Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2015

01-09-2015 | Clinical

Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment

Authors: J. C. Encarnação, A. M. Abrantes, A. S. Pires, M. F. Botelho

Published in: Cancer and Metastasis Reviews | Issue 3/2015

Login to get access

Abstract

Colorectal cancer is still a major health problem worldwide. Based on the most recent released data by the World Health Organization GLOBOCAN in 2012, colorectal cancer is the third most prevalent type of cancer in males and the second in females. In 1999, it was published the first report showing evidence of a strong correlation between diet and cancer incidence, being its positive or negative impact intimately linked to dietary patterns. A diet rich in fiber is associated with a low risk of developing colorectal cancer. The fermentation of the dietary fiber by intestinal microflora results in production of butyrate, which plays a plurifunctional role on the colonocytes, and it has also been reported as a chemopreventive agent. However, there are limited studies focusing its anti-cancer potential. Here, we review the recent new insights that focus butyrate and its role in colorectal cancer prevention and treatment, from its synthesis, metabolism, and transport, through its involvement on several cancer-related signaling pathways, to the novel existing approaches for its clinical use.
Literature
1.
go back to reference Knudsen, B. K. E., Serena, A., Canibe, N., & Juntunen, K. S. (2003). New insight into butyrate metabolism. Proceedings of the Nutrition Society, 62, 81–86.CrossRef Knudsen, B. K. E., Serena, A., Canibe, N., & Juntunen, K. S. (2003). New insight into butyrate metabolism. Proceedings of the Nutrition Society, 62, 81–86.CrossRef
3.
go back to reference Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology. Supplement, 216, 132–148.CrossRefPubMed Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology. Supplement, 216, 132–148.CrossRefPubMed
4.
go back to reference Daly, K., Cuff, M. A., Fung, F., & Shirazi-Beechey, S. P. (2005). The importance of colonic butyrate transport to the regulation of genes associated with colonic tissue homoeostasis. Biochemical Society Transactions, 33, 733–735. doi:10.1042/BST0330733.CrossRefPubMed Daly, K., Cuff, M. A., Fung, F., & Shirazi-Beechey, S. P. (2005). The importance of colonic butyrate transport to the regulation of genes associated with colonic tissue homoeostasis. Biochemical Society Transactions, 33, 733–735. doi:10.​1042/​BST0330733.CrossRefPubMed
6.
go back to reference Ahmad, M. S., Krishnan, S., Ramakrishna, B. S., Mathan, M., Pulimood, A. B., & Murthy, S. N. (2000). Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut, 46(4), 493–499.PubMedCentralCrossRefPubMed Ahmad, M. S., Krishnan, S., Ramakrishna, B. S., Mathan, M., Pulimood, A. B., & Murthy, S. N. (2000). Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut, 46(4), 493–499.PubMedCentralCrossRefPubMed
10.
go back to reference Genz, A., Engelhardt, W., & Busche, R. (1999). Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. 507–519. Genz, A., Engelhardt, W., & Busche, R. (1999). Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. 507–519.
11.
go back to reference Sehested, J., Diernaes, L., Moller, P. D., & Skadhauge, E. (1996). Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Experimental Physiology, 81, 79–94.CrossRefPubMed Sehested, J., Diernaes, L., Moller, P. D., & Skadhauge, E. (1996). Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Experimental Physiology, 81, 79–94.CrossRefPubMed
13.
go back to reference Cuff, M. A., & Shirazi-Beechey, S. P. (2004). The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochemical Society Transactions, 32, 1100–1102. doi:10.1042/BST0321100.CrossRefPubMed Cuff, M. A., & Shirazi-Beechey, S. P. (2004). The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochemical Society Transactions, 32, 1100–1102. doi:10.​1042/​BST0321100.CrossRefPubMed
14.
go back to reference Glade, M. J. (1999). Food, nutrition, and the prevention of cancer: a global perspective. Nutrition, 15(6), 523–526.CrossRefPubMed Glade, M. J. (1999). Food, nutrition, and the prevention of cancer: a global perspective. Nutrition, 15(6), 523–526.CrossRefPubMed
16.
go back to reference Anand, P., Kunnumakkara, A. B., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., … & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–116. doi:10.1007/s11095-008-9661-9. Anand, P., Kunnumakkara, A. B., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., … & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–116. doi:10.​1007/​s11095-008-9661-9.
17.
go back to reference Scharlau, D., Borowicki, A., Habermann, N., Hofmann, T., Klenow, S., Miene, C., … & Glei, M. (2009). Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research, 682(1), 39–53. doi:10.1016/j.mrrev.2009.04.001. Scharlau, D., Borowicki, A., Habermann, N., Hofmann, T., Klenow, S., Miene, C., … & Glei, M. (2009). Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research, 682(1), 39–53. doi:10.​1016/​j.​mrrev.​2009.​04.​001.
19.
go back to reference Irigaray, P., Newby, J. A., Clapp, R., Hardell, L., Howard, V., Montagnier, L., … & Belpomme, D. (2007). Lifestyle-related factors and environmental agents causing cancer: an overview. Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie, 61(10), 640–58. doi:10.1016/j.biopha.2007.10.006. Irigaray, P., Newby, J. A., Clapp, R., Hardell, L., Howard, V., Montagnier, L., … & Belpomme, D. (2007). Lifestyle-related factors and environmental agents causing cancer: an overview. Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie, 61(10), 640–58. doi:10.​1016/​j.​biopha.​2007.​10.​006.
22.
go back to reference Bultman, S. J. (2014). Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(4), 799–803. doi:10.1158/1078-0432.CCR-13-2483.CrossRef Bultman, S. J. (2014). Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(4), 799–803. doi:10.​1158/​1078-0432.​CCR-13-2483.CrossRef
24.
go back to reference Fung, K. Y. C., Cosgrove, L., Lockett, T., Head, R., & Topping, D. L. (2012). A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. The British Journal of Nutrition, 108(5), 820–831. doi:10.1017/S0007114512001948.CrossRefPubMed Fung, K. Y. C., Cosgrove, L., Lockett, T., Head, R., & Topping, D. L. (2012). A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. The British Journal of Nutrition, 108(5), 820–831. doi:10.​1017/​S000711451200194​8.CrossRefPubMed
25.
go back to reference Lupton, J. R. (2004). Microbial degradation products influence colon cancer risk: the butyrate controversy. The Journal of Nutrition, 134, 479–482.PubMed Lupton, J. R. (2004). Microbial degradation products influence colon cancer risk: the butyrate controversy. The Journal of Nutrition, 134, 479–482.PubMed
26.
go back to reference Klampfer, L., Huang, J., Sasazuki, T., Shirasawa, S., & Augenlicht, L. (2003). Inhibition of interferon; signaling by the short chain fatty acid butyrate. Molecular Cancer Research, 1(September), 855–862.PubMed Klampfer, L., Huang, J., Sasazuki, T., Shirasawa, S., & Augenlicht, L. (2003). Inhibition of interferon; signaling by the short chain fatty acid butyrate. Molecular Cancer Research, 1(September), 855–862.PubMed
30.
go back to reference Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition, 139(9), 1619–1625. doi:10.3945/jn.109.104638.PubMedCentralCrossRefPubMed Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition, 139(9), 1619–1625. doi:10.​3945/​jn.​109.​104638.PubMedCentralCrossRefPubMed
31.
go back to reference Renaud, F., Vincent, A., Mariette, C., Crépin, M., Stechly, L., Truant, S., … & Buisine, M.-P. (2014). MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. International Journal of Cancer. Journal International du Cancer, 00. doi:10.1002/ijc.29342. Renaud, F., Vincent, A., Mariette, C., Crépin, M., Stechly, L., Truant, S., … & Buisine, M.-P. (2014). MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. International Journal of Cancer. Journal International du Cancer, 00. doi:10.​1002/​ijc.​29342.
32.
go back to reference Hatayama, H., Iwashita, J., Kuwajima, A., & Abe, T. (2007). The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications, 356(3), 599–603. doi:10.1016/j.bbrc.2007.03.025.CrossRefPubMed Hatayama, H., Iwashita, J., Kuwajima, A., & Abe, T. (2007). The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications, 356(3), 599–603. doi:10.​1016/​j.​bbrc.​2007.​03.​025.CrossRefPubMed
33.
go back to reference Blum, H. E. (1995). Colorectal cancer: future population screening for early colorectal cancer. European Journal of Cancer (Oxford, England : 1990), 31A(7-8), 1369–1372.CrossRef Blum, H. E. (1995). Colorectal cancer: future population screening for early colorectal cancer. European Journal of Cancer (Oxford, England : 1990), 31A(7-8), 1369–1372.CrossRef
35.
go back to reference Soret, R., Chevalier, J., De Coppet, P., Poupeau, G., Derkinderen, P., Segain, J. P., & Neunlist, M. (2010). Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology, 138(5), 1772–1782. doi:10.1053/j.gastro.2010.01.053.CrossRefPubMed Soret, R., Chevalier, J., De Coppet, P., Poupeau, G., Derkinderen, P., Segain, J. P., & Neunlist, M. (2010). Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology, 138(5), 1772–1782. doi:10.​1053/​j.​gastro.​2010.​01.​053.CrossRefPubMed
36.
go back to reference Hurst, N. R., Kendig, D. M., Murthy, K. S., & Grider, J. R. (2014). The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 26(11), 1586–1596. doi:10.1111/nmo.12425.CrossRef Hurst, N. R., Kendig, D. M., Murthy, K. S., & Grider, J. R. (2014). The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 26(11), 1586–1596. doi:10.​1111/​nmo.​12425.CrossRef
37.
go back to reference Kautenburger, T., Beyer-Sehlmeyer, G., Festag, G., Haag, N., Kühler, S., Küchler, A., & … Pool-Zobel, B. L. (2005). The gut fermentation product butyrate, a chemopreventive agent, suppresses glutathione S-transferase theta (hGSTT1) and cell growth more in human colon adenoma (LT97) than tumor (HT29) cells. Journal of Cancer Research and Clinical Oncology, 131(10), 692–700. doi:10.1007/s00432-005-0013-4. Kautenburger, T., Beyer-Sehlmeyer, G., Festag, G., Haag, N., Kühler, S., Küchler, A., & … Pool-Zobel, B. L. (2005). The gut fermentation product butyrate, a chemopreventive agent, suppresses glutathione S-transferase theta (hGSTT1) and cell growth more in human colon adenoma (LT97) than tumor (HT29) cells. Journal of Cancer Research and Clinical Oncology, 131(10), 692–700. doi:10.​1007/​s00432-005-0013-4.
39.
go back to reference Sauer, J., Richter, K. K., & Pool-Zobel, B. L. (2007). Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. The British Journal of Nutrition, 97(5), 928–937. doi:10.1017/S0007114507666422.CrossRefPubMed Sauer, J., Richter, K. K., & Pool-Zobel, B. L. (2007). Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. The British Journal of Nutrition, 97(5), 928–937. doi:10.​1017/​S000711450766642​2.CrossRefPubMed
40.
go back to reference Hofmanová, J., Straková, N., Vaculová, A. H., Tylichová, Z., Safaříková, B., Skender, B., & Kozubík, A. (2014). Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators of Inflammation, 2014, 848632. doi:10.1155/2014/848632.PubMedCentralCrossRefPubMed Hofmanová, J., Straková, N., Vaculová, A. H., Tylichová, Z., Safaříková, B., Skender, B., & Kozubík, A. (2014). Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators of Inflammation, 2014, 848632. doi:10.​1155/​2014/​848632.PubMedCentralCrossRefPubMed
41.
go back to reference Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., … & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–83. doi:10.1136/gutjnl-2013-304833. Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., … & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–83. doi:10.​1136/​gutjnl-2013-304833.
42.
go back to reference Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2247–2252. doi:10.1073/pnas.1322269111.PubMedCentralCrossRefPubMed Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2247–2252. doi:10.​1073/​pnas.​1322269111.PubMedCentralCrossRefPubMed
44.
go back to reference Vieira, E. L. M., Leonel, A. J., Sad, A. P., Beltrão, N. R. M., Costa, T. F., Ferreira, T. M. R., … & Alvarez-Leite, J. I. (2012). Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry, 23(5), 430–6. doi:10.1016/j.jnutbio.2011.01.007. Vieira, E. L. M., Leonel, A. J., Sad, A. P., Beltrão, N. R. M., Costa, T. F., Ferreira, T. M. R., … & Alvarez-Leite, J. I. (2012). Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry, 23(5), 430–6. doi:10.​1016/​j.​jnutbio.​2011.​01.​007.
45.
go back to reference Liu, T., Li, J., Liu, Y., Xiao, N., Suo, H., Xie, K., … & Wu, C. (2012). Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation, 35(5), 1676–84. doi:10.1007/s10753-012-9484-z. Liu, T., Li, J., Liu, Y., Xiao, N., Suo, H., Xie, K., … & Wu, C. (2012). Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation, 35(5), 1676–84. doi:10.​1007/​s10753-012-9484-z.
46.
go back to reference Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., … & Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 425–442. doi:10.5551/jat.15065. Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., … & Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 425–442. doi:10.​5551/​jat.​15065.
50.
go back to reference Pan, M.-H., Lai, C.-S., Wu, J.-C., & Ho, C.-T. (2011). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Molecular Nutrition & Food Research, 55(1), 32–45. doi:10.1002/mnfr.201000412.CrossRef Pan, M.-H., Lai, C.-S., Wu, J.-C., & Ho, C.-T. (2011). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Molecular Nutrition & Food Research, 55(1), 32–45. doi:10.​1002/​mnfr.​201000412.CrossRef
51.
go back to reference Stiborová, M., Eckschlager, T., Poljaková, J., Hraběta, J., Adam, V., Kizek, R., & Frei, E. (2012). The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Current Medicinal Chemistry, 19(25), 4218–38. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22680633. Stiborová, M., Eckschlager, T., Poljaková, J., Hraběta, J., Adam, V., Kizek, R., & Frei, E. (2012). The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Current Medicinal Chemistry, 19(25), 4218–38. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22680633.
56.
go back to reference Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Review. Cancer, 6(1), 38–51. doi:10.1038/nrc1779.CrossRef Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Review. Cancer, 6(1), 38–51. doi:10.​1038/​nrc1779.CrossRef
58.
go back to reference Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011(Figure 1), 475641. doi:10.1155/2011/475641. Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011(Figure 1), 475641. doi:10.​1155/​2011/​475641.
60.
go back to reference Kuefer, R., Hofer, M. D., Altug, V., Zorn, C., Genze, F., Kunzi-Rapp, K., … & Gschwend, J. E. (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. British Journal of Cancer, 90(2), 535–41. doi:10.1038/sj.bjc.6601510. Kuefer, R., Hofer, M. D., Altug, V., Zorn, C., Genze, F., Kunzi-Rapp, K., … & Gschwend, J. E. (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. British Journal of Cancer, 90(2), 535–41. doi:10.​1038/​sj.​bjc.​6601510.
61.
go back to reference Wang, Z., Ehinger, M., & Grant, S. (1999). Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid ( SAHA ) proceeds through pathways that are regulated by, 7016–7025. Wang, Z., Ehinger, M., & Grant, S. (1999). Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid ( SAHA ) proceeds through pathways that are regulated by, 7016–7025.
62.
go back to reference Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. The Journal of nutrition, 2485–2493. Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. The Journal of nutrition, 2485–2493.
63.
go back to reference Roy, M.-J., Dionne, S., Marx, G., Qureshi, I., Sarma, D., Levy, E., & Seidman, E. G. (2009). In vitro studies on the inhibition of colon cancer by butyrate and carnitine. Nutrition (Burbank, Los Angeles County, California), 25(11-12), 1193–1201. doi:10.1016/j.nut.2009.04.008.CrossRef Roy, M.-J., Dionne, S., Marx, G., Qureshi, I., Sarma, D., Levy, E., & Seidman, E. G. (2009). In vitro studies on the inhibition of colon cancer by butyrate and carnitine. Nutrition (Burbank, Los Angeles County, California), 25(11-12), 1193–1201. doi:10.​1016/​j.​nut.​2009.​04.​008.CrossRef
65.
66.
go back to reference Kim, Y.-H., Park, J.-W., Lee, J.-Y., & Kwon, T. K. (2004). Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis, 25(10), 1813–1820. doi:10.1093/carcin/bgh188.CrossRefPubMed Kim, Y.-H., Park, J.-W., Lee, J.-Y., & Kwon, T. K. (2004). Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis, 25(10), 1813–1820. doi:10.​1093/​carcin/​bgh188.CrossRefPubMed
67.
go back to reference Niles, R. M. (1989). Sodium butyrate suppresses the transforming activity activated N-ras oncogene in human colon carcinoma cells. Experimental Cell Research, 184, 16–27.CrossRefPubMed Niles, R. M. (1989). Sodium butyrate suppresses the transforming activity activated N-ras oncogene in human colon carcinoma cells. Experimental Cell Research, 184, 16–27.CrossRefPubMed
69.
go back to reference Heruth, D. P., Zirnstein, G. W., Bradley, J. F., & Rothbergs, G. (1993). Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. The Journal of Biological Chemistry, 268(25), 20466–20472.PubMed Heruth, D. P., Zirnstein, G. W., Bradley, J. F., & Rothbergs, G. (1993). Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. The Journal of Biological Chemistry, 268(25), 20466–20472.PubMed
70.
go back to reference Taylora, C. W., & Kimb, Y. S. (1992). Sensitivity of nuclear c-myc levels and induction to agents in human colon tumor cell lines. Cancer Letters, 62(2), 95–105.CrossRef Taylora, C. W., & Kimb, Y. S. (1992). Sensitivity of nuclear c-myc levels and induction to agents in human colon tumor cell lines. Cancer Letters, 62(2), 95–105.CrossRef
71.
go back to reference Giles, R. H., Lolkema, M. P., Snijckers, C. M., Belderbos, M., van der Groep, P., Mans, D. a, … & Voest, E. E. (2006). Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene, 25(21), 3065–70. doi:10.1038/sj.onc.1209330. Giles, R. H., Lolkema, M. P., Snijckers, C. M., Belderbos, M., van der Groep, P., Mans, D. a, … & Voest, E. E. (2006). Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene, 25(21), 3065–70. doi:10.​1038/​sj.​onc.​1209330.
72.
go back to reference Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., … & Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–50. doi:10.1038/nature12721. Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., … & Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–50. doi:10.​1038/​nature12721.
73.
go back to reference Qian, D. Z., Kachhap, S. K., Collis, S. J., Verheul, H. M. W., Carducci, M. A., Atadja, P., & Pili, R. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research, 66(17), 8814–8821. doi:10.1158/0008-5472.CAN-05-4598.CrossRefPubMed Qian, D. Z., Kachhap, S. K., Collis, S. J., Verheul, H. M. W., Carducci, M. A., Atadja, P., & Pili, R. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research, 66(17), 8814–8821. doi:10.​1158/​0008-5472.​CAN-05-4598.CrossRefPubMed
76.
go back to reference Yamaguchi, M., Tonou-Fujimori, N., Komori, A., Maeda, R., Nojima, Y., Li, H., … & Masai, I. (2005). Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development (Cambridge, England), 132(13), 3027–43. doi:10.1242/dev.01881. Yamaguchi, M., Tonou-Fujimori, N., Komori, A., Maeda, R., Nojima, Y., Li, H., … & Masai, I. (2005). Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development (Cambridge, England), 132(13), 3027–43. doi:10.​1242/​dev.​01881.
78.
go back to reference Pellizzaro, C., & Coradini, D. (2002). Modulation of angiogenesis-related proteins synthesis by sodium butyrate in colon cancer cell line HT29 sodium butyrate (NaB), a short-chain fatty acid naturally arrest, differentiation and apoptosis in colon cancer cells. Carcinogenesis, 23(5), 735–740.CrossRefPubMed Pellizzaro, C., & Coradini, D. (2002). Modulation of angiogenesis-related proteins synthesis by sodium butyrate in colon cancer cell line HT29 sodium butyrate (NaB), a short-chain fatty acid naturally arrest, differentiation and apoptosis in colon cancer cells. Carcinogenesis, 23(5), 735–740.CrossRefPubMed
80.
83.
go back to reference Gibson, P. R., Birchall, I., Rosella, O., Albert, V., Finch, C. F., Barkla, D. H., & Young, G. P. (1998). Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover. Gut, 43, 656–663.PubMedCentralCrossRefPubMed Gibson, P. R., Birchall, I., Rosella, O., Albert, V., Finch, C. F., Barkla, D. H., & Young, G. P. (1998). Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover. Gut, 43, 656–663.PubMedCentralCrossRefPubMed
84.
go back to reference Mortensen, F. V., Jørgensen, B., Christiansen, H. M., Sloth-Nielsen, J., Wolff, B., & Hessov, I. (2000). Short-chain fatty acid enemas stimulate plasminogen activator inhibitor-1 after abdominal aortic graft surgery: a double-blinded, placebo-controlled study. Thrombosis Research, 98(5), 361–366.CrossRefPubMed Mortensen, F. V., Jørgensen, B., Christiansen, H. M., Sloth-Nielsen, J., Wolff, B., & Hessov, I. (2000). Short-chain fatty acid enemas stimulate plasminogen activator inhibitor-1 after abdominal aortic graft surgery: a double-blinded, placebo-controlled study. Thrombosis Research, 98(5), 361–366.CrossRefPubMed
85.
go back to reference Shukla, S., & Meeran, S. M. (2014). Epigenetics of cancer stem cells: pathways and therapeutics. Biochimica et Biophysica Acta (BBA), 1840(12), 3494–3502.CrossRef Shukla, S., & Meeran, S. M. (2014). Epigenetics of cancer stem cells: pathways and therapeutics. Biochimica et Biophysica Acta (BBA), 1840(12), 3494–3502.CrossRef
86.
go back to reference Kato, K., Kuhara, A., Yoneda, T., Inoue, T., Takao, T., Ohgami, T., … & Wake, N. (2011). Sodium butyrate inhibits the self-renewal capacity of endometrial tumor side-population cells by inducing a DNA damage response. Molecular Cancer Therapeutics, 10(8), 1430–9. doi:10.1158/1535-7163.MCT-10-1062. Kato, K., Kuhara, A., Yoneda, T., Inoue, T., Takao, T., Ohgami, T., … & Wake, N. (2011). Sodium butyrate inhibits the self-renewal capacity of endometrial tumor side-population cells by inducing a DNA damage response. Molecular Cancer Therapeutics, 10(8), 1430–9. doi:10.​1158/​1535-7163.​MCT-10-1062.
87.
go back to reference Rodríguez-Salvador, J., Armas-Pineda, C., Perezpeña-Diazconti, F., Chico-Ponce de León, G., Sosa-Sáinz, P., Lezama, F., … & Arenas-Huertero, F. (2005). Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines. Journal of Experimental & Clinical Cancer Research, 24(3), 463–474. Rodríguez-Salvador, J., Armas-Pineda, C., Perezpeña-Diazconti, F., Chico-Ponce de León, G., Sosa-Sáinz, P., Lezama, F., … & Arenas-Huertero, F. (2005). Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines. Journal of Experimental & Clinical Cancer Research, 24(3), 463–474.
88.
go back to reference Oukopoulos, P. L., Ungall, B. A. M., Traw, R. C. S., & Hornton, J. R. T. (2003). Matrix metalloproteinase-2 and -9 involvement in canine tumors. Veterinary Pathology, 394, 382–394.CrossRef Oukopoulos, P. L., Ungall, B. A. M., Traw, R. C. S., & Hornton, J. R. T. (2003). Matrix metalloproteinase-2 and -9 involvement in canine tumors. Veterinary Pathology, 394, 382–394.CrossRef
89.
go back to reference Oba, K., Konno, H., Tanaka, T., Baba, M., Kamiya, K., Ohta, M., … & Nakamura, S. (2002). Prevention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166. Cancer Letters, 175, 45–51. Oba, K., Konno, H., Tanaka, T., Baba, M., Kamiya, K., Ohta, M., … & Nakamura, S. (2002). Prevention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166. Cancer Letters, 175, 45–51.
90.
go back to reference Zeng, H., & Briske-Anderson, M. (2005). Nutrition and cancer prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. The Journal of Nutrition, 291–295. Zeng, H., & Briske-Anderson, M. (2005). Nutrition and cancer prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. The Journal of Nutrition, 291–295.
91.
go back to reference Pouillart, P. R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63(20), 1739–1760.CrossRefPubMed Pouillart, P. R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63(20), 1739–1760.CrossRefPubMed
92.
go back to reference Egorin, M. J., Yuan, Z. M., Sentz, D. L., Plaisance, K., & Eiseman, J. L. (1999). Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology, 43(6), 445–53. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10321503. Egorin, M. J., Yuan, Z. M., Sentz, D. L., Plaisance, K., & Eiseman, J. L. (1999). Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology, 43(6), 445–53. Retrieved from http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10321503.
93.
go back to reference Marc, D., & Sausville, A. (1998). I study of the in patients orally with administered solid butyrate. 4(March), 629–634. Marc, D., & Sausville, A. (1998). I study of the in patients orally with administered solid butyrate. 4(March), 629–634.
94.
go back to reference Bras–Gonçalves, R. A., Pocard, M., Formento‡, J., Poirson–Bichat, F., de Pinieux, G., Pandrea§, I., … & Poupon, M. (2001). Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis. Gastroenterology, 120(4), 874–888. doi:10.1053/gast.2001.22440. Bras–Gonçalves, R. A., Pocard, M., Formento‡, J., Poirson–Bichat, F., de Pinieux, G., Pandrea§, I., … & Poupon, M. (2001). Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis. Gastroenterology, 120(4), 874–888. doi:10.​1053/​gast.​2001.​22440.
95.
go back to reference Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., … & Zhao, L. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal, 6(2), 320–9. doi:10.1038/ismej.2011.109. Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., … & Zhao, L. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal, 6(2), 320–9. doi:10.​1038/​ismej.​2011.​109.
96.
go back to reference Lin, X. B., Farhangfar, A., Valcheva, R., Sawyer, M. B., Dieleman, L., Schieber, A., … & Baracos, V. (2014). The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PloS One, 9(1), e83644. doi:10.1371/journal.pone.0083644. Lin, X. B., Farhangfar, A., Valcheva, R., Sawyer, M. B., Dieleman, L., Schieber, A., … & Baracos, V. (2014). The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PloS One, 9(1), e83644. doi:10.​1371/​journal.​pone.​0083644.
Metadata
Title
Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment
Authors
J. C. Encarnação
A. M. Abrantes
A. S. Pires
M. F. Botelho
Publication date
01-09-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9578-9

Other articles of this Issue 3/2015

Cancer and Metastasis Reviews 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine