Skip to main content
Top
Published in: Journal of Clinical Immunology 6/2018

01-08-2018 | CME Review

Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults

Authors: Emilie Corvilain, Jean-Laurent Casanova, Anne Puel

Published in: Journal of Clinical Immunology | Issue 6/2018

Login to get access

Abstract

Autosomal recessive CARD9 deficiency underlies life-threatening, invasive fungal infections in otherwise healthy individuals normally resistant to other infectious agents. In less than 10 years, 58 patients from 39 kindreds have been reported in 14 countries from four continents. The patients are homozygous (n = 49; 31 kindreds) or compound heterozygous (n = 9; 8 kindreds) for 22 different CARD9 mutations. Six mutations are recurrent, probably due to founder effects. Paradoxically, none of the mutant alleles has been experimentally demonstrated to be loss-of-function. CARD9 is expressed principally in myeloid cells, downstream from C-type lectin receptors that can recognize fungal components. Patients with CARD9 deficiency present impaired cytokine and chemokine production by macrophages, dendritic cells, and peripheral blood mononuclear cells and defective killing of some fungi by neutrophils in vitro. Neutrophil recruitment to sites of infection is impaired in vivo. The proportion of Th17 cells is low in most, but not all, patients tested. Up to 52 patients suffering from invasive fungal diseases (IFD) have been reported, with ages at onset of 3.5 to 52 years. Twenty of these patients also displayed superficial fungal infections. Six patients had only mucocutaneous candidiasis or superficial dermatophytosis at their last follow-up visit, at the age of 19 to 50 years. Remarkably, for 50 of the 52 patients with IFD, a single fungus was involved; only two patients had IFDs due to two different fungi. IFD recurred in 44 of 45 patients who responded to treatment, and a different fungal infection occurred in the remaining patient. Ten patients died from IFD, between the ages of 12 and 39 years, whereas another patient died at the age of 91 years, from an unrelated cause. At the most recent scheduled follow-up visit, 81% of the patients were still alive and aged from 6.5 to 75 years. Strikingly, all the causal fungi belonged to the phylum Ascomycota: commensal Candida and saprophytic Trychophyton, Aspergillus, Phialophora, Exophiala, Corynesprora, Aureobasidium, and Ochroconis. Human CARD9 is essential for protective systemic immunity to a subset of fungi from this phylum but seems to be otherwise redundant. Previously healthy patients with unexplained invasive fungal infection, at any age, should be tested for inherited CARD9 deficiency.

Key Points

• Inherited CARD9 deficiency (OMIM #212050) is an AR PID due to mutations that may be present in a homozygous or compound heterozygous state.
• CARD9 is expressed principally in myeloid cells and transduces signals downstream from CLR activation by fungal ligands.
• Endogenous mutant CARD9 levels differ between alleles (from full-length normal protein to an absence of normal protein).
• The functional impacts of CARD9 mutations involve impaired cytokine production in response to fungal ligands, impaired neutrophil killing and/or recruitment to infection sites, and defects of Th17 immunity.
• The key clinical manifestations in patients are fungal infections, including CMC, invasive (in the CNS in particular) Candida infections, extensive/deep dermatophytosis, subcutaneous and invasive phaeohyphomycosis, and extrapulmonary aspergillosis.
• The clinical penetrance of CARD9 deficiency is complete, but penetrance is incomplete for each of the fungi concerned.
• Age at onset is highly heterogeneous, ranging from childhood to adulthood for the same fungal disease.
• All patients with unexplained IFD should be tested for CARD9 mutations. Familial screening and genetic counseling should be proposed.
• The treatment of patients with CARD9 mutations is empirical and based on antifungal therapies and the surgical removal of fungal masses. Patients with persistent/relapsing Candida infections of the CNS could be considered for adjuvant GM-CSF/G-CSF therapy. The potential value of HSCT for CARD9-deficient patients remains unclear.
Literature
1.
go back to reference Glocker E-O, Hennigs A, Nabavi M, Schäffer A, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.PubMedPubMedCentralCrossRef Glocker E-O, Hennigs A, Nabavi M, Schäffer A, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.PubMedPubMedCentralCrossRef
2.
go back to reference Lanternier F, Pathan S, Vincent QBQB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.PubMedPubMedCentralCrossRef Lanternier F, Pathan S, Vincent QBQB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.PubMedPubMedCentralCrossRef
3.
go back to reference Lanternier F, Mahdaviani S, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with meningo-encephalitis and/or colitis caused by Candida. J Allergy Clin Immunol. 2015;135(6):1558–68.PubMedPubMedCentralCrossRef Lanternier F, Mahdaviani S, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with meningo-encephalitis and/or colitis caused by Candida. J Allergy Clin Immunol. 2015;135(6):1558–68.PubMedPubMedCentralCrossRef
4.
go back to reference Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SMUU, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–90.PubMedCrossRef Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SMUU, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–90.PubMedCrossRef
5.
go back to reference Herbst M, Gazendam R, Reimnitz D, Sawalle-Belohradsky J, Groll A, Schlegel P-GG, et al. Chronic Candida albicans meningitis in a 4-year-old girl with a homozygous mutation in the CARD9 gene (Q295X). Pediatr Infect Dis J. 2015;34:999–1002.PubMedCrossRef Herbst M, Gazendam R, Reimnitz D, Sawalle-Belohradsky J, Groll A, Schlegel P-GG, et al. Chronic Candida albicans meningitis in a 4-year-old girl with a homozygous mutation in the CARD9 gene (Q295X). Pediatr Infect Dis J. 2015;34:999–1002.PubMedCrossRef
6.
go back to reference Gavino C, Hamel N, Zeng B, Legault C, Guiot M, Chankowsky J, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2015;137(4):1178–88.PubMedCrossRef Gavino C, Hamel N, Zeng B, Legault C, Guiot M, Chankowsky J, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2015;137(4):1178–88.PubMedCrossRef
7.
go back to reference Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11:1–32.CrossRef Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11:1–32.CrossRef
8.
go back to reference Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1:1–13.CrossRef Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1:1–13.CrossRef
9.
go back to reference Celmeli F, Oztoprak N, Turkkahraman D, Seyman D, Mutlu E, Frede N, et al. Successful granulocyte colony-stimulating factor treatment of relapsing Candida albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J. 2016;35:428–31.PubMedCrossRef Celmeli F, Oztoprak N, Turkkahraman D, Seyman D, Mutlu E, Frede N, et al. Successful granulocyte colony-stimulating factor treatment of relapsing Candida albicans meningoencephalitis caused by CARD9 deficiency. Pediatr Infect Dis J. 2016;35:428–31.PubMedCrossRef
10.
go back to reference Alves de Medeiros AK, Lodewick E, Bogaert DJAA, Haerynck F, Van Daele S, Lambrecht B, et al. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol. 2016;36:204–9.PubMedCrossRef Alves de Medeiros AK, Lodewick E, Bogaert DJAA, Haerynck F, Van Daele S, Lambrecht B, et al. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol. 2016;36:204–9.PubMedCrossRef
11.
go back to reference Cetinkaya PG, Ayvaz DC, Karaatmaca B, Gocmen R, Söylemezoğlu F, Bainter W, et al. A young girl with severe cerebral fungal infection due to card 9 deficiency. Clin Immunol. 2018;191:21–6.PubMedCrossRef Cetinkaya PG, Ayvaz DC, Karaatmaca B, Gocmen R, Söylemezoğlu F, Bainter W, et al. A young girl with severe cerebral fungal infection due to card 9 deficiency. Clin Immunol. 2018;191:21–6.PubMedCrossRef
12.
go back to reference Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova J-L. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22.PubMedPubMedCentralCrossRef Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova J-L. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22.PubMedPubMedCentralCrossRef
13.
go back to reference Li J, Vinh DC, Casanova J-L, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46–57.PubMedCrossRef Li J, Vinh DC, Casanova J-L, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46–57.PubMedCrossRef
14.
go back to reference Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J. Invest. Dermatol. 2018;138:607–17.PubMedCrossRef Wang X, Zhang R, Wu W, Song Y, Wan Z, Han W, et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J. Invest. Dermatol. 2018;138:607–17.PubMedCrossRef
15.
go back to reference Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133:905–8.PubMedCrossRef Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133:905–8.PubMedCrossRef
16.
go back to reference Drewniak A, Gazendam RP, Tool ATJJ, van Houdt M, Jansen MH, Van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–92.PubMedCrossRef Drewniak A, Gazendam RP, Tool ATJJ, van Houdt M, Jansen MH, Van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–92.PubMedCrossRef
17.
go back to reference Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59:81–4.PubMedPubMedCentralCrossRef Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59:81–4.PubMedPubMedCentralCrossRef
18.
go back to reference Jones N, Garcez T, Newman W, Denning D, Jones N, Garcez T, et al. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016;2016:2015–7. Jones N, Garcez T, Newman W, Denning D, Jones N, Garcez T, et al. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016;2016:2015–7.
19.
go back to reference Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, et al. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2017;12:3218–21. Gavino C, Mellinghoff S, Cornely OA, Landekic M, Le C, Langelier M, et al. Novel bi-allelic splice mutations in CARD9 causing adult-onset Candida endophthalmitis. Mycoses. 2017;12:3218–21.
20.
go back to reference Jachiet M, Lanternier F, Rybojad M, Bagot M, Ibrahim L, Casanova J-L, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatology. 2015;151:192–4.PubMedCrossRef Jachiet M, Lanternier F, Rybojad M, Bagot M, Ibrahim L, Casanova J-L, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatology. 2015;151:192–4.PubMedCrossRef
21.
go back to reference Boudghene Stambouli O, Amrani N, Boudghéne Stambouli K, Bouali F. Dermatophytic disease with deficit in CARD9: a new case with a brain impairment. J Mycol Med. 2017;27:250–3.PubMedCrossRef Boudghene Stambouli O, Amrani N, Boudghéne Stambouli K, Bouali F. Dermatophytic disease with deficit in CARD9: a new case with a brain impairment. J Mycol Med. 2017;27:250–3.PubMedCrossRef
22.
go back to reference Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive exophiala infection. J Infect Dis. 2015;211:1241–50.PubMedCrossRef Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive exophiala infection. J Infect Dis. 2015;211:1241–50.PubMedCrossRef
23.
go back to reference Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br J Dermatol. 2016;174:176–9.PubMedCrossRef Yan XX, Yu CP, Fu XA, Bao FF, Du DH, Wang C, et al. CARD9 mutation linked to Corynespora cassiicola infection in a Chinese patient. Br J Dermatol. 2016;174:176–9.PubMedCrossRef
24.
go back to reference Bertin J, Guo Y, Wang L, Srinivasula SM, Jacobson MD, Poyet JL, et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kB. J Biol Chem. 2000;275:41082–6.PubMedCrossRef Bertin J, Guo Y, Wang L, Srinivasula SM, Jacobson MD, Poyet JL, et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kB. J Biol Chem. 2000;275:41082–6.PubMedCrossRef
25.
go back to reference Parkhouse R, Boyle JP, Mayle S, Sawmynaden K, Rittinger K, Monie TP. Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain. FEBS Lett. 2014;588:2830–6.PubMedPubMedCentralCrossRef Parkhouse R, Boyle JP, Mayle S, Sawmynaden K, Rittinger K, Monie TP. Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain. FEBS Lett. 2014;588:2830–6.PubMedPubMedCentralCrossRef
26.
go back to reference Hsu Y-MSMS, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8:198–205.PubMedCrossRef Hsu Y-MSMS, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8:198–205.PubMedCrossRef
27.
go back to reference Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.PubMedCrossRef Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.PubMedCrossRef
28.
go back to reference Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Groß O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.PubMedPubMedCentralCrossRef Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Groß O, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.PubMedPubMedCentralCrossRef
29.
go back to reference Le Zhu L, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39:324–34.PubMedCrossRef Le Zhu L, Zhao XQ, Jiang C, You Y, Chen XP, Jiang YY, et al. C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39:324–34.PubMedCrossRef
30.
go back to reference Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.PubMedCrossRef Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.PubMedCrossRef
31.
go back to reference Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6(36):6–11. Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6(36):6–11.
32.
go back to reference Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442:651–6.PubMedCrossRef Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442:651–6.PubMedCrossRef
33.
go back to reference Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007;8:619–29.PubMedCrossRef Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007;8:619–29.PubMedCrossRef
34.
go back to reference Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41:276–81.PubMedCrossRef Drummond RA, Saijo S, Iwakura Y, Brown GD. The role of Syk/CARD9 coupled C-type lectins in antifungal immunity. Eur J Immunol. 2011;41:276–81.PubMedCrossRef
35.
go back to reference Roth S, Ruland J, Roth SRJ. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013;34:243–50.PubMedCrossRef Roth S, Ruland J, Roth SRJ. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013;34:243–50.PubMedCrossRef
36.
go back to reference Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36:32–42.PubMedPubMedCentralCrossRef Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-δ to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36:32–42.PubMedPubMedCentralCrossRef
37.
38.
39.
go back to reference LeibundGut-Landmann S, Groß O, Robinson MJ, Osorio F, Slack EC, Tsoni SVS, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.PubMedCrossRef LeibundGut-Landmann S, Groß O, Robinson MJ, Osorio F, Slack EC, Tsoni SVS, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.PubMedCrossRef
40.
41.
go back to reference Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211:2307–21.PubMedPubMedCentralCrossRef Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211:2307–21.PubMedPubMedCentralCrossRef
42.
go back to reference Willment JA, Marshall AS, Reid DM, Williams DL, Wong SYC, Gordon S, et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35:1539–47.PubMedCrossRef Willment JA, Marshall AS, Reid DM, Williams DL, Wong SYC, Gordon S, et al. The human β-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;35:1539–47.PubMedCrossRef
43.
go back to reference Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.PubMedCrossRef Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.PubMedCrossRef
44.
go back to reference Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180:7404–13.PubMedCrossRef Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, et al. The macrophage-inducible C-type lectin, Mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180:7404–13.PubMedCrossRef
45.
go back to reference Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–17.PubMedCrossRef Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22:507–17.PubMedCrossRef
46.
go back to reference Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Identification of a human homologue of the dendritic cell-associated C-typt lectin-1, dectin-1. Gene. 2001;272:51–60.PubMedCrossRef Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Identification of a human homologue of the dendritic cell-associated C-typt lectin-1, dectin-1. Gene. 2001;272:51–60.PubMedCrossRef
47.
go back to reference Kanazawa N, Tashiro K, Inaba K, Lutz MB, Miyachi Y. Molecular cloning of human Dectin-2. J Invest Dermatol. 2004;122:1522–4.PubMedCrossRef Kanazawa N, Tashiro K, Inaba K, Lutz MB, Miyachi Y. Molecular cloning of human Dectin-2. J Invest Dermatol. 2004;122:1522–4.PubMedCrossRef
48.
go back to reference Balch SG, McKnight AJ, Seldin MF, Gordon S. Cloning of a novel C-type lectin expressed by murine macrophages. J Biol Chem. 1998;273:18656–64.PubMedCrossRef Balch SG, McKnight AJ, Seldin MF, Gordon S. Cloning of a novel C-type lectin expressed by murine macrophages. J Biol Chem. 1998;273:18656–64.PubMedCrossRef
49.
go back to reference Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–48.PubMed Matsumoto M, Tanaka T, Kaisho T, Sanjo H, Copeland NG, Gilbert DJ, et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J Immunol. 1999;163:5039–48.PubMed
50.
go back to reference Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756–6. Di Carlo FJ, Fiore JV. On the composition of zymosan. Science. 1958;127:756–6.
51.
go back to reference McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol. 2005;68:163–73.PubMedCrossRef McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol. 2005;68:163–73.PubMedCrossRef
52.
go back to reference Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, et al. Dectin-1 directs T helper cell differentiation by controlling noncannonical NK-kB activation through Raf-1 and Syk. Nat Immunol. 2009;10:203–13.PubMedCrossRef Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, et al. Dectin-1 directs T helper cell differentiation by controlling noncannonical NK-kB activation through Raf-1 and Syk. Nat Immunol. 2009;10:203–13.PubMedCrossRef
53.
go back to reference Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138:957–69.PubMedPubMedCentralCrossRef Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138:957–69.PubMedPubMedCentralCrossRef
54.
go back to reference Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci. 2015;112:13615–20.PubMedCrossRef Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci. 2015;112:13615–20.PubMedCrossRef
55.
go back to reference Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.PubMedPubMedCentralCrossRef Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.PubMedPubMedCentralCrossRef
56.
go back to reference Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.PubMedPubMedCentralCrossRef Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.PubMedPubMedCentralCrossRef
57.
go back to reference Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–82.PubMedCrossRef Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–82.PubMedCrossRef
58.
go back to reference Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13:109–10.PubMedPubMedCentralCrossRef Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13:109–10.PubMedPubMedCentralCrossRef
59.
go back to reference Gazendam RP, Van Hamme JL, Tool ATJ, Van Houdt M, Verkuijlen PJJH, Herbst M, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124:590–7.PubMedCrossRef Gazendam RP, Van Hamme JL, Tool ATJ, Van Houdt M, Verkuijlen PJJH, Herbst M, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124:590–7.PubMedCrossRef
60.
go back to reference Liang P, Wang X, Wang R, Wan Z, Han W, Li R. CARD9 deficiencies linked to impaired neutrophil functions against Phialophora verrucosa. Mycopathologia. 2015;179:347–57.PubMedCrossRef Liang P, Wang X, Wang R, Wan Z, Han W, Li R. CARD9 deficiencies linked to impaired neutrophil functions against Phialophora verrucosa. Mycopathologia. 2015;179:347–57.PubMedCrossRef
61.
go back to reference Drummond RA, Zahra FT, Natarajan M, Swamydas M, Hsu AP, Wheat LJ, et al. GM-CSF therapy in human CARD9 deficiency. J. Allergy Clin. Immunol. 2018. Drummond RA, Zahra FT, Natarajan M, Swamydas M, Hsu AP, Wheat LJ, et al. GM-CSF therapy in human CARD9 deficiency. J. Allergy Clin. Immunol. 2018.
62.
63.
go back to reference Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMedCrossRef Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.PubMedCrossRef
64.
go back to reference Lionakis MS, Lim JK, Lee C-CR, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011;3:180–99.PubMedCrossRef Lionakis MS, Lim JK, Lee C-CR, Murphy PM. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J Innate Immun. 2011;3:180–99.PubMedCrossRef
65.
go back to reference Saresella M, Roda K, Speciale L, Taramelli D, Mendozzi E, Guerini F. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13q leukocytes. J Immunol Methods. 1997;210:227–34.PubMedCrossRef Saresella M, Roda K, Speciale L, Taramelli D, Mendozzi E, Guerini F. A rapid evaluation of phagocytosis and killing of Candida albicans by CD13q leukocytes. J Immunol Methods. 1997;210:227–34.PubMedCrossRef
66.
go back to reference Wu W, Zhang R, Wang X, Song Y, Liu Z, Han W, et al. Impairment of immune response against dematiaceous fungi in Card9 knockout mice. Mycopathologia. 2016;181:631–42.PubMedCrossRef Wu W, Zhang R, Wang X, Song Y, Liu Z, Han W, et al. Impairment of immune response against dematiaceous fungi in Card9 knockout mice. Mycopathologia. 2016;181:631–42.PubMedCrossRef
68.
69.
go back to reference Glocker E, Grimbacher B. Chronic mucocutaneous candidiasis and congenital susceptibility to Candida. Curr Opin Allergy Clin Immunol. 2010;10:542–50.PubMedCrossRef Glocker E, Grimbacher B. Chronic mucocutaneous candidiasis and congenital susceptibility to Candida. Curr Opin Allergy Clin Immunol. 2010;10:542–50.PubMedCrossRef
70.
go back to reference Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim K, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.PubMedPubMedCentralCrossRef Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim K, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.PubMedPubMedCentralCrossRef
71.
go back to reference Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39:676–86.PubMedCrossRef Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39:676–86.PubMedCrossRef
72.
go back to reference Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212:619–31.PubMedPubMedCentralCrossRef Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212:619–31.PubMedPubMedCentralCrossRef
73.
go back to reference Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010;10:479–98.PubMedCrossRef Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 2010;10:479–98.PubMedCrossRef
74.
go back to reference Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, et al. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet. 2001;68:1077–85.PubMedPubMedCentralCrossRef Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, et al. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet. 2001;68:1077–85.PubMedPubMedCentralCrossRef
75.
go back to reference Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:1–9.CrossRef Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:1–9.CrossRef
76.
go back to reference Queiroz-Telles F, Fahal AH, Falci DR, Caceres DH, Chiller T, Pasqualotto AC. Neglected endemic mycoses. Lancet Infect Dis. 2017;3099:1–11. Queiroz-Telles F, Fahal AH, Falci DR, Caceres DH, Chiller T, Pasqualotto AC. Neglected endemic mycoses. Lancet Infect Dis. 2017;3099:1–11.
77.
78.
go back to reference Sari S, Dalgic B, Muehlenbachs A, Deleon-Carnes M, Goldsmith CS, Ekinci O, et al. Prototheca zopfii colitis in inherited CARD9 deficiency. JID. 2018;XX. Sari S, Dalgic B, Muehlenbachs A, Deleon-Carnes M, Goldsmith CS, Ekinci O, et al. Prototheca zopfii colitis in inherited CARD9 deficiency. JID. 2018;XX.
79.
go back to reference Torres JM, Martinez-barricarte R, García-gómez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48.PubMedPubMedCentralCrossRef Torres JM, Martinez-barricarte R, García-gómez S, Mazariegos MS, Itan Y, Boisson B, et al. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity. J Clin Invest. 2014;124:5239–48.PubMedPubMedCentralCrossRef
80.
go back to reference Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132:151–8.PubMedPubMedCentralCrossRef Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, et al. A homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with combined immunodeficiency. J Allergy Clin Immunol. 2013;132:151–8.PubMedPubMedCentralCrossRef
81.
go back to reference McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133:1458–1462.e7.PubMedCrossRef McKinnon ML, Rozmus J, Fung SY, Hirschfeld AF, Del Bel KL, Thomas L, et al. Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol. 2014;133:1458–1462.e7.PubMedCrossRef
82.
go back to reference Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273.PubMedCentralCrossRef Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015;5:a019273.PubMedCentralCrossRef
83.
go back to reference Bennett RJ, Turgeon BG. Fungal sex: the Ascomycota. Microbiol. Spectr. 2016;4:1–28. Bennett RJ, Turgeon BG. Fungal sex: the Ascomycota. Microbiol. Spectr. 2016;4:1–28.
84.
go back to reference Gow NAR, Latge J, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5:1–25. Gow NAR, Latge J, Munro CA. The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr. 2017;5:1–25.
85.
go back to reference Hoving JC, Kolls JK. New advances in understanding the host immune response to pneumocystis. Curr Opin Microbiol. 2017;40:65–71.PubMedCrossRef Hoving JC, Kolls JK. New advances in understanding the host immune response to pneumocystis. Curr Opin Microbiol. 2017;40:65–71.PubMedCrossRef
86.
go back to reference Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12.PubMedCrossRef Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018;36:1–12.PubMedCrossRef
87.
go back to reference McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78.PubMedCrossRef McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78.PubMedCrossRef
88.
go back to reference Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2016:1–9. Cauchie M, Desmet S, Lagrou K. Candida and its dual lifestyle as a commensal and a pathogen. Res Microbiol. 2016:1–9.
89.
go back to reference Lionakis MS, Netea MG. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 2013;9(1):1–5.CrossRef Lionakis MS, Netea MG. Candida and host determinants of susceptibility to invasive candidiasis. PLoS Pathog. 2013;9(1):1–5.CrossRef
90.
go back to reference Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550.PubMedPubMedCentralCrossRef Papon N, Courdavault V, Clastre M, Bennett RJ. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog. 2013;9(9):e1003550.PubMedPubMedCentralCrossRef
91.
go back to reference Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182:77–86.PubMedCrossRef Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182:77–86.PubMedCrossRef
92.
go back to reference Havlickova B, Czaika VA, Fredrich M. Epidemiological trends in skin mycosis worldwide. Mycosis. 2008;51:2–15.CrossRef Havlickova B, Czaika VA, Fredrich M. Epidemiological trends in skin mycosis worldwide. Mycosis. 2008;51:2–15.CrossRef
93.
go back to reference Rouzaud C, Hay R, Chosidow O, Dupin N, Puel A, Lortholary O, et al. Severe dermatophytosis and acquired or innate immunodeficiency: a review. J Fungi. 2015;2:4.CrossRef Rouzaud C, Hay R, Chosidow O, Dupin N, Puel A, Lortholary O, et al. Severe dermatophytosis and acquired or innate immunodeficiency: a review. J Fungi. 2015;2:4.CrossRef
94.
go back to reference Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med. 2015;5:a019570.PubMedCentralCrossRef Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med. 2015;5:a019570.PubMedCentralCrossRef
95.
go back to reference Chan GF, Puad MSA, Chin CF, Rashid NAA. Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol. 2011;56:459–67.CrossRef Chan GF, Puad MSA, Chin CF, Rashid NAA. Emergence of Aureobasidium pullulans as human fungal pathogen and molecular assay for future medical diagnosis. Folia Microbiol. 2011;56:459–67.CrossRef
96.
go back to reference Dixon LJ, Schlub RL, Pernezny K, Datnoff LE. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology. 2009;99:1015–27.PubMedCrossRef Dixon LJ, Schlub RL, Pernezny K, Datnoff LE. Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology. 2009;99:1015–27.PubMedCrossRef
97.
go back to reference Samerpitak K, Duarte APM, Attili-Angelis D, Pagnocca FC, Heinrichs G, Rijs AJMM, et al. A new species of the oligotrophic genus Ochroconis (Sympoventuriaceae). Mycol Prog. 2015;14:1–10.CrossRef Samerpitak K, Duarte APM, Attili-Angelis D, Pagnocca FC, Heinrichs G, Rijs AJMM, et al. A new species of the oligotrophic genus Ochroconis (Sympoventuriaceae). Mycol Prog. 2015;14:1–10.CrossRef
98.
go back to reference Brandt ME, Warnock DW. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother. 2003;15:36–47.PubMedCrossRef Brandt ME, Warnock DW. Epidemiology, clinical manifestations, and therapy of infections caused by dematiaceous fungi. J Chemother. 2003;15:36–47.PubMedCrossRef
99.
go back to reference Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev. 2014;27:527–42.PubMedPubMedCentralCrossRef Seyedmousavi S, Netea MG, Mouton JW, Melchers WJG, Verweij PE, de Hoog GS. Black yeasts and their filamentous relatives: principles of pathogenesis and host defense. Clin Microbiol Rev. 2014;27:527–42.PubMedPubMedCentralCrossRef
100.
go back to reference Revanker S, Sutton D. Melanized fungi in human disease. Clin Microbiol Rev. 2010;23(4):884–928.CrossRef Revanker S, Sutton D. Melanized fungi in human disease. Clin Microbiol Rev. 2010;23(4):884–928.CrossRef
101.
go back to reference Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2017;10:296–322.PubMedCrossRef Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2017;10:296–322.PubMedCrossRef
103.
go back to reference Dinauer MC. Primary immunedeficiencies with defects in neutrophil function. Hematology. 2016;2016:43–50.PubMedCrossRef Dinauer MC. Primary immunedeficiencies with defects in neutrophil function. Hematology. 2016;2016:43–50.PubMedCrossRef
104.
go back to reference Lee JH, Kim JS, Park YH. Diagnosis and treatment of postpartum Candida endophthalmitis. J Obstet Gynaecol Res. 2012;38:1220–2.PubMedCrossRef Lee JH, Kim JS, Park YH. Diagnosis and treatment of postpartum Candida endophthalmitis. J Obstet Gynaecol Res. 2012;38:1220–2.PubMedCrossRef
105.
go back to reference Oksi J, Finnilä T, Hohenthal U, Rantakokko-Jalava K. Candida dubliniensis spondylodiscitis in an immunocompetent patient. Case report and review of the literature. Med Mycol Case Rep. 2014;3:4–7.PubMedCrossRef Oksi J, Finnilä T, Hohenthal U, Rantakokko-Jalava K. Candida dubliniensis spondylodiscitis in an immunocompetent patient. Case report and review of the literature. Med Mycol Case Rep. 2014;3:4–7.PubMedCrossRef
106.
go back to reference Moon HH, Kim JH, Moon BG, Kim JS. Cervical spondylodiscitis caused by Candida albicans in non-immunocompromised patient. J Korean Neurosurg Soc. 2008;43:45–7.PubMedPubMedCentralCrossRef Moon HH, Kim JH, Moon BG, Kim JS. Cervical spondylodiscitis caused by Candida albicans in non-immunocompromised patient. J Korean Neurosurg Soc. 2008;43:45–7.PubMedPubMedCentralCrossRef
107.
go back to reference Miller DJ, Mejicano GC. Vertebral osteomyelitis due to Candida species: case report and literature review. Clin Infect Dis. 2001;53706:523–30.CrossRef Miller DJ, Mejicano GC. Vertebral osteomyelitis due to Candida species: case report and literature review. Clin Infect Dis. 2001;53706:523–30.CrossRef
108.
go back to reference Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. Candidemia and invasive candidiasis in adults: a narrative review. Eur J Intern Med. 2016;34:21–8.PubMedCrossRef Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. Candidemia and invasive candidiasis in adults: a narrative review. Eur J Intern Med. 2016;34:21–8.PubMedCrossRef
109.
go back to reference Seçkin D, Arikan S, Haberal M. Deep dermatophytosis caused by Trichophyton rubrum with concomitant disseminated nocardiosis in a renal transplant recipient. J Am Acad Dermatol. 2004;51:S173–6.PubMedCrossRef Seçkin D, Arikan S, Haberal M. Deep dermatophytosis caused by Trichophyton rubrum with concomitant disseminated nocardiosis in a renal transplant recipient. J Am Acad Dermatol. 2004;51:S173–6.PubMedCrossRef
110.
go back to reference Dan P, Rawi R, Hanna S, Reuven B. Invasive cutaneous Trichophyton shoenleinii infection in an immunosuppressed patient. Int J Dermatol. 2011;50:1266–9.PubMedCrossRef Dan P, Rawi R, Hanna S, Reuven B. Invasive cutaneous Trichophyton shoenleinii infection in an immunosuppressed patient. Int J Dermatol. 2011;50:1266–9.PubMedCrossRef
111.
go back to reference Inaoki M, Nishijima C, Miyake M, Asaka T, Hasegawa Y, Anzawa K, et al. Case of dermatophyte abscess caused by Trichophyton rubrum: a case report and review of the literature. Mycoses. 2015;58:318–23.PubMedCrossRef Inaoki M, Nishijima C, Miyake M, Asaka T, Hasegawa Y, Anzawa K, et al. Case of dermatophyte abscess caused by Trichophyton rubrum: a case report and review of the literature. Mycoses. 2015;58:318–23.PubMedCrossRef
112.
go back to reference Marconi VC, Kradin R, Marty FM, Hospenthal DR, Kotton CN. Disseminated dermatophytosis in a patient with hereditary hemochromatosis and hepatic cirrhosis: case report and review of the literature. Med Mycol. 2010;48:518–27.PubMedCrossRef Marconi VC, Kradin R, Marty FM, Hospenthal DR, Kotton CN. Disseminated dermatophytosis in a patient with hereditary hemochromatosis and hepatic cirrhosis: case report and review of the literature. Med Mycol. 2010;48:518–27.PubMedCrossRef
113.
go back to reference Hadida E, Schousboe A. Dermatophytic disease aspects. Alger Med. 1959;63:303–36. Hadida E, Schousboe A. Dermatophytic disease aspects. Alger Med. 1959;63:303–36.
114.
go back to reference Gong JQ, Liu XQ, Xu HB, Zeng XS, Chen W, Li XF. Deep dermatophytosis caused by Trichophyton rubrum: report of two cases. Mycoses. 2007;50:102–8.PubMedCrossRef Gong JQ, Liu XQ, Xu HB, Zeng XS, Chen W, Li XF. Deep dermatophytosis caused by Trichophyton rubrum: report of two cases. Mycoses. 2007;50:102–8.PubMedCrossRef
115.
go back to reference Kim S-H, Jo IH, Kang J, Joo SY, Choi J-H. Dermatophyte abscesses caused by Trichophyton rubrum in a patient without pre-existing superficial dermatophytosis: a case report. BMC Infect Dis. 2016;16:298–302.PubMedPubMedCentralCrossRef Kim S-H, Jo IH, Kang J, Joo SY, Choi J-H. Dermatophyte abscesses caused by Trichophyton rubrum in a patient without pre-existing superficial dermatophytosis: a case report. BMC Infect Dis. 2016;16:298–302.PubMedPubMedCentralCrossRef
116.
go back to reference Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, De Hoog GS. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol. 2007;45:3713–20.PubMedPubMedCentralCrossRef Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, De Hoog GS. Spectrum of clinically relevant Exophiala species in the United States. J Clin Microbiol. 2007;45:3713–20.PubMedPubMedCentralCrossRef
117.
go back to reference Revankar SG, Sutton DA, Rinaldi MG. Primary central nervous system phaeohyphomycosis: a review of 101 cases. Clin Infect Dis. 2004;38:206–16.PubMedCrossRef Revankar SG, Sutton DA, Rinaldi MG. Primary central nervous system phaeohyphomycosis: a review of 101 cases. Clin Infect Dis. 2004;38:206–16.PubMedCrossRef
118.
go back to reference Gao LJ, Yu J, Wang DL, Li RY. Recalcitrant primary subcutaneous Phaeohyphomycosis due to Phialophora verrucosa. Mycopathologia. 2013;175:165–70.PubMedCrossRef Gao LJ, Yu J, Wang DL, Li RY. Recalcitrant primary subcutaneous Phaeohyphomycosis due to Phialophora verrucosa. Mycopathologia. 2013;175:165–70.PubMedCrossRef
119.
go back to reference Panda A, Das H, Deb M, Khanal B, Kumar S. Aureobasidium pullulans keratitis. Clin Exp Ophthalmol. 2006;34:260–4.PubMedCrossRef Panda A, Das H, Deb M, Khanal B, Kumar S. Aureobasidium pullulans keratitis. Clin Exp Ophthalmol. 2006;34:260–4.PubMedCrossRef
120.
go back to reference Koppang HS, Olsen I, Stuge U, Sandven P. Aureobasidium infection of the jaw. J Oral Pathol Med. 1991;20:191–5.PubMedCrossRef Koppang HS, Olsen I, Stuge U, Sandven P. Aureobasidium infection of the jaw. J Oral Pathol Med. 1991;20:191–5.PubMedCrossRef
121.
go back to reference Chen WT, Tu ME, Sun PL. Superficial Phaeohyphomycosis caused by Aureobasidium melanogenum mimicking tinea nigra in an immunocompetent patient and review of published reports. Mycopathologia. 2016;181:555–60.PubMedCrossRef Chen WT, Tu ME, Sun PL. Superficial Phaeohyphomycosis caused by Aureobasidium melanogenum mimicking tinea nigra in an immunocompetent patient and review of published reports. Mycopathologia. 2016;181:555–60.PubMedCrossRef
122.
go back to reference Lv GX, Ge YP, Shen YN, Li M, Zhang X, Chen H, et al. Phaeohyphomycosis caused by a plant pathogen, Corynespora cassiicola. Med Mycol. 2011;49:657–61.PubMed Lv GX, Ge YP, Shen YN, Li M, Zhang X, Chen H, et al. Phaeohyphomycosis caused by a plant pathogen, Corynespora cassiicola. Med Mycol. 2011;49:657–61.PubMed
123.
go back to reference Mahgoub E. Corynespora cassiicola, a new agent of maduromycetoma. J Trop Med Hyg. 1969;72:218–21.PubMed Mahgoub E. Corynespora cassiicola, a new agent of maduromycetoma. J Trop Med Hyg. 1969;72:218–21.PubMed
124.
go back to reference Yamada H, Takahashi N, Hori N, Asano Y, Mochizuki K, Ohkusu K, et al. Rare case of fungal keratitis caused by Corynespora cassiicola. J Infect Chemother. 2013;19:1167–9.PubMedCrossRef Yamada H, Takahashi N, Hori N, Asano Y, Mochizuki K, Ohkusu K, et al. Rare case of fungal keratitis caused by Corynespora cassiicola. J Infect Chemother. 2013;19:1167–9.PubMedCrossRef
125.
go back to reference Huang HK, Liu CE, Liou JH, Hsiue HC, Hsiao CH, Hsueh PR. Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen. J Inf Secur. 2010;60:188–90. Huang HK, Liu CE, Liou JH, Hsiue HC, Hsiao CH, Hsueh PR. Subcutaneous infection caused by Corynespora cassiicola, a plant pathogen. J Inf Secur. 2010;60:188–90.
127.
go back to reference Whibley N, Jaycox JR, Reid D, Garg AV, Taylor JA, Clancy CJ, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-a-dependent, IL-17-independent mechanism. J Immunol. 2015;195:3781–92.PubMedPubMedCentralCrossRef Whibley N, Jaycox JR, Reid D, Garg AV, Taylor JA, Clancy CJ, et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-a-dependent, IL-17-independent mechanism. J Immunol. 2015;195:3781–92.PubMedPubMedCentralCrossRef
128.
go back to reference Bishu S, Hernández-Santos N, Simpson-Abelson MR, Huppler AR, Conti HR, Ghilardi N, et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect Immun. 2014;82:1173–80.PubMedPubMedCentralCrossRef Bishu S, Hernández-Santos N, Simpson-Abelson MR, Huppler AR, Conti HR, Ghilardi N, et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect Immun. 2014;82:1173–80.PubMedPubMedCentralCrossRef
129.
go back to reference Jhingran A, Mar KB, Kumasaka DK, Knoblaugh SE, Ngo LY, Segal BH, et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012;2:1762–73.PubMedPubMedCentralCrossRef Jhingran A, Mar KB, Kumasaka DK, Knoblaugh SE, Ngo LY, Segal BH, et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012;2:1762–73.PubMedPubMedCentralCrossRef
130.
go back to reference Jhingran A, Kasahara S, Shepardson KM, Junecko BAFF, Heung LJ, Kumasaka DK, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11:1–22.CrossRef Jhingran A, Kasahara S, Shepardson KM, Junecko BAFF, Heung LJ, Kumasaka DK, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11:1–22.CrossRef
131.
go back to reference Hung CY, Castro-Lopez N, Cole GT. Card9- and MyD88-mediated gamma interferon and nitric oxide production is essential for resistance to subcutaneous Coccidioides posadasii infection. Infect Immun. 2016;84:1166–75.PubMedPubMedCentralCrossRef Hung CY, Castro-Lopez N, Cole GT. Card9- and MyD88-mediated gamma interferon and nitric oxide production is essential for resistance to subcutaneous Coccidioides posadasii infection. Infect Immun. 2016;84:1166–75.PubMedPubMedCentralCrossRef
132.
go back to reference Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with cryptococcus neoformans. Infect Immun. 2014;82:1606–15.PubMedPubMedCentralCrossRef Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with cryptococcus neoformans. Infect Immun. 2014;82:1606–15.PubMedPubMedCentralCrossRef
133.
go back to reference Casanova J-L, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol. 2004;4:55–66.PubMedCrossRef Casanova J-L, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol. 2004;4:55–66.PubMedCrossRef
134.
go back to reference Quintana-Murci L, Alcaïs A, Abel L, Casanova JL. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol. 2007;8:1165–71.PubMedCrossRef Quintana-Murci L, Alcaïs A, Abel L, Casanova JL. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol. 2007;8:1165–71.PubMedCrossRef
135.
go back to reference Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, et al. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med. 2010;207:777–92.PubMedPubMedCentralCrossRef Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, et al. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med. 2010;207:777–92.PubMedPubMedCentralCrossRef
136.
go back to reference Wu W, Hsu Y-MSMS, Bi L, Songyang Z, Lin X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol. 2009;10:1208–14.PubMedCrossRef Wu W, Hsu Y-MSMS, Bi L, Songyang Z, Lin X. CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol. 2009;10:1208–14.PubMedCrossRef
137.
go back to reference Uematsu T, Iizasa E, Kobayashi N, Yoshida H, Hara H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:1–11.CrossRef Uematsu T, Iizasa E, Kobayashi N, Yoshida H, Hara H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:1–11.CrossRef
138.
go back to reference Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections. Emerg Infect Dis. 2014;20:1149–55.PubMedPubMedCentralCrossRef Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections. Emerg Infect Dis. 2014;20:1149–55.PubMedPubMedCentralCrossRef
139.
go back to reference Limper AH, Adenis A, Le T, Harrison TS. Fungal infections 1 fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;3099:1–10. Limper AH, Adenis A, Le T, Harrison TS. Fungal infections 1 fungal infections in HIV/AIDS. Lancet Infect Dis. 2017;3099:1–10.
140.
go back to reference Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis. 2010;50:1091–100.PubMedCrossRef Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) database. Clin Infect Dis. 2010;50:1091–100.PubMedCrossRef
141.
go back to reference Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.PubMedCrossRef Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101–11.PubMedCrossRef
142.
go back to reference Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova J-L, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25:736–47.PubMedPubMedCentral Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova J-L, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25:736–47.PubMedPubMedCentral
143.
go back to reference Grimm MJ, Vethanayagam RR, Almyroudis NG, Lewandowski D, Rall N, Blackwell TS, et al. Role of NADPH oxidase in host defense against aspergillosis. Med Mycol. 2011;49:S144–9.PubMedCrossRef Grimm MJ, Vethanayagam RR, Almyroudis NG, Lewandowski D, Rall N, Blackwell TS, et al. Role of NADPH oxidase in host defense against aspergillosis. Med Mycol. 2011;49:S144–9.PubMedCrossRef
144.
go back to reference Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol. 2017:1–18. Donadieu J, Beaupain B, Fenneteau O, Bellanné-Chantelot C. Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol. 2017:1–18.
145.
go back to reference Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Bousfiha A, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–65.PubMedPubMedCentralCrossRef Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Bousfiha A, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127:3154–65.PubMedPubMedCentralCrossRef
146.
go back to reference Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36:490–501.PubMedPubMedCentralCrossRef Leven EA, Maffucci P, Ochs HD, Scholl PR, Buckley RH, Fuleihan RL, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36:490–501.PubMedPubMedCentralCrossRef
148.
go back to reference Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21.PubMedPubMedCentralCrossRef Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21.PubMedPubMedCentralCrossRef
149.
go back to reference Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a french national survey. Medicine (Baltimore). 2012;91:1–19.CrossRef Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a french national survey. Medicine (Baltimore). 2012;91:1–19.CrossRef
150.
go back to reference Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-g immunity. Semin Immunol. 2014;26:454–70.PubMedPubMedCentralCrossRef Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-g immunity. Semin Immunol. 2014;26:454–70.PubMedPubMedCentralCrossRef
152.
153.
go back to reference Firinu D, Massidda O, Lorrai MM, Serusi L, Peralta M, Barca MP, et al. Successful treatment of chronic mucocutaneous candidiasis caused by azole-resistant Candida albicans with posaconazole. Clin Dev Immunol. 2011;2011:4.CrossRef Firinu D, Massidda O, Lorrai MM, Serusi L, Peralta M, Barca MP, et al. Successful treatment of chronic mucocutaneous candidiasis caused by azole-resistant Candida albicans with posaconazole. Clin Dev Immunol. 2011;2011:4.CrossRef
154.
go back to reference Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Executive summary: clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:409–17.PubMedCrossRef Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Executive summary: clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:409–17.PubMedCrossRef
155.
go back to reference Pires CAA, da Cruz NFS, Lobato AM, de Sousa PO, Carneiro FRO, Mendes AMD. Clinical, epidemiological, and therapeutic profile of dermatophytosis. An Bras Dermatol. 2014;89:259–64.PubMedPubMedCentralCrossRef Pires CAA, da Cruz NFS, Lobato AM, de Sousa PO, Carneiro FRO, Mendes AMD. Clinical, epidemiological, and therapeutic profile of dermatophytosis. An Bras Dermatol. 2014;89:259–64.PubMedPubMedCentralCrossRef
156.
go back to reference Gupta A, Cooper E. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.PubMedCrossRef Gupta A, Cooper E. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.PubMedCrossRef
157.
go back to reference Oberlin KE, Nichols AJ, Rosa R, Dejman A, Mattiazzi A, Guerra G, et al. Phaeohyphomycosis due to Exophiala infections in solid organ transplant recipients: case report and literature review. Transpl Infect Dis. 2017:e12723. Oberlin KE, Nichols AJ, Rosa R, Dejman A, Mattiazzi A, Guerra G, et al. Phaeohyphomycosis due to Exophiala infections in solid organ transplant recipients: case report and literature review. Transpl Infect Dis. 2017:e12723.
158.
go back to reference Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect. 2014;20:47–75.PubMedCrossRef Chowdhary A, Meis JF, Guarro J, de Hoog GS, Kathuria S, Arendrup MC, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect. 2014;20:47–75.PubMedCrossRef
159.
go back to reference Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016;63:e1–60.PubMedPubMedCentralCrossRef Patterson TF, Thompson GR, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis. 2016;63:e1–60.PubMedPubMedCentralCrossRef
160.
go back to reference Filipovich AH. Hematopoietic cell transplantation for correction of primary immunodeficiencies. Bone Marrow Transplant. 2008;42:S49–52.PubMedCrossRef Filipovich AH. Hematopoietic cell transplantation for correction of primary immunodeficiencies. Bone Marrow Transplant. 2008;42:S49–52.PubMedCrossRef
161.
162.
go back to reference Soncini E, Slatter MA, Jones LBKR, Hughes S, Hodges S, Flood TJ, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol. 2009;145:73–83.PubMedCrossRef Soncini E, Slatter MA, Jones LBKR, Hughes S, Hodges S, Flood TJ, et al. Unrelated donor and HLA-identical sibling haematopoietic stem cell transplantation cure chronic granulomatous disease with good long-term outcome and growth. Br J Haematol. 2009;145:73–83.PubMedCrossRef
163.
go back to reference Parta M, Kelly C, Kwatemaa N, Theobald N, Hilligoss D, Qin J, et al. Allogeneic reduced-intensity hematopoietic stem cell transplantation for chronic granulomatous disease: a single-center prospective trial. J Clin Immunol. 2017;37:548–58.PubMedCrossRef Parta M, Kelly C, Kwatemaa N, Theobald N, Hilligoss D, Qin J, et al. Allogeneic reduced-intensity hematopoietic stem cell transplantation for chronic granulomatous disease: a single-center prospective trial. J Clin Immunol. 2017;37:548–58.PubMedCrossRef
164.
go back to reference Decook LJ, Thoma M, Huneke T, Johnson ND, Wiegand RA, Patnaik MM, et al. Impact of lymphocyte and monocyte recovery on the outcomes of allogeneic hematopoietic SCT with fludarabine and melphalan conditioning. Bone Marrow Transplant. 2013;48:708–14.PubMedCrossRef Decook LJ, Thoma M, Huneke T, Johnson ND, Wiegand RA, Patnaik MM, et al. Impact of lymphocyte and monocyte recovery on the outcomes of allogeneic hematopoietic SCT with fludarabine and melphalan conditioning. Bone Marrow Transplant. 2013;48:708–14.PubMedCrossRef
165.
go back to reference Maeurer M, Magalhaes I, Andersson J, Ljungman P, Sandholm E, Ulhin M, et al. Allogeneic hematopoietic cell transplantation for GATA2 deficiency in a patient with disseminated human papillomavirus disease. Transplantation. 2014;98:e94–5.CrossRef Maeurer M, Magalhaes I, Andersson J, Ljungman P, Sandholm E, Ulhin M, et al. Allogeneic hematopoietic cell transplantation for GATA2 deficiency in a patient with disseminated human papillomavirus disease. Transplantation. 2014;98:e94–5.CrossRef
166.
go back to reference Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, Hsu AP, Zerbe CS, Calvo KR, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2017;118:3715–21.CrossRef Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, Hsu AP, Zerbe CS, Calvo KR, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2017;118:3715–21.CrossRef
167.
go back to reference Miceli MH, Churay T, Braun T, Kauffman CA, Couriel DR. Risk factors and outcomes of invasive fungal infections in allogeneic hematopoietic cell transplant recipients. Mycopathologia. 2017;182:495–504.PubMedCrossRef Miceli MH, Churay T, Braun T, Kauffman CA, Couriel DR. Risk factors and outcomes of invasive fungal infections in allogeneic hematopoietic cell transplant recipients. Mycopathologia. 2017;182:495–504.PubMedCrossRef
168.
go back to reference Casanova J. Human genetic basis of interindividual variability in the course of infection. PNAS. 2015;112:E7118–27.PubMed Casanova J. Human genetic basis of interindividual variability in the course of infection. PNAS. 2015;112:E7118–27.PubMed
169.
go back to reference Casanova J. Severe infectious diseases of childhood as monogenic inborn errors of immunity. PNAS. 2015;1:E7128–37. Casanova J. Severe infectious diseases of childhood as monogenic inborn errors of immunity. PNAS. 2015;1:E7128–37.
Metadata
Title
Inherited CARD9 Deficiency: Invasive Disease Caused by Ascomycete Fungi in Previously Healthy Children and Adults
Authors
Emilie Corvilain
Jean-Laurent Casanova
Anne Puel
Publication date
01-08-2018
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 6/2018
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-018-0539-2

Other articles of this Issue 6/2018

Journal of Clinical Immunology 6/2018 Go to the issue