Skip to main content
Top
Published in: Journal of Medical Systems 11/2018

01-11-2018 | Image & Signal Processing

Medical Image Analysis using Convolutional Neural Networks: A Review

Authors: Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi Alnowami, Muhammad Khurram Khan

Published in: Journal of Medical Systems | Issue 11/2018

Login to get access

Abstract

The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.
Literature
1.
go back to reference Greenspan, H., van Ginneken, B., and Summers, R. M., Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5):1153–1159, 2016.CrossRef Greenspan, H., van Ginneken, B., and Summers, R. M., Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5):1153–1159, 2016.CrossRef
2.
3.
go back to reference Liu, Y., Cheng, H., Huang, J., Zhang, Y., Tang, X., Tian, J.-W., and Wang, Y., Computer aided diagnosis system for breast cancer based on color doppler flow imaging. J. Med. Syst. 36(6):3975–3982, 2012.PubMedCrossRef Liu, Y., Cheng, H., Huang, J., Zhang, Y., Tang, X., Tian, J.-W., and Wang, Y., Computer aided diagnosis system for breast cancer based on color doppler flow imaging. J. Med. Syst. 36(6):3975–3982, 2012.PubMedCrossRef
4.
go back to reference Diao, X.-F., Zhang, X.-Y., Wang, T.-F., Chen, S.-P., Yang, Y., and Zhong, L., Highly sensitive computer aided diagnosis system for breast tumor based on color doppler flow images. J. Med. Syst. 35(5):801–809, 2011.PubMedCrossRef Diao, X.-F., Zhang, X.-Y., Wang, T.-F., Chen, S.-P., Yang, Y., and Zhong, L., Highly sensitive computer aided diagnosis system for breast tumor based on color doppler flow images. J. Med. Syst. 35(5):801–809, 2011.PubMedCrossRef
5.
go back to reference Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., and Li, J.: Deep learning for content-based image retrieval: A comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 157–166, 2014 Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., and Li, J.: Deep learning for content-based image retrieval: A comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 157–166, 2014
6.
go back to reference Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef
7.
go back to reference Shi, S., Wang, Q., Xu, P., and Chu, X.: Benchmarking state-of-the-art deep learning software tools. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD). IEEE, pp. 99–104, 2016 Shi, S., Wang, Q., Xu, P., and Chu, X.: Benchmarking state-of-the-art deep learning software tools. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD). IEEE, pp. 99–104, 2016
8.
go back to reference Janowczyk, A., and Madabhushi, A.: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, Journal of pathology informatics 7 Janowczyk, A., and Madabhushi, A.: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, Journal of pathology informatics 7
9.
go back to reference Lakhani, P., Gray, D. L., Pett, C. R., Nagy, P., and Shih, G., Hello world deep learning in medical imaging. J. Digit. Imaging 31(3):283–289, 2018.PubMedCentralCrossRef Lakhani, P., Gray, D. L., Pett, C. R., Nagy, P., and Shih, G., Hello world deep learning in medical imaging. J. Digit. Imaging 31(3):283–289, 2018.PubMedCentralCrossRef
10.
go back to reference Heidenreich, A., Desgrandschamps, F., and Terrier, F., Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities. Eur. Urol. 41(4):351–362, 2002.PubMedCrossRef Heidenreich, A., Desgrandschamps, F., and Terrier, F., Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities. Eur. Urol. 41(4):351–362, 2002.PubMedCrossRef
11.
go back to reference Rahman, M. M., Desai, B.C., and Bhattacharya, P., Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion. Comput. Med. Imaging Graph. 32(2):95–108, 2008.PubMedCrossRef Rahman, M. M., Desai, B.C., and Bhattacharya, P., Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion. Comput. Med. Imaging Graph. 32(2):95–108, 2008.PubMedCrossRef
12.
go back to reference Sáez, A., Sánchez-Monedero, J., Gutiérrez, P. A., and Hervás-Martínez, C., Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging 35(4):1036–1045, 2016.PubMedCrossRef Sáez, A., Sánchez-Monedero, J., Gutiérrez, P. A., and Hervás-Martínez, C., Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging 35(4):1036–1045, 2016.PubMedCrossRef
13.
go back to reference Miri, M. S., Abràmoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., and Garvin, M. K., Multimodal segmentation of optic disc and cup from sd-oct and color fundus photographs using a machine-learning graph-based approach. IEEE Trans. Med. Imaging 34(9):1854–1866, 2015.PubMedPubMedCentralCrossRef Miri, M. S., Abràmoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., and Garvin, M. K., Multimodal segmentation of optic disc and cup from sd-oct and color fundus photographs using a machine-learning graph-based approach. IEEE Trans. Med. Imaging 34(9):1854–1866, 2015.PubMedPubMedCentralCrossRef
14.
go back to reference Gao, Y., Zhan, Y., and Shen, D., Incremental learning with selective memory (ilsm): Towards fast prostate localization for image guided radiotherapy. IEEE Trans. Med. Imaging 33(2):518–534, 2014.PubMedPubMedCentralCrossRef Gao, Y., Zhan, Y., and Shen, D., Incremental learning with selective memory (ilsm): Towards fast prostate localization for image guided radiotherapy. IEEE Trans. Med. Imaging 33(2):518–534, 2014.PubMedPubMedCentralCrossRef
15.
go back to reference Tao, Y., Peng, Z., Krishnan, A., and Zhou, X. S., Robust learning-based parsing and annotation of medical radiographs. IEEE Trans. Med. Imaging 30(2):338–350, 2011.PubMedCrossRef Tao, Y., Peng, Z., Krishnan, A., and Zhou, X. S., Robust learning-based parsing and annotation of medical radiographs. IEEE Trans. Med. Imaging 30(2):338–350, 2011.PubMedCrossRef
16.
go back to reference Ahmad, J., Muhammad, K., Lee, M. Y., and Baik, S. W., Endoscopic image classification and retrieval using clustered convolutional features. J. Med. Syst. 41(12):196, 2017.PubMedCrossRef Ahmad, J., Muhammad, K., Lee, M. Y., and Baik, S. W., Endoscopic image classification and retrieval using clustered convolutional features. J. Med. Syst. 41(12):196, 2017.PubMedCrossRef
17.
go back to reference Ahmad, J., Muhammad, K., and Baik, S. W., Medical image retrieval with compact binary codes generated in frequency domain using highly reactive convolutional features. J. Med. Syst. 42(2):24, 2018.CrossRef Ahmad, J., Muhammad, K., and Baik, S. W., Medical image retrieval with compact binary codes generated in frequency domain using highly reactive convolutional features. J. Med. Syst. 42(2):24, 2018.CrossRef
18.
go back to reference Jenitta, A., and Ravindran, R. S., Image retrieval based on local mesh vector co-occurrence pattern for medical diagnosis from mri brain images. J. Med. Syst. 41(10):157, 2017.PubMedCrossRef Jenitta, A., and Ravindran, R. S., Image retrieval based on local mesh vector co-occurrence pattern for medical diagnosis from mri brain images. J. Med. Syst. 41(10):157, 2017.PubMedCrossRef
19.
go back to reference Zhang, L., and Ji, Q., A bayesian network model for automatic and interactive image segmentation. IEEE Trans. Image Process. 20(9):2582–2593, 2011.PubMedCrossRef Zhang, L., and Ji, Q., A bayesian network model for automatic and interactive image segmentation. IEEE Trans. Image Process. 20(9):2582–2593, 2011.PubMedCrossRef
20.
go back to reference Sharma, M. M.: Brain tumor segmentation techniques: A survey. Brain 4 (4): 220–223 Sharma, M. M.: Brain tumor segmentation techniques: A survey. Brain 4 (4): 220–223
21.
go back to reference Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., and Vishnuvarthanan, A., An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput. 38:190–212, 2016.CrossRef Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., and Vishnuvarthanan, A., An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput. 38:190–212, 2016.CrossRef
22.
go back to reference Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H., A multi-scale 3d otsu thresholding algorithm for medical image segmentation. Digital Signal Process. 60:186–199, 2017.CrossRef Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H., A multi-scale 3d otsu thresholding algorithm for medical image segmentation. Digital Signal Process. 60:186–199, 2017.CrossRef
23.
go back to reference Gupta, D., and Anand, R., A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31:116–126, 2017.CrossRef Gupta, D., and Anand, R., A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31:116–126, 2017.CrossRef
24.
go back to reference von Landesberger, T., Basgier, D., and Becker, M., Comparative local quality assessment of 3d medical image segmentations with focus on statistical shape model-based algorithms. IEEE Trans. Vis. Comput. Graph. 22 (12):2537–2549, 2016.CrossRef von Landesberger, T., Basgier, D., and Becker, M., Comparative local quality assessment of 3d medical image segmentations with focus on statistical shape model-based algorithms. IEEE Trans. Vis. Comput. Graph. 22 (12):2537–2549, 2016.CrossRef
25.
go back to reference Anwar, S., Yousaf, S., and Majid, M.: Brain timor segmentation on multimodal mri scans using emap algorithm. In: Engineering in medicine and biology soceity (EMBC), International Conference of the IEEE. IEEE, pp. 1-4, 2018 Anwar, S., Yousaf, S., and Majid, M.: Brain timor segmentation on multimodal mri scans using emap algorithm. In: Engineering in medicine and biology soceity (EMBC), International Conference of the IEEE. IEEE, pp. 1-4, 2018
26.
go back to reference Cabria, I., and Gondra, I., Mri segmentation fusion for brain tumor detection. Information Fusion 36:1–9, 2017.CrossRef Cabria, I., and Gondra, I., Mri segmentation fusion for brain tumor detection. Information Fusion 36:1–9, 2017.CrossRef
27.
go back to reference Soulami, K. B., Saidi, M. N., and Tamtaoui, A.: A cad system for the detection of abnormalities in the mammograms using the metaheuristic algorithm particle swarm optimization (pso). In: Advances in Ubiquitous Networking 2. Springer, pp. 505–517, 2017 Soulami, K. B., Saidi, M. N., and Tamtaoui, A.: A cad system for the detection of abnormalities in the mammograms using the metaheuristic algorithm particle swarm optimization (pso). In: Advances in Ubiquitous Networking 2. Springer, pp. 505–517, 2017
28.
go back to reference Kobayashi, Y., Kobayashi, H., Giles, J. T., Yokoe, I., Hirano, M., Nakajima, Y., and Takei, M., Detection of left ventricular regional dysfunction and myocardial abnormalities using complementary cardiac magnetic resonance imaging in patients with systemic sclerosis without cardiac symptoms: A pilot study. Intern. Med. 55(3): 237–243, 2016.PubMedCrossRef Kobayashi, Y., Kobayashi, H., Giles, J. T., Yokoe, I., Hirano, M., Nakajima, Y., and Takei, M., Detection of left ventricular regional dysfunction and myocardial abnormalities using complementary cardiac magnetic resonance imaging in patients with systemic sclerosis without cardiac symptoms: A pilot study. Intern. Med. 55(3): 237–243, 2016.PubMedCrossRef
29.
go back to reference Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A., and Thompson, I., Computer-aided prostate cancer diagnosis from digitized histopathology: A review on texture-based systems. IEEE Rev. Biomed. Eng. 8:98–113, 2015.PubMedCrossRef Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A., and Thompson, I., Computer-aided prostate cancer diagnosis from digitized histopathology: A review on texture-based systems. IEEE Rev. Biomed. Eng. 8:98–113, 2015.PubMedCrossRef
30.
go back to reference Ma, H.-Y., Zhou, Z., Wu, S., Wan, Y.-L., and Tsui, P.-H., A computer-aided diagnosis scheme for detection of fatty liver in vivo based on ultrasound kurtosis imaging. J. Med. Syst. 40(1):33, 2016.PubMedCrossRef Ma, H.-Y., Zhou, Z., Wu, S., Wan, Y.-L., and Tsui, P.-H., A computer-aided diagnosis scheme for detection of fatty liver in vivo based on ultrasound kurtosis imaging. J. Med. Syst. 40(1):33, 2016.PubMedCrossRef
31.
go back to reference Remeseiro, B., Mosquera, A., and Penedo, M. G., Casdes: A computer-aided system to support dry eye diagnosis based on tear film maps. IEEE journal of biomedical and health informatics 20(3):936–943, 2016.PubMedCrossRef Remeseiro, B., Mosquera, A., and Penedo, M. G., Casdes: A computer-aided system to support dry eye diagnosis based on tear film maps. IEEE journal of biomedical and health informatics 20(3):936–943, 2016.PubMedCrossRef
32.
go back to reference Torrents-Barrena, J., Lazar, P., Jayapathy, R., Rathnam, M., Mohandhas, B., and Puig, D., Complex wavelet algorithm for computer-aided diagnosis of alzheimer’s disease. Electron. Lett. 51(20):1566–1568, 2015.CrossRef Torrents-Barrena, J., Lazar, P., Jayapathy, R., Rathnam, M., Mohandhas, B., and Puig, D., Complex wavelet algorithm for computer-aided diagnosis of alzheimer’s disease. Electron. Lett. 51(20):1566–1568, 2015.CrossRef
33.
go back to reference Saha, M., Mukherjee, R., and Chakraborty, C., Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue Cell 48(5):461–474, 2016.PubMedCrossRef Saha, M., Mukherjee, R., and Chakraborty, C., Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue Cell 48(5):461–474, 2016.PubMedCrossRef
34.
go back to reference Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., and Majid, M.: Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: IEEE International Symposium on Signal processing and information technology (ISSPIT) 2015. IEEE, pp. 370-374, 2015 Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., and Majid, M.: Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: IEEE International Symposium on Signal processing and information technology (ISSPIT) 2015. IEEE, pp. 370-374, 2015
35.
go back to reference Salam, A. A., Akram, M. U., Abbas, S., and Anwar, S. M.: Optic disc localization using local vessel based features and support vector machine. In: IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015. IEEE, pp. 1–6, 2015 Salam, A. A., Akram, M. U., Abbas, S., and Anwar, S. M.: Optic disc localization using local vessel based features and support vector machine. In: IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015. IEEE, pp. 1–6, 2015
36.
go back to reference Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., and Majid, M., Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43:64–74, 2018.CrossRef Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., and Majid, M., Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43:64–74, 2018.CrossRef
38.
go back to reference Müller, H., Rosset, A., Vallée, J.-P., Terrier, F., and Geissbuhler, A., A reference data set for the evaluation of medical image retrieval systems. Comput. Med. Imaging Graph. 28(6):295–305, 2004.PubMedCrossRef Müller, H., Rosset, A., Vallée, J.-P., Terrier, F., and Geissbuhler, A., A reference data set for the evaluation of medical image retrieval systems. Comput. Med. Imaging Graph. 28(6):295–305, 2004.PubMedCrossRef
39.
go back to reference Müller, H., Michoux, N., Bandon, D., and Geissbuhler, A., A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Inform. 73(1):1–23, 2004.PubMedCrossRef Müller, H., Michoux, N., Bandon, D., and Geissbuhler, A., A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Inform. 73(1):1–23, 2004.PubMedCrossRef
40.
go back to reference Mizotin, M., Benois-Pineau, J., Allard, M., and Catheline, G.: Feature-based brain mri retrieval for alzheimer disease diagnosis. In: 2012 19th IEEE International Conference on Image Processing (ICIP). IEEE, pp. 1241–1244, 2012 Mizotin, M., Benois-Pineau, J., Allard, M., and Catheline, G.: Feature-based brain mri retrieval for alzheimer disease diagnosis. In: 2012 19th IEEE International Conference on Image Processing (ICIP). IEEE, pp. 1241–1244, 2012
41.
go back to reference Brahmi, D., and Ziou, D.: Improving cbir systems by integrating semantic features. In: 2004 Proceedings of the 1st Canadian Conference on Computer and robot vision. IEEE, pp. 233-240, 2004 Brahmi, D., and Ziou, D.: Improving cbir systems by integrating semantic features. In: 2004 Proceedings of the 1st Canadian Conference on Computer and robot vision. IEEE, pp. 233-240, 2004
42.
go back to reference Chang, N.-S., and Fu, K.-S., Query-by-pictorial-example. IEEE Trans. Softw. Eng. SE-6(6):519–524, 1980.CrossRef Chang, N.-S., and Fu, K.-S., Query-by-pictorial-example. IEEE Trans. Softw. Eng. SE-6(6):519–524, 1980.CrossRef
43.
go back to reference Thakur, M. S., and Singh, M., Content based image retrieval using line edge singular value pattern (lesvp): A review paper. International Journal of Advanced Research in Computer Science and Software Engineering 5(3): 648–652, 2015. Thakur, M. S., and Singh, M., Content based image retrieval using line edge singular value pattern (lesvp): A review paper. International Journal of Advanced Research in Computer Science and Software Engineering 5(3): 648–652, 2015.
44.
go back to reference Jiji, G. W., and Raj, P. S. J. D., Content-based image retrieval in dermatology using intelligent technique. IET Image Process. 9(4):306–317, 2014.CrossRef Jiji, G. W., and Raj, P. S. J. D., Content-based image retrieval in dermatology using intelligent technique. IET Image Process. 9(4):306–317, 2014.CrossRef
45.
go back to reference Rahman, M. M., Antani, S. K., and Thoma, G. R., A learning-based similarity fusion and filtering approach for biomedical image retrieval using svm classification and relevance feedback. IEEE Trans. Inf. Technol. Biomed. 15(4):640–646, 2011.PubMedCrossRef Rahman, M. M., Antani, S. K., and Thoma, G. R., A learning-based similarity fusion and filtering approach for biomedical image retrieval using svm classification and relevance feedback. IEEE Trans. Inf. Technol. Biomed. 15(4):640–646, 2011.PubMedCrossRef
46.
go back to reference Anwar, S. M., Arshad, F., and Majid, M.: Fast wavelet based image characterization for content based medical image retrieval. In: 2017 International Conference on communication, computing and digital systems (C-CODE). IEEE, pp.351-356, 2017 Anwar, S. M., Arshad, F., and Majid, M.: Fast wavelet based image characterization for content based medical image retrieval. In: 2017 International Conference on communication, computing and digital systems (C-CODE). IEEE, pp.351-356, 2017
47.
go back to reference Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef
48.
go back to reference Premaladha, J., and Ravichandran, K., Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst. 40(4):96, 2016.PubMedCrossRef Premaladha, J., and Ravichandran, K., Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst. 40(4):96, 2016.PubMedCrossRef
49.
go back to reference Kharazmi, P., Zheng, J., Lui, H., Wang, Z. J., and Lee, T. K., A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J. Med. Syst. 42(2):33, 2018.PubMedCrossRef Kharazmi, P., Zheng, J., Lui, H., Wang, Z. J., and Lee, T. K., A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J. Med. Syst. 42(2):33, 2018.PubMedCrossRef
50.
go back to reference Wang, S.-H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H., Classification of alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42(5):85, 2018.PubMedCrossRef Wang, S.-H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H., Classification of alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42(5):85, 2018.PubMedCrossRef
51.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86(11):2278–2324, 1998.CrossRef LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86(11):2278–2324, 1998.CrossRef
53.
go back to reference Ding, S., Lin, L., Wang, G., and Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recog. 48(10):2993–3003, 2015.CrossRef Ding, S., Lin, L., Wang, G., and Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recog. 48(10):2993–3003, 2015.CrossRef
54.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958, 2014. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958, 2014.
55.
go back to reference Ioffe, S., and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 Ioffe, S., and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.​03167
57.
go back to reference Perez, L., and Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621 Perez, L., and Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.​04621
58.
go back to reference Hussain, S., Anwar, S. M., and Majid, M., Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261, 2018.CrossRef Hussain, S., Anwar, S. M., and Majid, M., Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261, 2018.CrossRef
59.
go back to reference Ma, J., Wu, F., Zhu, J., Xu, D., and Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230, 2017.PubMedCrossRef Ma, J., Wu, F., Zhu, J., Xu, D., and Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230, 2017.PubMedCrossRef
60.
go back to reference Sun, W., Tseng, T.-L. B., Zhang, J., and Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57:4–9 , 2017.PubMedCrossRef Sun, W., Tseng, T.-L. B., Zhang, J., and Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57:4–9 , 2017.PubMedCrossRef
61.
go back to reference Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., and Zheng, Y., Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90:200–205, 2016.CrossRef Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., and Zheng, Y., Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90:200–205, 2016.CrossRef
62.
go back to reference Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., and Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35 (5):1207–1216, 2016.PubMedCrossRef Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., and Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35 (5):1207–1216, 2016.PubMedCrossRef
63.
go back to reference van Tulder, G., and de Bruijne, M., Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted boltzmann machines. IEEE Trans. Med. Imaging 35(5):1262–1272, 2016.PubMedCrossRef van Tulder, G., and de Bruijne, M., Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted boltzmann machines. IEEE Trans. Med. Imaging 35(5):1262–1272, 2016.PubMedCrossRef
64.
go back to reference Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D. N., and Zhou, X. S., Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5):1332–1343, 2016.CrossRef Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D. N., and Zhou, X. S., Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5):1332–1343, 2016.CrossRef
65.
go back to reference Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot, N. M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5):1196–1206, 2016.PubMedCrossRef Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot, N. M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5):1196–1206, 2016.PubMedCrossRef
66.
go back to reference Qayyum, A., Anwar, S. M., Awais, M., and Majid, M., Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20, 2017.CrossRef Qayyum, A., Anwar, S. M., Awais, M., and Majid, M., Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20, 2017.CrossRef
67.
go back to reference Chowdhury, M., Bulo, S. R., Moreno, R., Kundu, M. K., and Smedby, Ö.: An efficient radiographic image retrieval system using convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 3134–3139, 2016 Chowdhury, M., Bulo, S. R., Moreno, R., Kundu, M. K., and Smedby, Ö.: An efficient radiographic image retrieval system using convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 3134–3139, 2016
68.
go back to reference Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31, 2017.PubMedCrossRef Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31, 2017.PubMedCrossRef
69.
go back to reference Pereira, S., Pinto, A., Alves, V., and Silva, C. A., Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans. Med. Imaging 35(5):1240–1251 , 2016.PubMedCrossRef Pereira, S., Pinto, A., Alves, V., and Silva, C. A., Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans. Med. Imaging 35(5):1240–1251 , 2016.PubMedCrossRef
70.
go back to reference Jodoin, A. C., Larochelle, H., Pal, C., and Bengio, Y.: Brain tumor segmentation with deep neural networks Jodoin, A. C., Larochelle, H., Pal, C., and Bengio, Y.: Brain tumor segmentation with deep neural networks
71.
go back to reference Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78 , 2017.PubMedCrossRef Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78 , 2017.PubMedCrossRef
72.
go back to reference Tseng, K.-L., Lin, Y.-L., Hsu, W., and Huang, C.-Y.: Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. arXiv:1704.07754 Tseng, K.-L., Lin, Y.-L., Hsu, W., and Huang, C.-Y.: Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. arXiv:1704.​07754
73.
go back to reference Casamitjana, A., Puch, S., Aduriz, A., Sayrol, E., and Vilaplana, V.: 3d convolutional networks for brain tumor segmentation. Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS), pp. 65–68 , 2016 Casamitjana, A., Puch, S., Aduriz, A., Sayrol, E., and Vilaplana, V.: 3d convolutional networks for brain tumor segmentation. Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS), pp. 65–68 , 2016
74.
go back to reference Farooq, A., Anwar, S., Awais, M., and Rehman, S.: A deep cnn based multi-class classification of alzheimer’s disease using mri. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, pp. 1–6, 2017 Farooq, A., Anwar, S., Awais, M., and Rehman, S.: A deep cnn based multi-class classification of alzheimer’s disease using mri. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, pp. 1–6, 2017
75.
go back to reference Farooq, A., Anwar, S., Awais, M., and Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2). IEEE, pp. 1–4, 2017 Farooq, A., Anwar, S., Awais, M., and Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2). IEEE, pp. 1–4, 2017
76.
go back to reference Gangeh, M. J., Sørensen, L., Shaker, S. B., Kamel, M. S., De Bruijne, M., and Loog, M.: A texton-based approach for the classification of lung parenchyma in ct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 595–602, 2010 Gangeh, M. J., Sørensen, L., Shaker, S. B., Kamel, M. S., De Bruijne, M., and Loog, M.: A texton-based approach for the classification of lung parenchyma in ct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 595–602, 2010
77.
go back to reference Sorensen, L., Shaker, S. B., and De Bruijne, M., Quantitative analysis of pulmonary using local binary patterns. IEEE Trans. Med. Imaging 29(2):559–569, 2010.PubMedCrossRef Sorensen, L., Shaker, S. B., and De Bruijne, M., Quantitative analysis of pulmonary using local binary patterns. IEEE Trans. Med. Imaging 29(2):559–569, 2010.PubMedCrossRef
78.
go back to reference Anthimopoulos, M., Christodoulidis, S., Christe, A., and Mougiakakou, S.: Classification of interstitial lung disease patterns using local dct features and random forest. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 6040–6043, 2014 Anthimopoulos, M., Christodoulidis, S., Christe, A., and Mougiakakou, S.: Classification of interstitial lung disease patterns using local dct features and random forest. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 6040–6043, 2014
80.
go back to reference Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and Summers, R. M., Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5):1285, 2016.PubMedCentralCrossRef Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and Summers, R. M., Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5):1285, 2016.PubMedCentralCrossRef
81.
go back to reference Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.​1556
82.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3D u-net Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G., and Wells, W. (Eds.) Medical image computing and computer-assisted intervention – MICCAI, Vol. 2016, pp. 424–432. Springer International Publishing, Cham, 2016.CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3D u-net Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G., and Wells, W. (Eds.) Medical image computing and computer-assisted intervention – MICCAI, Vol. 2016, pp. 424–432. Springer International Publishing, Cham, 2016.CrossRef
83.
go back to reference Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11, 2018 Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11, 2018
84.
go back to reference Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., and Tang, X.: W-net: Bridged u-net for 2d medical image segmentation. arXiv:1807.04459 Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., and Tang, X.: W-net: Bridged u-net for 2d medical image segmentation. arXiv:1807.​04459
87.
go back to reference Chen, H., Dou, Q., Yu, L., and Heng, P.-A.: Voxresnet: Deep voxelwise residual networks for volumetric brain segmentation. arXiv:1608.05895 Chen, H., Dou, Q., Yu, L., and Heng, P.-A.: Voxresnet: Deep voxelwise residual networks for volumetric brain segmentation. arXiv:1608.​05895
88.
go back to reference Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., Wille, M. M. W., Naqibullah, M., Sánchez, C. I., and van Ginneken, B., Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5):1160–1169, 2016.PubMedCrossRef Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., Wille, M. M. W., Naqibullah, M., Sánchez, C. I., and van Ginneken, B., Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5):1160–1169, 2016.PubMedCrossRef
89.
go back to reference Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., and Tam, R., Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5):1229–1239, 2016.PubMedCrossRef Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., and Tam, R., Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5):1229–1239, 2016.PubMedCrossRef
90.
go back to reference Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 424–432, 2016 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 424–432, 2016
91.
go back to reference Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W., Gopalakrishnan, V., and Panigrahy, A., A computational framework for the detection of subcortical brain dysmaturation in neonatal mri using 3d convolutional neural networks. NeuroImage 178:183–197, 2018.PubMedCrossRef Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W., Gopalakrishnan, V., and Panigrahy, A., A computational framework for the detection of subcortical brain dysmaturation in neonatal mri using 3d convolutional neural networks. NeuroImage 178:183–197, 2018.PubMedCrossRef
92.
go back to reference Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., et al., Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage: Clinical 14:391–399, 2017.CrossRef Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., et al., Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage: Clinical 14:391–399, 2017.CrossRef
93.
go back to reference Meijs, M., and Manniesing, R.: Artery and vein segmentation of the cerebral vasculature in 4d ct using a 3d fully convolutional neural network. In: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575, International Society for Optics and Photonics, p. 105751Q, 2018 Meijs, M., and Manniesing, R.: Artery and vein segmentation of the cerebral vasculature in 4d ct using a 3d fully convolutional neural network. In: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575, International Society for Optics and Photonics, p. 105751Q, 2018
94.
go back to reference Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78, 2017.PubMedCrossRef Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78, 2017.PubMedCrossRef
95.
go back to reference Seong, S.-B., Pae, C., and Park, H.-J., Geometric convolutional neural network for analyzing surface-based neuroimaging data. Frontiers in Neuroinformatics 12:42, 2018.PubMedPubMedCentralCrossRef Seong, S.-B., Pae, C., and Park, H.-J., Geometric convolutional neural network for analyzing surface-based neuroimaging data. Frontiers in Neuroinformatics 12:42, 2018.PubMedPubMedCentralCrossRef
96.
go back to reference Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), Vol. 1, p. 4, 2017 Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), Vol. 1, p. 4, 2017
Metadata
Title
Medical Image Analysis using Convolutional Neural Networks: A Review
Authors
Syed Muhammad Anwar
Muhammad Majid
Adnan Qayyum
Muhammad Awais
Majdi Alnowami
Muhammad Khurram Khan
Publication date
01-11-2018
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 11/2018
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1088-1

Other articles of this Issue 11/2018

Journal of Medical Systems 11/2018 Go to the issue