Skip to main content
Top
Published in: Journal of Clinical Immunology 7/2019

Open Access 01-10-2019 | Primary Immunodeficiency | Original Article

Predicting the Occurrence of Variants in RAG1 and RAG2

Authors: Dylan Lawless, Hana Lango Allen, James Thaventhiran, Flavia Hodel, Rashida Anwar, Jacques Fellay, Jolan E. Walter, Sinisa Savic, NIHR BioResource–Rare Diseases Consortium

Published in: Journal of Clinical Immunology | Issue 7/2019

Login to get access

Abstract

While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Payne K, Gavan SP, Wright SJ, Thompson AJ. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat Rev Genet. 2018;19(4):235–46.CrossRefPubMed Payne K, Gavan SP, Wright SJ, Thompson AJ. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat Rev Genet. 2018;19(4):235–46.CrossRefPubMed
2.
go back to reference Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the united states. Jama. 2014;312(7):729–38.CrossRefPubMedPubMedCentral Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the united states. Jama. 2014;312(7):729–38.CrossRefPubMedPubMedCentral
4.
go back to reference Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. scnmt-seq enables joint profiling of chromatin accessibility dna methylation and transcription in single cells. Nat Commun. 2018;9(1):781.CrossRefPubMedPubMedCentral Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ, Alda-Catalinas C, et al. scnmt-seq enables joint profiling of chromatin accessibility dna methylation and transcription in single cells. Nat Commun. 2018;9(1):781.CrossRefPubMedPubMedCentral
5.
go back to reference Bartha I, di Iulio J, Venter JC, Telenti A. Human gene essentiality. Nat Rev Genet pages nrg–2017. 2017;19(1):51–62.CrossRefPubMed Bartha I, di Iulio J, Venter JC, Telenti A. Human gene essentiality. Nat Rev Genet pages nrg–2017. 2017;19(1):51–62.CrossRefPubMed
6.
go back to reference Picard C, Gaspar HB, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.CrossRefPubMed Picard C, Gaspar HB, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.CrossRefPubMed
7.
go back to reference Conley ME, Casanova J-L. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23.CrossRefPubMed Conley ME, Casanova J-L. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23.CrossRefPubMed
8.
go back to reference Schatz DG, Oettinger MA, Baltimore D. The v (d) j recombination activating gene, rag-1. Cell. 1989;59(6):1035–48.CrossRefPubMed Schatz DG, Oettinger MA, Baltimore D. The v (d) j recombination activating gene, rag-1. Cell. 1989;59(6):1035–48.CrossRefPubMed
9.
go back to reference Oettinger MA, Schatz DG, Gorka C, Baltimore D. Rag-1 and rag-2, adjacent genes that synergistically activate v (d) j recombination. Science. 1990;248(4962):1517–23.CrossRefPubMed Oettinger MA, Schatz DG, Gorka C, Baltimore D. Rag-1 and rag-2, adjacent genes that synergistically activate v (d) j recombination. Science. 1990;248(4962):1517–23.CrossRefPubMed
10.
go back to reference Mombaerts P, Iacomini J. Randall S Johnson, Karl Herrup, Susumu Tonegawa, and Virginia E Papaioannou. Rag-1-deficient mice have no mature b and t lymphocytes. Cell. 1992;68(5):869–77.CrossRefPubMed Mombaerts P, Iacomini J. Randall S Johnson, Karl Herrup, Susumu Tonegawa, and Virginia E Papaioannou. Rag-1-deficient mice have no mature b and t lymphocytes. Cell. 1992;68(5):869–77.CrossRefPubMed
11.
go back to reference Shinkai Y, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, et al. Rag-2-deficient mice lack mature lymphocytes owing to inability to initiate v (d) j rearrangement. Cell. 1992;68(5):855–67.CrossRefPubMed Shinkai Y, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, et al. Rag-2-deficient mice lack mature lymphocytes owing to inability to initiate v (d) j rearrangement. Cell. 1992;68(5):855–67.CrossRefPubMed
12.
go back to reference Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. Rag mutations in human b cell-negative scid. Science. 1996;274(5284):97–9.CrossRefPubMed Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. Rag mutations in human b cell-negative scid. Science. 1996;274(5284):97–9.CrossRefPubMed
13.
go back to reference de Saint-Basile G, Le Deist F, De Villartay JP, Cerf-Bensussan N, Journet O, Brousse N, et al. Restricted heterogeneity of t lymphocytes in combined immunodeficiency with hypereosinophilia (omenn’s syndrome). J Clin Invest. 1991;87(4):1352–9.CrossRefPubMedPubMedCentral de Saint-Basile G, Le Deist F, De Villartay JP, Cerf-Bensussan N, Journet O, Brousse N, et al. Restricted heterogeneity of t lymphocytes in combined immunodeficiency with hypereosinophilia (omenn’s syndrome). J Clin Invest. 1991;87(4):1352–9.CrossRefPubMedPubMedCentral
14.
go back to reference Rieux-Laucat F, Bahadoran P, Brousse N, Selz F, Fischer A, Le Deist F, et al. Highly restricted human t cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in omenn’s syndrome. J Clin Invest. 1998;102(2):312–21.CrossRefPubMedPubMedCentral Rieux-Laucat F, Bahadoran P, Brousse N, Selz F, Fischer A, Le Deist F, et al. Highly restricted human t cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in omenn’s syndrome. J Clin Invest. 1998;102(2):312–21.CrossRefPubMedPubMedCentral
15.
go back to reference Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, et al. Partial v (d) j recombination activity leads to omenn syndrome. Cell. 1998;93(5):885–96.CrossRefPubMed Villa A, Santagata S, Bozzi F, Giliani S, Frattini A, Imberti L, et al. Partial v (d) j recombination activity leads to omenn syndrome. Cell. 1998;93(5):885–96.CrossRefPubMed
16.
go back to reference Lawless D, Geier CB, Farmer JR, Allen HL, Thwaites D, Atschekzei F, et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol. 2018;141(6):2303–6.CrossRefPubMedPubMedCentral Lawless D, Geier CB, Farmer JR, Allen HL, Thwaites D, Atschekzei F, et al. Prevalence and clinical challenges among adults with primary immunodeficiency and recombination-activating gene deficiency. J Allergy Clin Immunol. 2018;141(6):2303–6.CrossRefPubMedPubMedCentral
17.
go back to reference Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, et al. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol. 2014;133(4):1099–108.CrossRefPubMed Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, et al. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol. 2014;133(4):1099–108.CrossRefPubMed
18.
go back to reference Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, et al. Recombination activity of human rag2 mutations and correlation with the clinical phenotype. J Allergy Clin Immunol. 2018;143(2):726–35.CrossRefPubMedPubMedCentral Tirosh I, Yamazaki Y, Frugoni F, Ververs FA, Allenspach EJ, Zhang Y, et al. Recombination activity of human rag2 mutations and correlation with the clinical phenotype. J Allergy Clin Immunol. 2018;143(2):726–35.CrossRefPubMedPubMedCentral
19.
go back to reference Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, et al. Broad-spectrum antibodies against self-antigens and cytokines in rag deficiency. J Clin Invest. 2015;125(11):4135–48.CrossRefPubMedPubMedCentral Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, Keszei M, et al. Broad-spectrum antibodies against self-antigens and cytokines in rag deficiency. J Clin Invest. 2015;125(11):4135–48.CrossRefPubMedPubMedCentral
20.
go back to reference Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B. Dominik T Schneider, Burkhard Manfras, Ulrich Pannicke, Rein Willemze, et al. An immunodeficiency disease with rag mutations and granulomas. N Engl J Med. 2008;358(19):2030–8.CrossRefPubMed Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B. Dominik T Schneider, Burkhard Manfras, Ulrich Pannicke, Rein Willemze, et al. An immunodeficiency disease with rag mutations and granulomas. N Engl J Med. 2008;358(19):2030–8.CrossRefPubMed
21.
go back to reference Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60, 706 humans. Nature. 2016;536(7616):285.CrossRefPubMedPubMedCentral Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60, 706 humans. Nature. 2016;536(7616):285.CrossRefPubMedPubMedCentral
22.
go back to reference John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, et al. Unrelated hematopoietic cell transplantation in a patient with combined immunodeficiency with granulomatous disease and autoimmunity secondary to rag deficiency. J Clin Immunol. 2016;36(7):725–32.CrossRefPubMedPubMedCentral John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, et al. Unrelated hematopoietic cell transplantation in a patient with combined immunodeficiency with granulomatous disease and autoimmunity secondary to rag deficiency. J Clin Immunol. 2016;36(7):725–32.CrossRefPubMedPubMedCentral
23.
go back to reference Casanova J-L, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med, pages jem–20140520. 2014;211(11):2137.CrossRefPubMedPubMedCentral Casanova J-L, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med, pages jem–20140520. 2014;211(11):2137.CrossRefPubMedPubMedCentral
24.
go back to reference Paul Stothard. The sequence manipulation suite: Javascript programs for analyzing and formatting protein and dna sequences. University of Alberta, Education and Research Archive, 2000. Paul Stothard. The sequence manipulation suite: Javascript programs for analyzing and formatting protein and dna sequences. University of Alberta, Education and Research Archive, 2000.
25.
go back to reference Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310.CrossRefPubMedPubMedCentral Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310.CrossRefPubMedPubMedCentral
26.
go back to reference Peter D, Stenson MM, Ball EV, Shaw K, Phillips AD, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.CrossRef Peter D, Stenson MM, Ball EV, Shaw K, Phillips AD, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.CrossRef
27.
go back to reference Heng R, Melissa G. Chambers, Tian-Min Fu, Alexander B Tong, Maofu Liao, and Hao Wu. Molecular mechanism of v (d) j recombination from synaptic rag1-rag2 complex structures. Cell. 2015;163(5):1138–52.CrossRef Heng R, Melissa G. Chambers, Tian-Min Fu, Alexander B Tong, Maofu Liao, and Hao Wu. Molecular mechanism of v (d) j recombination from synaptic rag1-rag2 complex structures. Cell. 2015;163(5):1138–52.CrossRef
28.
go back to reference Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J Mol Graph. 1996;14:33–8.CrossRef Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J Mol Graph. 1996;14:33–8.CrossRef
29.
go back to reference John Stone. An efficient library for parallel ray tracing and animation. Master’s thesis, Computer Science Department, University of Missouri-Rolla, 1998. John Stone. An efficient library for parallel ray tracing and animation. Master’s thesis, Computer Science Department, University of Missouri-Rolla, 1998.
30.
go back to reference Villa A, Sobacchi C. Luigi D Notarangelo, Fabio Bozzi, Mario Abinun, Tore G Abrahamsen, Peter D Arkwright, Michal Baniyash, Edward G Brooks, Mary Ellen Conley, et al. V (d) j recombination defects in lymphocytes due torag mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood. 2001;97(1):81–8.CrossRefPubMed Villa A, Sobacchi C. Luigi D Notarangelo, Fabio Bozzi, Mario Abinun, Tore G Abrahamsen, Peter D Arkwright, Michal Baniyash, Edward G Brooks, Mary Ellen Conley, et al. V (d) j recombination defects in lymphocytes due torag mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood. 2001;97(1):81–8.CrossRefPubMed
31.
go back to reference Abolhassani H, Wang N, Aghamohammadi A, Rezaei N. Yu Nee Lee, Francesco Frugoni, Luigi D Notarangelo, Qiang Pan-Hammarström, and Lennart Hammarström. A hypomorphic recombination-activating gene 1 (rag1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(6):1375–80.CrossRefPubMedPubMedCentral Abolhassani H, Wang N, Aghamohammadi A, Rezaei N. Yu Nee Lee, Francesco Frugoni, Luigi D Notarangelo, Qiang Pan-Hammarström, and Lennart Hammarström. A hypomorphic recombination-activating gene 1 (rag1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol. 2014;134(6):1375–80.CrossRefPubMedPubMedCentral
32.
go back to reference Kutukculer N, Gulez N, Karaca NE, Aksu G, Berdeli A. Novel mutatıons and diverse clinical phenotypes in recombınase-activating gene 1 deficiency. Ital J Pediatr. 2012;38(1):8.CrossRefPubMedPubMedCentral Kutukculer N, Gulez N, Karaca NE, Aksu G, Berdeli A. Novel mutatıons and diverse clinical phenotypes in recombınase-activating gene 1 deficiency. Ital J Pediatr. 2012;38(1):8.CrossRefPubMedPubMedCentral
33.
go back to reference Sobacchi C, Marrella V, Rucci F, Vezzoni P, Villa A. Rag- dependent primary immunodeficiencies. Hum Mutat. 2006;27(12):1174–84.CrossRefPubMed Sobacchi C, Marrella V, Rucci F, Vezzoni P, Villa A. Rag- dependent primary immunodeficiencies. Hum Mutat. 2006;27(12):1174–84.CrossRefPubMed
34.
go back to reference Jeroen G, Noordzij JG, de Bruin-Versteeg S, Verkaik NS, Vossen JM, de Groot R, et al. The immunophenotypic and immunogenotypic b-cell differentiation arrest in bone marrow of rag-deficient scid patients corresponds to residual recombination activities of mutated rag proteins. Blood. 2002;100(6):2145–52. Jeroen G, Noordzij JG, de Bruin-Versteeg S, Verkaik NS, Vossen JM, de Groot R, et al. The immunophenotypic and immunogenotypic b-cell differentiation arrest in bone marrow of rag-deficient scid patients corresponds to residual recombination activities of mutated rag proteins. Blood. 2002;100(6):2145–52.
35.
go back to reference Crestani E, Choo S, Frugoni F. Yu Nee Lee, Stephanie Richards, Joanne Smart, and Luigi D Notarangelo. Rag1 reversion mosaicism in a patient with omenn syndrome. J Clin Immunol. 2014;34(5):551–4.CrossRefPubMedPubMedCentral Crestani E, Choo S, Frugoni F. Yu Nee Lee, Stephanie Richards, Joanne Smart, and Luigi D Notarangelo. Rag1 reversion mosaicism in a patient with omenn syndrome. J Clin Immunol. 2014;34(5):551–4.CrossRefPubMedPubMedCentral
36.
go back to reference Dalal I, Tabori U, Bielorai B, Golan H, Rosenthal E, Amariglio N, et al. Evolution of a tb-scid into an omenn syndrome phenotype following parainfluenza 3 virus infection. Clin Immunol. 2005;115(1):70–3.CrossRefPubMed Dalal I, Tabori U, Bielorai B, Golan H, Rosenthal E, Amariglio N, et al. Evolution of a tb-scid into an omenn syndrome phenotype following parainfluenza 3 virus infection. Clin Immunol. 2005;115(1):70–3.CrossRefPubMed
37.
go back to reference Kuijpers TW, Jspeert HI, van Leeuwen EMM, Jansen MH, Hazenberg MD, Weijer KC, et al. Idiopathic cd4+ t lymphopenia without autoimmunity or granulomatous disease in the slipstream of rag mutations. Blood, pages blood–2011. 2011;117(22):5892–6.CrossRefPubMed Kuijpers TW, Jspeert HI, van Leeuwen EMM, Jansen MH, Hazenberg MD, Weijer KC, et al. Idiopathic cd4+ t lymphopenia without autoimmunity or granulomatous disease in the slipstream of rag mutations. Blood, pages blood–2011. 2011;117(22):5892–6.CrossRefPubMed
38.
go back to reference Gruber TA, Shah AJ, Hernandez M, Crooks GM, Abdel-Azim H, Gupta S, et al. Clinical and genetic heterogeneity in omenn syndrome and severe combined immune deficiency. Pediatr Transplant. 2009;13(2):244–50.CrossRefPubMed Gruber TA, Shah AJ, Hernandez M, Crooks GM, Abdel-Azim H, Gupta S, et al. Clinical and genetic heterogeneity in omenn syndrome and severe combined immune deficiency. Pediatr Transplant. 2009;13(2):244–50.CrossRefPubMed
39.
go back to reference De Ravin SS, Cowen EW, Zarember KA, Whiting-Theobald NL, Kuhns DB, Sandler NG, et al. Hypomorphic rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116(8):1263–71.CrossRefPubMedPubMedCentral De Ravin SS, Cowen EW, Zarember KA, Whiting-Theobald NL, Kuhns DB, Sandler NG, et al. Hypomorphic rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116(8):1263–71.CrossRefPubMedPubMedCentral
40.
go back to reference Buchbinder D, Baker R, Lee YN, Ravell J, Zhang Y, McElwee J, et al. Identification of patients with rag mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol. 2015;35(2):119–24.CrossRefPubMed Buchbinder D, Baker R, Lee YN, Ravell J, Zhang Y, McElwee J, et al. Identification of patients with rag mutations previously diagnosed with common variable immunodeficiency disorders. J Clin Immunol. 2015;35(2):119–24.CrossRefPubMed
41.
go back to reference Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82.CrossRefPubMed Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141(1):73–82.CrossRefPubMed
42.
go back to reference Reiff A, Bassuk AG, Church JA, Campbell E, Bing X, Ferguson PJ. Exome sequencing reveals rag1 mutations in a child with autoimmunity and sterile chronic multifocal osteomyelitis evolving into disseminated granulomatous disease. J Clin Immunol. 2013;33(8):1289–92.CrossRefPubMed Reiff A, Bassuk AG, Church JA, Campbell E, Bing X, Ferguson PJ. Exome sequencing reveals rag1 mutations in a child with autoimmunity and sterile chronic multifocal osteomyelitis evolving into disseminated granulomatous disease. J Clin Immunol. 2013;33(8):1289–92.CrossRefPubMed
43.
go back to reference Corneo B, Moshous D, Güngör T, Wulffraat N, Philippet P, Le Deist F, et al. Identical mutations in rag1 or rag2 genes leading to defective v (d) j recombinase activity can cause either tb–severe combined immune deficiency or omenn syndrome. Blood. 2001;97(9):2772–6.CrossRefPubMed Corneo B, Moshous D, Güngör T, Wulffraat N, Philippet P, Le Deist F, et al. Identical mutations in rag1 or rag2 genes leading to defective v (d) j recombinase activity can cause either tb–severe combined immune deficiency or omenn syndrome. Blood. 2001;97(9):2772–6.CrossRefPubMed
44.
go back to reference Asai E, Wada T, Sakakibara Y, Toga A, Toma T, Shimizu T, et al. Analysis of mutations and recombination activity in rag-deficient patients. Clin Immunol. 2011;138(2):172–7.CrossRefPubMed Asai E, Wada T, Sakakibara Y, Toga A, Toma T, Shimizu T, et al. Analysis of mutations and recombination activity in rag-deficient patients. Clin Immunol. 2011;138(2):172–7.CrossRefPubMed
45.
go back to reference Kato T, Crestani E, Kamae C, Honma K, Yokosuka T, Ikegawa T, et al. Rag1 deficiency may present clinically as selective iga deficiency. J Clin Immunol. 2015;35(3):280–8.CrossRefPubMed Kato T, Crestani E, Kamae C, Honma K, Yokosuka T, Ikegawa T, et al. Rag1 deficiency may present clinically as selective iga deficiency. J Clin Immunol. 2015;35(3):280–8.CrossRefPubMed
46.
go back to reference Yu X, Jorge R, Almeida SD, van der Burg M, De Ravin SS, Malech H, et al. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in t-cell receptor repertoire development. J Allergy Clin Immunol. 2014;133(4):1109–15.CrossRefPubMedPubMedCentral Yu X, Jorge R, Almeida SD, van der Burg M, De Ravin SS, Malech H, et al. Human syndromes of immunodeficiency and dysregulation are characterized by distinct defects in t-cell receptor repertoire development. J Allergy Clin Immunol. 2014;133(4):1109–15.CrossRefPubMedPubMedCentral
47.
go back to reference De Villartay J-P, Lim A, Al-Mousa H, Dupont S, Déchanet-Merville J, Coumau-Gatbois E, et al. A novel immunodeficiency associated with hypomorphic rag1 mutations and cmv infection. J Clin Invest. 2005;115(11):3291–9.CrossRefPubMedPubMedCentral De Villartay J-P, Lim A, Al-Mousa H, Dupont S, Déchanet-Merville J, Coumau-Gatbois E, et al. A novel immunodeficiency associated with hypomorphic rag1 mutations and cmv infection. J Clin Invest. 2005;115(11):3291–9.CrossRefPubMedPubMedCentral
48.
go back to reference Zhang J, Quintal L, Atkinson A, Williams B, Grunebaum E, Roifman CM. Novel rag1 mutation in a case of severe combined immunodeficiency. Pediatrics. 2005;116(3):e445–9.CrossRefPubMed Zhang J, Quintal L, Atkinson A, Williams B, Grunebaum E, Roifman CM. Novel rag1 mutation in a case of severe combined immunodeficiency. Pediatrics. 2005;116(3):e445–9.CrossRefPubMed
49.
go back to reference Henderson LA, Frugoni F, Hopkins G, Boer H, Sung-YunPai YNL, Walter JE, et al. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J Allergy Clin Immunol. 2013;132(4):969–71.CrossRefPubMed Henderson LA, Frugoni F, Hopkins G, Boer H, Sung-YunPai YNL, Walter JE, et al. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J Allergy Clin Immunol. 2013;132(4):969–71.CrossRefPubMed
50.
go back to reference Avila EM, Uzel G, Hsu A, Milner JD, Turner ML, Pittaluga S, et al. Highly variable clinical phenotypes of hypomorphic rag1 mutations. Pediatrics. 2010;126(5):e1248–52.CrossRefPubMed Avila EM, Uzel G, Hsu A, Milner JD, Turner ML, Pittaluga S, et al. Highly variable clinical phenotypes of hypomorphic rag1 mutations. Pediatrics. 2010;126(5):e1248–52.CrossRefPubMed
51.
go back to reference Riccetto AGL, Buzolin M, Fernandes JF, Raina FT, Castro MLR B-d, Silva MTN, et al. Compound heterozygous rag2 mutations mimicking hyper igm syndrome. J Clin Immunol. 2014;34(1):7–9.CrossRefPubMed Riccetto AGL, Buzolin M, Fernandes JF, Raina FT, Castro MLR B-d, Silva MTN, et al. Compound heterozygous rag2 mutations mimicking hyper igm syndrome. J Clin Immunol. 2014;34(1):7–9.CrossRefPubMed
52.
go back to reference CarlosAGomez LMP, Villa A, Bozzi F, Sobacchi C, GBrooks E, Notarangelo LD, et al. Mutations in conserved regions of the predicted rag2 kelch repeats block initiation of v (d) j recombination and result in primary immunodeficiencies. Mol Cell Biol. 2000;20(15):5653–64.CrossRef CarlosAGomez LMP, Villa A, Bozzi F, Sobacchi C, GBrooks E, Notarangelo LD, et al. Mutations in conserved regions of the predicted rag2 kelch repeats block initiation of v (d) j recombination and result in primary immunodeficiencies. Mol Cell Biol. 2000;20(15):5653–64.CrossRef
53.
go back to reference Chou J, Hanna-Wakim R, Tirosh I, Kane J, Fraulino D, Lee YN, et al. A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-igm syndrome. J Allergy Clin Immunol. 2012;130(6):1414–6.CrossRefPubMedPubMedCentral Chou J, Hanna-Wakim R, Tirosh I, Kane J, Fraulino D, Lee YN, et al. A novel homozygous mutation in recombination activating gene 2 in 2 relatives with different clinical phenotypes: Omenn syndrome and hyper-igm syndrome. J Allergy Clin Immunol. 2012;130(6):1414–6.CrossRefPubMedPubMedCentral
54.
go back to reference Luigi D, Notarangelo M-SK, Walter JE, Lee YN. Human rag mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234.CrossRef Luigi D, Notarangelo M-SK, Walter JE, Lee YN. Human rag mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234.CrossRef
55.
go back to reference Agrawal A, Eastman QM, Schatz DG. Transposition mediated by rag1 and rag2 and its implications for the evolution of the immune system. Nature. 1998;394(6695):744.CrossRefPubMed Agrawal A, Eastman QM, Schatz DG. Transposition mediated by rag1 and rag2 and its implications for the evolution of the immune system. Nature. 1998;394(6695):744.CrossRefPubMed
56.
go back to reference Hiom K, Melek M, Gellert M. Dna transposition by the rag1 and rag2 proteins: a possible source of oncogenic translocations. Cell. 1998;94(4):463–70.CrossRefPubMed Hiom K, Melek M, Gellert M. Dna transposition by the rag1 and rag2 proteins: a possible source of oncogenic translocations. Cell. 1998;94(4):463–70.CrossRefPubMed
57.
go back to reference Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP. An ancient evolutionary origin of the rag1/2 gene locus. Proc Natl Acad Sci U S A. 2006;103(10):3728–33.CrossRefPubMedPubMedCentral Fugmann SD, Messier C, Novack LA, Cameron RA, Rast JP. An ancient evolutionary origin of the rag1/2 gene locus. Proc Natl Acad Sci U S A. 2006;103(10):3728–33.CrossRefPubMedPubMedCentral
58.
go back to reference Huang S, Tao X, Yuan S, Zhang Y, Li P, ABeilinson H, et al. Discovery of an active rag transposon illuminates the origins of v (d) j recombination. Cell. 2016;166(1):102–14.CrossRefPubMedPubMedCentral Huang S, Tao X, Yuan S, Zhang Y, Li P, ABeilinson H, et al. Discovery of an active rag transposon illuminates the origins of v (d) j recombination. Cell. 2016;166(1):102–14.CrossRefPubMedPubMedCentral
59.
62.
go back to reference Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109.CrossRefPubMedPubMedCentral Itan Y, Shang L, Boisson B, Ciancanelli MJ, Markle JG, Martinez-Barricarte R, et al. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat Methods. 2016;13(2):109.CrossRefPubMedPubMedCentral
63.
go back to reference Kido T, Sikora-Wohlfeld W, Kawashima M, Kikuchi S, Kamatani N, Patwardhan A, et al. Are minor alleles more likely to be risk alleles? BMC Med Genet. 2018;11(1):3. Kido T, Sikora-Wohlfeld W, Kawashima M, Kikuchi S, Kamatani N, Patwardhan A, et al. Are minor alleles more likely to be risk alleles? BMC Med Genet. 2018;11(1):3.
64.
go back to reference Chan Y, Lim ET, Sandholm N, Wang SR, McKnight AJ, Ripke S, et al. An excess of risk-increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. Am J Hum Genet. 2014;94(3):437–52.CrossRefPubMedPubMedCentral Chan Y, Lim ET, Sandholm N, Wang SR, McKnight AJ, Ripke S, et al. An excess of risk-increasing low-frequency variants can be a signal of polygenic inheritance in complex diseases. Am J Hum Genet. 2014;94(3):437–52.CrossRefPubMedPubMedCentral
67.
go back to reference Huang Z, Ayday E, Lin H, Aiyar RS, Molyneaux A, Xu Z, et al. A privacy-preserving solution for compressed storage and selective retrieval of genomic data. Genome Res. 2016;26(12):10):1687–96.CrossRefPubMedPubMedCentral Huang Z, Ayday E, Lin H, Aiyar RS, Molyneaux A, Xu Z, et al. A privacy-preserving solution for compressed storage and selective retrieval of genomic data. Genome Res. 2016;26(12):10):1687–96.CrossRefPubMedPubMedCentral
68.
go back to reference Kumánovics A, Lee YN, Close DW, Coonrod EM, Ujhazi B, Chen K, et al. Estimated disease incidence of rag1/2 mutations: a case report and querying the exome aggregation consortium. J Allergy Clin Immunol. 2017;139(2):690–2.CrossRefPubMed Kumánovics A, Lee YN, Close DW, Coonrod EM, Ujhazi B, Chen K, et al. Estimated disease incidence of rag1/2 mutations: a case report and querying the exome aggregation consortium. J Allergy Clin Immunol. 2017;139(2):690–2.CrossRefPubMed
Metadata
Title
Predicting the Occurrence of Variants in RAG1 and RAG2
Authors
Dylan Lawless
Hana Lango Allen
James Thaventhiran
Flavia Hodel
Rashida Anwar
Jacques Fellay
Jolan E. Walter
Sinisa Savic
NIHR BioResource–Rare Diseases Consortium
Publication date
01-10-2019
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 7/2019
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-019-00670-z

Other articles of this Issue 7/2019

Journal of Clinical Immunology 7/2019 Go to the issue