Skip to main content
Top
Published in: Journal of Clinical Immunology 3/2022

01-04-2022 | Stem Cell Transplantation | Original Article

Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency

Authors: Asena Pinar Sefer, Hassan Abolhassani, Franziska Ober, Basak Kayaoglu, Sevgi Bilgic Eltan, Altan Kara, Baran Erman, Naz Surucu Yilmaz, Cigdem Aydogmus, Sezin Aydemir, Louis-Marie Charbonnier, Burcu Kolukisa, Gholamreza Azizi, Samaneh Delavari, Tooba Momen, Simuzar Aliyeva, Yasemin Kendir Demirkol, Saban Tekin, Ayca Kiykim, Omer Faruk Baser, Haluk Cokugras, Mayda Gursel, Elif Karakoc-Aydiner, Ahmet Ozen, Daniel Krappmann, Talal A. Chatila, Nima Rezaei, Safa Baris

Published in: Journal of Clinical Immunology | Issue 3/2022

Login to get access

Abstract

Purpose

MALT1 deficiency is a combined immune deficiency characterized by recurrent infections, eczema, chronic diarrhea, and failure to thrive. Clinical and immunological characterizations of the disease have not been previously reported in large cohorts. We sought to determine the clinical, immunological, genetic features, and the natural history of MALT-1 deficiency.

Methods

The clinical findings and treatment outcomes were evaluated in nine new MALT1-deficient patients. Peripheral lymphocyte subset analyses, cytokine secretion, and proliferation assays were performed. We also analyzed ten previously reported patients to comprehensively evaluate genotype/phenotype correlation.

Results

The mean age of patients and disease onset were 33 ± 17 and 1.6 ± 0.7 months, respectively. The main clinical findings of the disease were recurrent infections (100%), skin involvement (100%), failure to thrive (100%), oral lesions (67%), chronic diarrhea (56%), and autoimmunity (44%). Eosinophilia and high IgE were observed in six (67%) and two (22%) patients, respectively. The majority of patients had normal T and NK cells, while eight (89%) exhibited reduced B cells. Immunoglobulin replacement and antibiotics prophylaxis were mostly ineffective in reducing the frequency of infections and other complications. One patient received hematopoietic stem cell transplantation (HSCT) and five patients died as a complication of life-threatening infections. Analyzing this cohort with reported patients revealed overall survival in 58% (11/19), which was higher in patients who underwent HSCT (P = 0.03).

Conclusion

This cohort provides the largest analysis for clinical and immunological features of MALT1 deficiency. HSCT should be offered as a curative therapeutic option for all patients at the early stage of life.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thome M. Multifunctional roles for MALT1 in T-cell activation. Nat Rev Immunol. 2008;8(7):495–500.CrossRefPubMed Thome M. Multifunctional roles for MALT1 in T-cell activation. Nat Rev Immunol. 2008;8(7):495–500.CrossRefPubMed
2.
go back to reference Lucas PC, Yonezumi M, Inohara N, McAllister-Lucas LM, Abazeed ME, Chen FF, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem. 2001;276(22):19012–9.CrossRefPubMed Lucas PC, Yonezumi M, Inohara N, McAllister-Lucas LM, Abazeed ME, Chen FF, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem. 2001;276(22):19012–9.CrossRefPubMed
3.
go back to reference Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, et al. The CBM-opathies-a rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front Immunol. 2018;9:2078.CrossRefPubMedPubMedCentral Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, et al. The CBM-opathies-a rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front Immunol. 2018;9:2078.CrossRefPubMedPubMedCentral
4.
go back to reference Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol. 2004;4(5):348–59.CrossRefPubMed Thome M. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol. 2004;4(5):348–59.CrossRefPubMed
5.
go back to reference Ruland J, Hartjes L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat Rev Immunol. 2019;19(2):118–34.CrossRefPubMed Ruland J, Hartjes L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat Rev Immunol. 2019;19(2):118–34.CrossRefPubMed
6.
go back to reference Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2(9):a003004. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2(9):a003004.
7.
go back to reference Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66–81.CrossRefPubMedPubMedCentral Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66–81.CrossRefPubMedPubMedCentral
8.
go back to reference Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS committee. J Clin Immunol. 2021;41(3):666–79.CrossRefPubMedPubMedCentral Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS committee. J Clin Immunol. 2021;41(3):666–79.CrossRefPubMedPubMedCentral
9.
go back to reference Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132(1):151–8.CrossRefPubMedPubMedCentral Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132(1):151–8.CrossRefPubMedPubMedCentral
10.
go back to reference McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133(5):1458–62, 62 e1–7. McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133(5):1458–62, 62 e1–7.
11.
go back to reference Punwani D, Wang H, Chan AY, Cowan MJ, Mallott J, Sunderam U, et al. Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J Clin Immunol. 2015;35(2):135–46.CrossRefPubMedPubMedCentral Punwani D, Wang H, Chan AY, Cowan MJ, Mallott J, Sunderam U, et al. Combined immunodeficiency due to MALT1 mutations, treated by hematopoietic cell transplantation. J Clin Immunol. 2015;35(2):135–46.CrossRefPubMedPubMedCentral
12.
go back to reference Frizinsky S, Rechavi E, Barel O, Najeeb RH, Greenberger S, Lee YN, et al. Novel MALT1 mutation linked to immunodeficiency, immune dysregulation, and an abnormal T cell receptor repertoire. J Clin Immunol. 2019;39(4):401–13.CrossRefPubMed Frizinsky S, Rechavi E, Barel O, Najeeb RH, Greenberger S, Lee YN, et al. Novel MALT1 mutation linked to immunodeficiency, immune dysregulation, and an abnormal T cell receptor repertoire. J Clin Immunol. 2019;39(4):401–13.CrossRefPubMed
13.
go back to reference Wiegmann H, Reunert J, Metze D, Marquardt T, Engel T, Kunde V, et al. Refining the dermatological spectrum in primary immunodeficiency: mucosa-associated lymphoid tissue lymphoma translocation protein 1 deficiency mimicking Netherton/Omenn syndromes. Br J Dermatol. 2020;182(1):202–7.PubMed Wiegmann H, Reunert J, Metze D, Marquardt T, Engel T, Kunde V, et al. Refining the dermatological spectrum in primary immunodeficiency: mucosa-associated lymphoid tissue lymphoma translocation protein 1 deficiency mimicking Netherton/Omenn syndromes. Br J Dermatol. 2020;182(1):202–7.PubMed
14.
go back to reference Kutukculer N, Seeholzer T, O'Neill TJ, Grass C, Aykut A, Karaca NE, et al. Human immune disorder associated with homozygous hypomorphic mutation affecting MALT1B splice variant. J Allergy Clin Immunol. 2021;147(2):775–8 e8. Kutukculer N, Seeholzer T, O'Neill TJ, Grass C, Aykut A, Karaca NE, et al. Human immune disorder associated with homozygous hypomorphic mutation affecting MALT1B splice variant. J Allergy Clin Immunol. 2021;147(2):775–8 e8.
15.
go back to reference Charbit-Henrion F, Jeverica AK, Begue B, Markelj G, Parlato M, Avcin SL, et al. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: a novel cause of IPEX-like syndrome. J Pediatr Gastroenterol Nutr. 2017;64(3):378–84.CrossRefPubMed Charbit-Henrion F, Jeverica AK, Begue B, Markelj G, Parlato M, Avcin SL, et al. Deficiency in mucosa-associated lymphoid tissue lymphoma translocation 1: a novel cause of IPEX-like syndrome. J Pediatr Gastroenterol Nutr. 2017;64(3):378–84.CrossRefPubMed
16.
go back to reference Shirmast P PK, Moeini shad T. Case report- MALT 1 mutation in a patient with severe combined immunologic Immunol Genet J 2020. 2020;3:47–52. Shirmast P PK, Moeini shad T. Case report- MALT 1 mutation in a patient with severe combined immunologic Immunol Genet J 2020. 2020;3:47–52.
17.
go back to reference Lu HY, Turvey SE. Human MALT1 deficiency and predisposition to infections. Curr Opin Immunol. 2021;72:1–12.CrossRefPubMed Lu HY, Turvey SE. Human MALT1 deficiency and predisposition to infections. Curr Opin Immunol. 2021;72:1–12.CrossRefPubMed
18.
go back to reference Abolhassani H, Aghamohammadi A, Fang M, Rezaei N, Jiang C, Liu X, et al. Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 2019;21(1):243–51.CrossRefPubMed Abolhassani H, Aghamohammadi A, Fang M, Rezaei N, Jiang C, Liu X, et al. Clinical implications of systematic phenotyping and exome sequencing in patients with primary antibody deficiency. Genet Med. 2019;21(1):243–51.CrossRefPubMed
19.
go back to reference Abolhassani H, Chou J, Bainter W, Platt CD, Tavassoli M, Momen T, et al. Clinical, immunologic, and genetic spectrum of 696 patients with combined immunodeficiency. J Allergy Clin Immunol. 2018;141(4):1450–8.CrossRefPubMed Abolhassani H, Chou J, Bainter W, Platt CD, Tavassoli M, Momen T, et al. Clinical, immunologic, and genetic spectrum of 696 patients with combined immunodeficiency. J Allergy Clin Immunol. 2018;141(4):1450–8.CrossRefPubMed
20.
21.
go back to reference Fang M, Abolhassani H, Lim CK, Zhang J, Hammarstrom L. Next generation sequencing data analysis in primary immunodeficiency disorders - future directions. J Clin Immunol. 2016;36(Suppl 1):68–75.CrossRefPubMed Fang M, Abolhassani H, Lim CK, Zhang J, Hammarstrom L. Next generation sequencing data analysis in primary immunodeficiency disorders - future directions. J Clin Immunol. 2016;36(Suppl 1):68–75.CrossRefPubMed
22.
go back to reference Kolukisa B, Baser D, Akcam B, Danielson J, Bilgic Eltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2021. Kolukisa B, Baser D, Akcam B, Danielson J, Bilgic Eltan S, Haliloglu Y, et al. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy. 2021.
23.
go back to reference Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, et al. Fourth update on the Iranian National Registry of Primary Immunodeficiencies: integration of molecular diagnosis. J Clin Immunol. 2018;38(7):816–32.CrossRefPubMed Abolhassani H, Kiaee F, Tavakol M, Chavoshzadeh Z, Mahdaviani SA, Momen T, et al. Fourth update on the Iranian National Registry of Primary Immunodeficiencies: integration of molecular diagnosis. J Clin Immunol. 2018;38(7):816–32.CrossRefPubMed
24.
go back to reference Aghamohammadi A, Rezaei N, Yazdani R, Delavari S, Kutukculer N, Topyildiz E, et al. Consensus Middle East and North Africa Registry on inborn errors of immunity. J Clin Immunol. 2021. Aghamohammadi A, Rezaei N, Yazdani R, Delavari S, Kutukculer N, Topyildiz E, et al. Consensus Middle East and North Africa Registry on inborn errors of immunity. J Clin Immunol. 2021.
25.
go back to reference Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human Inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64.CrossRefPubMedPubMedCentral Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human Inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64.CrossRefPubMedPubMedCentral
26.
go back to reference Thalhammer J, Kindle G, Nieters A, Rusch S, Seppanen MRJ, Fischer A, et al. Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J Allergy Clin Immunol. 2021. Thalhammer J, Kindle G, Nieters A, Rusch S, Seppanen MRJ, Fischer A, et al. Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J Allergy Clin Immunol. 2021.
27.
go back to reference Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol Pract. 2019;7(8):2790–800 e15. Kiykim A, Ogulur I, Dursun E, Charbonnier LM, Nain E, Cekic S, et al. Abatacept as a long-term targeted therapy for LRBA deficiency. J Allergy Clin Immunol Pract. 2019;7(8):2790–800 e15.
28.
go back to reference Eken A, Cansever M, Somekh I, Mizoguchi Y, Zietara N, Okus FZ, et al. Genetic deficiency and biochemical inhibition of ITK affect human Th17, Treg, and innate lymphoid cells. J Clin Immunol. 2019;39(4):391–400.CrossRefPubMed Eken A, Cansever M, Somekh I, Mizoguchi Y, Zietara N, Okus FZ, et al. Genetic deficiency and biochemical inhibition of ITK affect human Th17, Treg, and innate lymphoid cells. J Clin Immunol. 2019;39(4):391–400.CrossRefPubMed
29.
go back to reference Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, et al. Severe early-onset combined immunodeficiency due to heterozygous gain-of-function mutations in STAT1. J Clin Immunol. 2016;36(7):641–8.CrossRefPubMedPubMedCentral Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, et al. Severe early-onset combined immunodeficiency due to heterozygous gain-of-function mutations in STAT1. J Clin Immunol. 2016;36(7):641–8.CrossRefPubMedPubMedCentral
30.
go back to reference Chen Y, Lu H, Zhang N, Zhu Z, Wang S, Li M. PremPS: predicting the impact of missense mutations on protein stability. PLoS Comput Biol. 2020;16(12):e1008543. Chen Y, Lu H, Zhang N, Zhu Z, Wang S, Li M. PremPS: predicting the impact of missense mutations on protein stability. PLoS Comput Biol. 2020;16(12):e1008543.
31.
go back to reference Zhang Z, Wang L, Gao Y, Zhang J, Zhenirovskyy M, Alexov E. Predicting folding free energy changes upon single point mutations. Bioinformatics. 2012;28(5):664–71.CrossRefPubMedPubMedCentral Zhang Z, Wang L, Gao Y, Zhang J, Zhenirovskyy M, Alexov E. Predicting folding free energy changes upon single point mutations. Bioinformatics. 2012;28(5):664–71.CrossRefPubMedPubMedCentral
32.
go back to reference Gehring T, Erdmann T, Rahm M, Grass C, Flatley A, O'Neill TJ, et al. MALT1 phosphorylation controls activation of T lymphocytes and survival of ABC-DLBCL tumor cells. Cell Rep. 2019;29(4):873–88 e10. Gehring T, Erdmann T, Rahm M, Grass C, Flatley A, O'Neill TJ, et al. MALT1 phosphorylation controls activation of T lymphocytes and survival of ABC-DLBCL tumor cells. Cell Rep. 2019;29(4):873–88 e10.
33.
go back to reference Ancien F, Pucci F, Godfroid M, Rooman M. Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Sci Rep. 2018;8(1):4480.CrossRefPubMedPubMedCentral Ancien F, Pucci F, Godfroid M, Rooman M. Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Sci Rep. 2018;8(1):4480.CrossRefPubMedPubMedCentral
34.
go back to reference Redler RL, Das J, Diaz JR, Dokholyan NV. Protein Destabilization as a common factor in diverse inherited disorders. J Mol Evol. 2016;82(1):11–6.CrossRefPubMed Redler RL, Das J, Diaz JR, Dokholyan NV. Protein Destabilization as a common factor in diverse inherited disorders. J Mol Evol. 2016;82(1):11–6.CrossRefPubMed
35.
go back to reference Brustle A, Brenner D, Knobbe-Thomsen CB, Cox M, Lang PA, Lang KS, et al. MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ. 2017;24(7):1214–23.CrossRefPubMed Brustle A, Brenner D, Knobbe-Thomsen CB, Cox M, Lang PA, Lang KS, et al. MALT1 is an intrinsic regulator of regulatory T cells. Cell Death Differ. 2017;24(7):1214–23.CrossRefPubMed
36.
go back to reference Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J Immunol. 2015;194(8):3723–34.CrossRefPubMed Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J Immunol. 2015;194(8):3723–34.CrossRefPubMed
37.
go back to reference Guckel E, Frey S, Zaiss MM, Schett G, Ghosh S, Voll RE. Cell-intrinsic NF-kappaB activation is critical for the development of natural regulatory T cells in mice. PLoS One. 2011;6(5):e20003. Guckel E, Frey S, Zaiss MM, Schett G, Ghosh S, Voll RE. Cell-intrinsic NF-kappaB activation is critical for the development of natural regulatory T cells in mice. PLoS One. 2011;6(5):e20003.
38.
go back to reference Oh H, Grinberg-Bleyer Y, Liao W, Maloney D, Wang P, Wu Z, et al. An NF-kappaB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 2017;47(3):450–65 e5. Oh H, Grinberg-Bleyer Y, Liao W, Maloney D, Wang P, Wu Z, et al. An NF-kappaB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 2017;47(3):450–65 e5.
39.
go back to reference Rozmus J, McDonald R, Fung SY, Del Bel KL, Roden J, Senger C, et al. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin Immunol. 2016;168:1–5.CrossRefPubMed Rozmus J, McDonald R, Fung SY, Del Bel KL, Roden J, Senger C, et al. Successful clinical treatment and functional immunological normalization of human MALT1 deficiency following hematopoietic stem cell transplantation. Clin Immunol. 2016;168:1–5.CrossRefPubMed
40.
go back to reference Ruland J, Duncan GS, Wakeham A, Mak TW. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity. 2003;19(5):749–58.CrossRefPubMed Ruland J, Duncan GS, Wakeham A, Mak TW. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity. 2003;19(5):749–58.CrossRefPubMed
41.
go back to reference Gross O, Grupp C, Steinberg C, Zimmermann S, Strasser D, Hannesschlager N, et al. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood. 2008;112(6):2421–8.CrossRefPubMedPubMedCentral Gross O, Grupp C, Steinberg C, Zimmermann S, Strasser D, Hannesschlager N, et al. Multiple ITAM-coupled NK-cell receptors engage the Bcl10/Malt1 complex via Carma1 for NF-kappaB and MAPK activation to selectively control cytokine production. Blood. 2008;112(6):2421–8.CrossRefPubMedPubMedCentral
42.
go back to reference Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170(6):1096–108 e13. Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170(6):1096–108 e13.
44.
go back to reference Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, et al. MALT1-deficient mice develop atopic-like dermatitis upon aging. Front Immunol. 2019;10:2330.CrossRefPubMedPubMedCentral Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, et al. MALT1-deficient mice develop atopic-like dermatitis upon aging. Front Immunol. 2019;10:2330.CrossRefPubMedPubMedCentral
45.
go back to reference Alroqi FJ, Charbonnier LM, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050–9 e10. Alroqi FJ, Charbonnier LM, Baris S, Kiykim A, Chou J, Platt CD, et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J Allergy Clin Immunol. 2018;141(3):1050–9 e10.
46.
go back to reference Shamriz O, Patel K, Marsh RA, Bleesing J, Joshi AY, Lucas L, et al. Hypogammaglobulinemia with decreased class-switched B-cells and dysregulated T-follicular-helper cells in IPEX syndrome. Clin Immunol. 2018;197:219–23.CrossRefPubMed Shamriz O, Patel K, Marsh RA, Bleesing J, Joshi AY, Lucas L, et al. Hypogammaglobulinemia with decreased class-switched B-cells and dysregulated T-follicular-helper cells in IPEX syndrome. Clin Immunol. 2018;197:219–23.CrossRefPubMed
47.
go back to reference Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal. 2014;7(329):ra55. Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by Carma1 and MALT1, but not Bcl10. Sci Signal. 2014;7(329):ra55.
48.
go back to reference Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet. 2017;49(8):1192–201.CrossRefPubMedPubMedCentral Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet. 2017;49(8):1192–201.CrossRefPubMedPubMedCentral
49.
go back to reference Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38(6):656–93.CrossRefPubMedPubMedCentral Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38(6):656–93.CrossRefPubMedPubMedCentral
Metadata
Title
Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency
Authors
Asena Pinar Sefer
Hassan Abolhassani
Franziska Ober
Basak Kayaoglu
Sevgi Bilgic Eltan
Altan Kara
Baran Erman
Naz Surucu Yilmaz
Cigdem Aydogmus
Sezin Aydemir
Louis-Marie Charbonnier
Burcu Kolukisa
Gholamreza Azizi
Samaneh Delavari
Tooba Momen
Simuzar Aliyeva
Yasemin Kendir Demirkol
Saban Tekin
Ayca Kiykim
Omer Faruk Baser
Haluk Cokugras
Mayda Gursel
Elif Karakoc-Aydiner
Ahmet Ozen
Daniel Krappmann
Talal A. Chatila
Nima Rezaei
Safa Baris
Publication date
01-04-2022
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 3/2022
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-021-01191-4

Other articles of this Issue 3/2022

Journal of Clinical Immunology 3/2022 Go to the issue