Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 6/2018

01-12-2018 | Original Research

Accuracy and trending of non-invasive hemoglobin measurement during different volume and perfusion statuses

Authors: Abdelmoneim Adel, Wael Awada, Bassant Abdelhamid, Heba Omar, Omnia Abd El Dayem, Ahmed Hasanin, Ashraf Rady

Published in: Journal of Clinical Monitoring and Computing | Issue 6/2018

Login to get access

Abstract

The evolution of non-invasive hemoglobin measuring technology would save time and improve transfusion practice. The validity of pulse co-oximetry hemoglobin (SpHb) measurement in the perioperative setting was previously evaluated; however, the accuracy of SpHb in different volume statuses as well as in different perfusion states was not well investigated. The aim of this work is to evaluate the accuracy and trending of SpHb in comparison to laboratory hemoglobin (Lab-Hb) during acute bleeding and after resuscitation. Seventy patients scheduled for major orthopedic procedures with anticipated major blood loss were included. Radical-7 device was used for continuous assessment of SpHb, volume status [via pleth variability index (PVI)] and perfusion status [via perfusion index (PI)]. Lab-Hb and SpHb were measured at three time-points, a baseline reading, after major bleeding, and after resuscitation. Samples were divided into fluid-responsive and fluid non-responsive samples, and were also divided into high-PI and low-PI samples. Accuracy of SpHb was determined using Bland–Altman analysis. Trending of SpHb was evaluated using polar plot analysis. We obtained 210 time-matched readings. Fluid non-responsive samples were 106 (50.5%) whereas fluid responsive samples were 104 (49.5%). Excellent correlation was reported between Lab-Hb and SpHb (r = 0.938). Excellent accuracy with moderate levels of agreement was also reported between both measures among all samples, fluid non-responsive samples, fluid-responsive samples, high-PI samples, and low-PI samples [Mean bias (limits of agreement): 0.01 (− 1.33 and 1.34) g/dL, − 0.08 (− 1.27 and 1.11) g/dL, 0.09 (− 1.36 and 1.54) g/dL, 0.01 (− 1.34 to 1.31) g/dL, and 0.04 (− 1.31 to 1.39) g/dL respectively]. Polar plot analysis showed good trending ability for SpHb as a follow up monitor. In conclusion, SpHb showed excellent correlation with Lab-Hb in fluid responders, fluid non-responders, low-PI, and high PI states. Despite a favorable mean bias of 0.01 g/dL for SpHb, the relatively wide levels of agreement (− 1.3 to 1.3 g/dL) might limit its accuracy. SpHb showed good performance as a trend monitor.
Literature
1.
go back to reference Zwart A, van Assendelft OW, Bull BS, England JM, Lewis SM, Zijlstra WG. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard. J Clin Pathol. 1996;49:271–4.CrossRef Zwart A, van Assendelft OW, Bull BS, England JM, Lewis SM, Zijlstra WG. Recommendations for reference method for haemoglobinometry in human blood (ICSH standard 1995) and specifications for international haemiglobinocyanide standard. J Clin Pathol. 1996;49:271–4.CrossRef
2.
go back to reference Rasmy I, Mohamed H, Nabil N, Abdalah S, Hasanin A, Eladawy A, et al. Evaluation of perfusion index as a predictor of vasopressor requirement in patients with severe sepsis. Shock. 2015;44:554–9.CrossRef Rasmy I, Mohamed H, Nabil N, Abdalah S, Hasanin A, Eladawy A, et al. Evaluation of perfusion index as a predictor of vasopressor requirement in patients with severe sepsis. Shock. 2015;44:554–9.CrossRef
3.
go back to reference Hasanin A, Mohamed SAR, El-adawy A. Evaluation of perfusion index as a tool for pain assessment in critically ill patients. J Clin Monit Comput. 2016;31(5):961–65.CrossRef Hasanin A, Mohamed SAR, El-adawy A. Evaluation of perfusion index as a tool for pain assessment in critically ill patients. J Clin Monit Comput. 2016;31(5):961–65.CrossRef
4.
go back to reference Kim S-H, Lilot M, Murphy LS-L, Sidhu KS, Yu Z, Rinehart J, et al. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119:332–46.CrossRef Kim S-H, Lilot M, Murphy LS-L, Sidhu KS, Yu Z, Rinehart J, et al. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119:332–46.CrossRef
5.
go back to reference Gamal M, Abdelhamid B, Zakaria D, Dayem OA El, Rady A, Fawzy M, et al. Evaluation of non-invasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock. 2017;49(2):150–3.CrossRef Gamal M, Abdelhamid B, Zakaria D, Dayem OA El, Rady A, Fawzy M, et al. Evaluation of non-invasive hemoglobin monitoring in trauma patients with low hemoglobin levels. Shock. 2017;49(2):150–3.CrossRef
6.
go back to reference Hasanin A. Fluid responsiveness in acute circulatory failure. J Intensive Care. 2015;3:50.CrossRef Hasanin A. Fluid responsiveness in acute circulatory failure. J Intensive Care. 2015;3:50.CrossRef
7.
go back to reference Hasanin A, Mukhtar A, Nassar H. Perfusion indices revisited. J Intensive Care. 2017;5:24.CrossRef Hasanin A, Mukhtar A, Nassar H. Perfusion indices revisited. J Intensive Care. 2017;5:24.CrossRef
8.
go back to reference Hellstern P, Haubelt H. Indications for plasma in massive transfusion. Thromb Res. 2002;107:S19–22.CrossRef Hellstern P, Haubelt H. Indications for plasma in massive transfusion. Thromb Res. 2002;107:S19–22.CrossRef
9.
go back to reference Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.CrossRef Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25:536–46.CrossRef
10.
go back to reference Kozek-Langenecker SA, Ahmed AB, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe perioperative bleeding. Eur J Anaesthesiol. 2017;34:332–95.CrossRef Kozek-Langenecker SA, Ahmed AB, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe perioperative bleeding. Eur J Anaesthesiol. 2017;34:332–95.CrossRef
11.
go back to reference Moore LJ, Wade CE, Vincent L, Podbielski J, Camp E, Junco D del, et al. Evaluation of noninvasive hemoglobin measurements in trauma patients. Am J Surg. 2013;206:1041–7.CrossRef Moore LJ, Wade CE, Vincent L, Podbielski J, Camp E, Junco D del, et al. Evaluation of noninvasive hemoglobin measurements in trauma patients. Am J Surg. 2013;206:1041–7.CrossRef
12.
go back to reference Galvagno SM, Hu P, Yang S, Gao C, Hanna D, Shackelford S, et al. Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients. J Clin Monit Comput. 2015;29:815–21.CrossRef Galvagno SM, Hu P, Yang S, Gao C, Hanna D, Shackelford S, et al. Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients. J Clin Monit Comput. 2015;29:815–21.CrossRef
13.
go back to reference Awada WN, Mohmoued MF, Radwan TM, Hussien GZ, Elkady HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015;29:733–40.CrossRef Awada WN, Mohmoued MF, Radwan TM, Hussien GZ, Elkady HW. Continuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study. J Clin Monit Comput. 2015;29:733–40.CrossRef
14.
go back to reference Marques NR, Kramer GC, Voigt RB, Salter MG, Kinsky MP. Trending, accuracy, and precision of noninvasive hemoglobin monitoring during human hemorrhage and fixed crystalloid bolus. Shock. 2015;44:45–9.CrossRef Marques NR, Kramer GC, Voigt RB, Salter MG, Kinsky MP. Trending, accuracy, and precision of noninvasive hemoglobin monitoring during human hemorrhage and fixed crystalloid bolus. Shock. 2015;44:45–9.CrossRef
15.
go back to reference Dewhirst E, Naguib A, Winch P, Rice J, Galantowicz M, McConnell P, et al. Accuracy of noninvasive and continuous hemoglobin measurement by pulse co-oximetry during preoperative phlebotomy. J Intensive Care Med. 2014;29:238–42.CrossRef Dewhirst E, Naguib A, Winch P, Rice J, Galantowicz M, McConnell P, et al. Accuracy of noninvasive and continuous hemoglobin measurement by pulse co-oximetry during preoperative phlebotomy. J Intensive Care Med. 2014;29:238–42.CrossRef
16.
go back to reference Isosu T, Obara S, Hosono A, Ohashi S, Nakano Y, Imaizumi T, et al. Validation of continuous and noninvasive hemoglobin monitoring by pulse co-oximetry in Japanese surgical patients. J Clin Monit Comput. 2013;27:55–60.CrossRef Isosu T, Obara S, Hosono A, Ohashi S, Nakano Y, Imaizumi T, et al. Validation of continuous and noninvasive hemoglobin monitoring by pulse co-oximetry in Japanese surgical patients. J Clin Monit Comput. 2013;27:55–60.CrossRef
17.
go back to reference Wittenmeier E, Bellosevich S, Mauff S, Schmidtmann I, Eli M, Pestel G, et al. Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: a prospective diagnostic observational study. Pediatr Anesth. 2015;25:1046–53.CrossRef Wittenmeier E, Bellosevich S, Mauff S, Schmidtmann I, Eli M, Pestel G, et al. Comparison of the gold standard of hemoglobin measurement with the clinical standard (BGA) and noninvasive hemoglobin measurement (SpHb) in small children: a prospective diagnostic observational study. Pediatr Anesth. 2015;25:1046–53.CrossRef
18.
go back to reference Miller RD, Ward TA, McCulloch CE, Cohen NH. A comparison of lidocaine and bupivacaine digital nerve blocks on noninvasive continuous hemoglobin monitoring in a randomized trial in volunteers. Anesth Analg. 2014;118:766–71.CrossRef Miller RD, Ward TA, McCulloch CE, Cohen NH. A comparison of lidocaine and bupivacaine digital nerve blocks on noninvasive continuous hemoglobin monitoring in a randomized trial in volunteers. Anesth Analg. 2014;118:766–71.CrossRef
19.
go back to reference Abdelnasser A, Abdelhamid B, Elsonbaty A, Hasanin A. AR. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index. ]. 2017:119(2):276–80. Abdelnasser A, Abdelhamid B, Elsonbaty A, Hasanin A. AR. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index. ]. 2017:119(2):276–80.
20.
go back to reference Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.CrossRef Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30:1210–3.CrossRef
21.
go back to reference Høiseth L, Hisdal J, Hoff IE, Hagen OA, Landsverk SA, Kirkebøen KA. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain. Crit Care Med. 2015;43:747–56.CrossRef Høiseth L, Hisdal J, Hoff IE, Hagen OA, Landsverk SA, Kirkebøen KA. Tissue oxygen saturation and finger perfusion index in central hypovolemia: influence of pain. Crit Care Med. 2015;43:747–56.CrossRef
22.
go back to reference Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. ]. 1999;82:178–81. Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. ]. 1999;82:178–81.
23.
go back to reference Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37.CrossRef Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37.CrossRef
24.
go back to reference Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.CrossRef Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.CrossRef
Metadata
Title
Accuracy and trending of non-invasive hemoglobin measurement during different volume and perfusion statuses
Authors
Abdelmoneim Adel
Wael Awada
Bassant Abdelhamid
Heba Omar
Omnia Abd El Dayem
Ahmed Hasanin
Ashraf Rady
Publication date
01-12-2018
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 6/2018
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0101-z

Other articles of this Issue 6/2018

Journal of Clinical Monitoring and Computing 6/2018 Go to the issue