Skip to main content
Top
Published in: Journal of Clinical Immunology 8/2021

01-11-2021 | Hemophagocytic Lymphohistiocytosis | Original Article

CD8 + T Cells Exhibit an Exhausted Phenotype in Hemophagocytic Lymphohistiocytosis

Authors: Madhura G. Kelkar, Umair Ahmad Bargir, Reetika Malik-Yadav, Maya Gupta, Aparna Dalvi, Neha Jodhawat, Shweta Shinde, Manisha R. Madkaikar

Published in: Journal of Clinical Immunology | Issue 8/2021

Login to get access

Abstract

Purpose

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome mainly caused by uncontrolled activation of antigen presenting cells and CD8 T cells. CD8 T cell exhaustion is a known phenomenon in chronic viral infections and cancer. However, the role of T cell exhaustion is not yet identified in HLH in the background of persistent inflammation. So, currently, we have characterized the CD8 T cells using flow cytometry to understand the phenomenon of exhaustion in these cells in HLH.

Methods

We have comprehensively evaluated lymphocyte subsets and characterized CD8 T cells using immunophenotypic markers like PD1, TIM3, LAG3, Ki67, Granzyme B, etc. in a cohort of 21 HLH patients. Effector cytokine secretion and degranulation by CD8 T cells are also studied.

Results

Our findings indicate skewed lymphocyte subsets and aberrantly activated CD8 T cells in HLH. CD8 T cells exhibit significantly increased expression of PD1, TIM3, and LAG3 prominently in primary HLH as compared to controls. PD1 + CD8 T cells express elevated levels of Granzyme B and Ki67. Moreover, CD8 T cells are hypofunctional as evidenced by significantly reduced cytokine secretion and compromised CD107a degranulation.

Conclusion

The study has revealed that CD8 + cytotoxic T lymphocytes from HLH patients exhibited high expression of exhaustion markers with overall impaired function. To the best of our understanding, this is the first report suggesting functional exhaustion of CD8 T cells in both primary and secondary HLH. Future studies to understand the association of exhaustion with disease outcome are needed for its probable therapeutic implementation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006;6(6):410–5.CrossRef Filipovich AH. Hemophagocytic lymphohistiocytosis and related disorders. Curr Opin Allergy Clin Immunol. 2006;6(6):410–5.CrossRef
2.
go back to reference de Saint BG, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–79.CrossRef de Saint BG, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nat Rev Immunol. 2010;10(8):568–79.CrossRef
3.
go back to reference Cetica V, Pende D, Griffiths GM, Arico M. Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95(4):538–41.CrossRef Cetica V, Pende D, Griffiths GM, Arico M. Molecular basis of familial hemophagocytic lymphohistiocytosis. Haematologica. 2010;95(4):538–41.CrossRef
4.
go back to reference Janka GE, Lehmberg K. Hemophagocytic syndromes–an update. Blood Rev. 2014;28(4):135–42.CrossRef Janka GE, Lehmberg K. Hemophagocytic syndromes–an update. Blood Rev. 2014;28(4):135–42.CrossRef
5.
go back to reference Madkaikar M, Shabrish S, Desai M. Current updates on classification, diagnosis and treatment of hemophagocytic lymphohistiocytosis (HLH). Indian J Pediatr. 2016;83(5):434–43.CrossRef Madkaikar M, Shabrish S, Desai M. Current updates on classification, diagnosis and treatment of hemophagocytic lymphohistiocytosis (HLH). Indian J Pediatr. 2016;83(5):434–43.CrossRef
6.
go back to reference Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163(5):1253–9.CrossRef Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163(5):1253–9.CrossRef
7.
go back to reference Gholam C, Grigoriadou S, Gilmour KC, Gaspar HB. Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin Exp Immunol. 2011;163(3):271–83.CrossRef Gholam C, Grigoriadou S, Gilmour KC, Gaspar HB. Familial haemophagocytic lymphohistiocytosis: advances in the genetic basis, diagnosis and management. Clin Exp Immunol. 2011;163(3):271–83.CrossRef
8.
go back to reference Put K, Avau A, Brisse E, Mitera T, Put S, Proost P, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-gamma. Rheumatology. 2015;54(8):1507–17.CrossRef Put K, Avau A, Brisse E, Mitera T, Put S, Proost P, et al. Cytokines in systemic juvenile idiopathic arthritis and haemophagocytic lymphohistiocytosis: tipping the balance between interleukin-18 and interferon-gamma. Rheumatology. 2015;54(8):1507–17.CrossRef
9.
go back to reference Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.CrossRef Jordan MB, Hildeman D, Kappler J, Marrack P. An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood. 2004;104(3):735–43.CrossRef
10.
go back to reference Yang C, Zhu X, Zhang T, Ye Q. EBV-HLH children with reductions in CD4+ T cells and excessive activation of CD8+ T cells. Pediatr Res. 2017;82(6):952–7.CrossRef Yang C, Zhu X, Zhang T, Ye Q. EBV-HLH children with reductions in CD4+ T cells and excessive activation of CD8+ T cells. Pediatr Res. 2017;82(6):952–7.CrossRef
12.
go back to reference Ammann S, Lehmberg K, Zur Stadt U, Janka G, Rensing-Ehl A, Klemann C, et al. Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. Eur J Immunol. 2017;47(2):364–73.CrossRef Ammann S, Lehmberg K, Zur Stadt U, Janka G, Rensing-Ehl A, Klemann C, et al. Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of T-cell activation, differentiation and repertoire. Eur J Immunol. 2017;47(2):364–73.CrossRef
14.
go back to reference Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550.CrossRef Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol. 2016;7:550.CrossRef
15.
go back to reference Linsley PS, Long SA. Enforcing the checkpoints: harnessing T-cell exhaustion for therapy of T1D. Curr Opin Endocrinol Diabetes Obes. 2019;26(4):213–8.CrossRef Linsley PS, Long SA. Enforcing the checkpoints: harnessing T-cell exhaustion for therapy of T1D. Curr Opin Endocrinol Diabetes Obes. 2019;26(4):213–8.CrossRef
16.
go back to reference Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, Gupta M, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019;10:490.CrossRef Shabrish S, Kelkar M, Chavan N, Desai M, Bargir U, Gupta M, et al. Natural killer cell degranulation defect: a cause for impaired NK-cell cytotoxicity and hyperinflammation in Fanconi anemia patients. Front Immunol. 2019;10:490.CrossRef
17.
go back to reference Gao Z, Wang Y, Wang J, Zhang J, Wang Z. The inhibitory receptors on NK cells and CTLs are upregulated in adult and adolescent patients with secondary hemophagocytic lymphohistiocytosis. Clin Immunol. 2019;202:18–28.CrossRef Gao Z, Wang Y, Wang J, Zhang J, Wang Z. The inhibitory receptors on NK cells and CTLs are upregulated in adult and adolescent patients with secondary hemophagocytic lymphohistiocytosis. Clin Immunol. 2019;202:18–28.CrossRef
18.
go back to reference Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000 e3. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000 e3.
19.
go back to reference Mahmoudi S, Rezaei M, Mansouri N, Marjani M, Mansouri D. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef Mahmoudi S, Rezaei M, Mansouri N, Marjani M, Mansouri D. Immunologic features in coronavirus disease 2019: functional exhaustion of T cells and cytokine storm. J Clin Immunol. 2020;40(7):974–6.CrossRef
20.
go back to reference McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol. 2019;37:457–95.CrossRef McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu Rev Immunol. 2019;37:457–95.CrossRef
21.
go back to reference Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.CrossRef Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60.CrossRef
23.
go back to reference Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52.CrossRef Kared H, Martelli S, Ng TP, Pender SL, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65(4):441–52.CrossRef
24.
go back to reference Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRef Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.CrossRef
25.
go back to reference McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.CrossRef McKinney EF, Smith KG. T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol. 2016;43:74–80.CrossRef
26.
go back to reference Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw. 2020;20(1):e2. Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Netw. 2020;20(1):e2.
27.
go back to reference Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.CrossRef Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.CrossRef
28.
go back to reference Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36.CrossRef Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36.CrossRef
29.
go back to reference McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94(10):935–42.CrossRef McKinney EF, Smith KG. T-cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol. 2016;94(10):935–42.CrossRef
30.
go back to reference Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002;32(4):666–9.CrossRef Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002;32(4):666–9.CrossRef
31.
go back to reference McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.CrossRef McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature. 2015;523(7562):612–6.CrossRef
32.
go back to reference Kogl T, Muller J, Jessen B, Schmitt-Graeff A, Janka G, Ehl S, et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013;121(4):604–13.CrossRef Kogl T, Muller J, Jessen B, Schmitt-Graeff A, Janka G, Ehl S, et al. Hemophagocytic lymphohistiocytosis in syntaxin-11-deficient mice: T-cell exhaustion limits fatal disease. Blood. 2013;121(4):604–13.CrossRef
33.
go back to reference Henter JI, Tondini C, Pritchard J. Histiocyte disorders. Crit Rev Oncol Hematol. 2004;50(2):157–74.CrossRef Henter JI, Tondini C, Pritchard J. Histiocyte disorders. Crit Rev Oncol Hematol. 2004;50(2):157–74.CrossRef
Metadata
Title
CD8 + T Cells Exhibit an Exhausted Phenotype in Hemophagocytic Lymphohistiocytosis
Authors
Madhura G. Kelkar
Umair Ahmad Bargir
Reetika Malik-Yadav
Maya Gupta
Aparna Dalvi
Neha Jodhawat
Shweta Shinde
Manisha R. Madkaikar
Publication date
01-11-2021
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 8/2021
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-021-01109-0

Other articles of this Issue 8/2021

Journal of Clinical Immunology 8/2021 Go to the issue