Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2016

01-02-2016 | Clinical Study

Pseudoprogression in glioblastoma patients: the impact of extent of resection

Authors: Hun Ho Park, Tae Hoon Roh, Seok Gu Kang, Eui Hyun Kim, Chang-Ki Hong, Se Hoon Kim, Sung Soo Ahn, Seung Koo Lee, Hye Jin Choi, Jaeho Cho, Sun Ho Kim, Kyu-Sung Lee, Chang-Ok Suh, Jong Hee Chang

Published in: Journal of Neuro-Oncology | Issue 3/2016

Login to get access

Abstract

Pseudoprogression (psPD) is a radiation-induced toxicity that has substantial neurological consequence in glioblastoma (GBM) patients. MGMT promoter methylation has been shown to be an important prognostic factor of psPD, but the significance of extent of resection (EOR) remains unclear. We performed a retrospective analysis on newly diagnosed GBM patients with assessable MGMT promoter status who underwent the Stupp protocol. EOR was grouped into gross total resection (GTR), subtotal resection (STR), partial resection (PR) and stereotactic biopsy. Contrast enhancing lesion enlargement was classified as psPD or non-psPD. Among a total of 101 patients, GTR, STR, PR and stereotactic biopsy was performed in 57 (56.4 %), 34 (33.7 %), 9 (8.9 %) and 1 patient (1 %), respectively. Follow-up imaging at the end of Stupp protocol classified 45 patients (44.6 %) as psPD and 56 (55.4 %) as non-psPD. psPD was observed in 24 (61.5 %) of 39 patients with methylated MGMT promoter and 21 (33.9 %) of 62 patients with unmethylated MGMT promoter (p < 0.01). psPD was documented in 17 (29.8 %), 19 (55.9 %), 8 (88.9 %) and 1 (100 %) patient with GTR, STR, PR and stereotactic biopsy (p < 0.01), respectively. On multivariate analysis MGMT promoter status (OR 3.36, 95 % CI 1.36–8.34) and EOR (OR 4.12, 95 % CI 1.71–9.91) were independent predictors of psPD. A Cox proportional hazards model showed that MGMT status (HR 2.51, p < 0.01) and EOR (HR 2.99, p < 0.01) significantly influenced survival. MGMT status and EOR have a significant impact on psPD. GTR can reduce the side effects of psPD and prolong survival.
Literature
1.
go back to reference Deorah S, Lynch CF, Sibenaller ZA, Ryken TC (2006) Trends in brain cancer incidence and survival in the United States: surveillance, epidemiology, and end results program, 1973 to 2001. Neurosurg Focus 20(4):E1PubMedCrossRef Deorah S, Lynch CF, Sibenaller ZA, Ryken TC (2006) Trends in brain cancer incidence and survival in the United States: surveillance, epidemiology, and end results program, 1973 to 2001. Neurosurg Focus 20(4):E1PubMedCrossRef
2.
go back to reference Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR (1998) Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 40:151–160PubMedCrossRef Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR (1998) Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 40:151–160PubMedCrossRef
3.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
4.
go back to reference Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83PubMedCrossRef Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE (2007) Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82:81–83PubMedCrossRef
5.
go back to reference Taal W, Brandsma D, de Bruin HG et al (2007) The incidence of pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide. Cancer 113:405–410CrossRef Taal W, Brandsma D, de Bruin HG et al (2007) The incidence of pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide. Cancer 113:405–410CrossRef
6.
go back to reference Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197PubMedCrossRef Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197PubMedCrossRef
7.
go back to reference Peca C, Pacelli R, Elefante A et al (2009) Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumour progression or radionecrosis? Clin Neurol Neurosurg 111:331–334PubMedCrossRef Peca C, Pacelli R, Elefante A et al (2009) Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumour progression or radionecrosis? Clin Neurol Neurosurg 111:331–334PubMedCrossRef
8.
go back to reference Yaman E, Buyukberber S, Benekli M et al (2010) Radiation induced early necrosis in patients with malignant gliomas receiving temozolomide. Clin Neurol Neurosurg 112:662–667PubMedCrossRef Yaman E, Buyukberber S, Benekli M et al (2010) Radiation induced early necrosis in patients with malignant gliomas receiving temozolomide. Clin Neurol Neurosurg 112:662–667PubMedCrossRef
9.
go back to reference Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508PubMedCrossRef Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65:499–508PubMedCrossRef
10.
go back to reference Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461PubMedCrossRef Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461PubMedCrossRef
11.
go back to reference Floyd NS, Woo SY, Teh BS et al (2004) Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 58:721–726PubMedCrossRef Floyd NS, Woo SY, Teh BS et al (2004) Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 58:721–726PubMedCrossRef
12.
go back to reference Nieder C, Andratschke N, Wiedenmann N, Busch R, Grosu AL, Molls M (2004) Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther Onkol 180:401–407PubMedCrossRef Nieder C, Andratschke N, Wiedenmann N, Busch R, Grosu AL, Molls M (2004) Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther Onkol 180:401–407PubMedCrossRef
13.
go back to reference Hara W, Tran P, Li G et al (2009) Cyberknife for brain metastases of malignant melanoma and renal cell carcinoma. Neurosurgery 64:A26–A32PubMedCrossRef Hara W, Tran P, Li G et al (2009) Cyberknife for brain metastases of malignant melanoma and renal cell carcinoma. Neurosurgery 64:A26–A32PubMedCrossRef
14.
go back to reference Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMed Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797PubMed
15.
go back to reference Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354PubMedCrossRef Esteller M, Garcia-Foncillas J, Andion E et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354PubMedCrossRef
16.
go back to reference Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. NEJM 352:997–1003PubMedCrossRef Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. NEJM 352:997–1003PubMedCrossRef
17.
go back to reference Chang EF, Smith JS, Chang SM et al (2008) Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg 109:817–824PubMedCrossRef Chang EF, Smith JS, Chang SM et al (2008) Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg 109:817–824PubMedCrossRef
18.
go back to reference Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRef Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972PubMedCrossRef
19.
go back to reference Ellika SK, Jain R, Patel SC et al (2007) Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. Am J Neuroradiol 28:1981–1987PubMedCrossRef Ellika SK, Jain R, Patel SC et al (2007) Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. Am J Neuroradiol 28:1981–1987PubMedCrossRef
20.
go back to reference Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T (1997) Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med-Chir 37:250–256CrossRef Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T (1997) Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med-Chir 37:250–256CrossRef
21.
go back to reference Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197PubMedCrossRef Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197PubMedCrossRef
22.
go back to reference de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537PubMedCrossRef de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537PubMedCrossRef
23.
go back to reference Brandsma D, van den Bent MJAN (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638PubMedCrossRef Brandsma D, van den Bent MJAN (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22:633–638PubMedCrossRef
24.
go back to reference Shah AH, Snelling B, Bregy A et al (2013) Discriminating radiation necrosis from tumor progression in gliomas: a systematic review what is the best imaging modality? J Neurooncol 112:141–152PubMedCrossRef Shah AH, Snelling B, Bregy A et al (2013) Discriminating radiation necrosis from tumor progression in gliomas: a systematic review what is the best imaging modality? J Neurooncol 112:141–152PubMedCrossRef
25.
go back to reference Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH (2012) Radiation necrosis following treatment of high grade glioma—a review of the literature and current understanding. Acta Neurochir (Wien) 154:191–201CrossRef Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH (2012) Radiation necrosis following treatment of high grade glioma—a review of the literature and current understanding. Acta Neurochir (Wien) 154:191–201CrossRef
26.
go back to reference Liu L, Markowitz S, Gerson SL (1996) Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide, but not to 1,3-bis (2-chloroethyl) nitrosourea. Cancer Res 56:5375–5379PubMed Liu L, Markowitz S, Gerson SL (1996) Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide, but not to 1,3-bis (2-chloroethyl) nitrosourea. Cancer Res 56:5375–5379PubMed
27.
go back to reference Ochs K, Kaina B (2000) Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 60:5815–5824PubMed Ochs K, Kaina B (2000) Apoptosis induced by DNA damage O6-methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Res 60:5815–5824PubMed
28.
go back to reference Olson RA, Brastianos PK, Palma DA (2011) Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. J Neurooncol 105:325–335PubMedCrossRef Olson RA, Brastianos PK, Palma DA (2011) Prognostic and predictive value of epigenetic silencing of MGMT in patients with high grade gliomas: a systematic review and meta-analysis. J Neurooncol 105:325–335PubMedCrossRef
Metadata
Title
Pseudoprogression in glioblastoma patients: the impact of extent of resection
Authors
Hun Ho Park
Tae Hoon Roh
Seok Gu Kang
Eui Hyun Kim
Chang-Ki Hong
Se Hoon Kim
Sung Soo Ahn
Seung Koo Lee
Hye Jin Choi
Jaeho Cho
Sun Ho Kim
Kyu-Sung Lee
Chang-Ok Suh
Jong Hee Chang
Publication date
01-02-2016
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2016
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-015-2001-0

Other articles of this Issue 3/2016

Journal of Neuro-Oncology 3/2016 Go to the issue