renal cell carcinoma cells and synergistically enhances their sensitivity to anti-Fas-mediated cytotoxicity. Int J Oncol 17(6):1213–1218PubMed Hara I, Miyake H, Hara S, Arakawa S, Kamidono S (2000) Sodium butyrate induces apoptosis in human renal cell carcinoma cells and synergistically enhances their sensitivity to anti-Fas-mediated cytotoxicity. Int J Oncol 17(6):1213–1218PubMed
22.
go back to reference Katzenmaier E-M, André S, Kopitz J, Gabius H-J (2014) Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro. Anticancer Res 34(10):5429–5438PubMed Katzenmaier E-M, André S, Kopitz J, Gabius H-J (2014) Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro. Anticancer Res 34(10):5429–5438PubMed
23.
go back to reference Farrow B, Rychahou P, O’Connor KL, Evers BM (2003) Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg 7(7):864–870CrossRefPubMed Farrow B, Rychahou P, O’Connor KL, Evers BM (2003) Butyrate inhibits pancreatic cancer invasion. J Gastrointest Surg 7(7):864–870CrossRefPubMed
24.
go back to reference Demary K, Wong L, Spanjaard RA (2001) Effects of retinoic acid and sodium butyrate on gene expression, histone acetylation and inhibition of proliferation of melanoma cells. Cancer Lett 163(1):103–107CrossRefPubMed Demary K, Wong L, Spanjaard RA (2001) Effects of retinoic acid and sodium butyrate on gene expression, histone acetylation and inhibition of proliferation of melanoma cells. Cancer Lett 163(1):103–107CrossRefPubMed
25.
go back to reference Engelhard HH, Duncan HA, Kim S, Criswell PS, Van Eldik L (2001) Therapeutic effects of sodium butyrate on glioma cells in vitro and in the rat C6 glioma model. Neurosurgery 48(3):616–625CrossRefPubMed Engelhard HH, Duncan HA, Kim S, Criswell PS, Van Eldik L (2001) Therapeutic effects of sodium butyrate on glioma cells in vitro and in the rat C6 glioma model. Neurosurgery 48(3):616–625CrossRefPubMed
26.
go back to reference Conway RM, Madigan MC, Billson FA, Penfold PL (1998) Vincristine- and cisplatin-induced apoptosis in human retinoblastoma. Potentiation by sodium butyrate. Eur J Cancer 34(11):1741–1748CrossRefPubMed Conway RM, Madigan MC, Billson FA, Penfold PL (1998) Vincristine- and cisplatin-induced apoptosis in human retinoblastoma. Potentiation by sodium butyrate. Eur J Cancer 34(11):1741–1748CrossRefPubMed
27.
go back to reference Lauricella M, Calvaruso G, Giuliano M et al (2000) Synergistic cytotoxic interactions between sodium butyrate, MG132 and camptothecin in human retinoblastoma Y79 cells. Tumour Biol 21(6):337–348. doi:30139CrossRefPubMed Lauricella M, Calvaruso G, Giuliano M et al (2000) Synergistic cytotoxic interactions between sodium butyrate, MG132 and camptothecin in human retinoblastoma Y79 cells. Tumour Biol 21(6):337–348. doi:30139CrossRefPubMed
28.
go back to reference Sankaranarayanan K, von Duyn A, Loos MJ, Meschini R, Natarajan AT (2000) Effects of sodium butyrate on X-ray and bleomycin-induced chromosome aberrations in human peripheral blood lymphocytes. Genet Res 56(2–3):267–276 Sankaranarayanan K, von Duyn A, Loos MJ, Meschini R, Natarajan AT (2000) Effects of sodium butyrate on X-ray and bleomycin-induced chromosome aberrations in human peripheral blood lymphocytes. Genet Res 56(2–3):267–276
29.
go back to reference Stoilov L, Darroudi F, Meschini R, van der Schans G, Mullenders LH, Natarajan AT (2000) Inhibition of repair of X-ray-induced DNA double-strand breaks in human lymphocytes exposed to sodium butyrate. Int J Radiat Biol 76(11):1485–1491CrossRefPubMed Stoilov L, Darroudi F, Meschini R, van der Schans G, Mullenders LH, Natarajan AT (2000) Inhibition of repair of X-ray-induced DNA double-strand breaks in human lymphocytes exposed to sodium butyrate. Int J Radiat Biol 76(11):1485–1491CrossRefPubMed
30.
go back to reference Vernia P, Fracasso PL, Casale V et al (2000) Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet 356(9237):1232–1235CrossRefPubMed Vernia P, Fracasso PL, Casale V et al (2000) Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet 356(9237):1232–1235CrossRefPubMed
37.
go back to reference Asou H, Hirano S, Kohsaka S (1989) Changes in ganglioside composition and morphological features during the development of cultured astrocytes from rat brain. Neurosci Res 6(4):369–375CrossRefPubMed Asou H, Hirano S, Kohsaka S (1989) Changes in ganglioside composition and morphological features during the development of cultured astrocytes from rat brain. Neurosci Res 6(4):369–375CrossRefPubMed
Metadata
Title
Evidence for intrathecal sodium butyrate as a novel option for leptomeningeal metastasis
Authors
Hidemitsu Nakagawa
Yoshihiro Yui
Satoru Sasagawa
Kazuyuki Itoh
Publication date
01-08-2018
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2018
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-2852-2

Other articles of this Issue 1/2018

Journal of Neuro-Oncology 1/2018 Go to the issue