Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2016

Open Access 01-05-2016

Current Status: Site-Specific Antibody Drug Conjugates

Authors: Dominik Schumacher, Christian P. R. Hackenberger, Heinrich Leonhardt, Jonas Helma

Published in: Journal of Clinical Immunology | Special Issue 1/2016

Login to get access

Abstract

Antibody drug conjugates (ADCs), a promising class of cancer biopharmaceuticals, combine the specificity of therapeutic antibodies with the pharmacological potency of chemical, cytotoxic drugs. Ever since the first ADCs on the market, a plethora of novel ADC technologies has emerged, covering as diverse aspects as antibody engineering, chemical linker optimization and novel conjugation strategies, together aiming at constantly widening the therapeutic window for ADCs. This review primarily focuses on novel chemical and biotechnological strategies for the site-directed attachment of drugs that are currently validated for 2nd generation ADCs to promote conjugate homogeneity and overall stability.
Literature
6.
go back to reference Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92. doi:10.1056/NEJM200103153441101.CrossRefPubMed Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92. doi:10.​1056/​NEJM200103153441​101.CrossRefPubMed
8.
go back to reference Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–5. doi:10.1038/nbt.3212.CrossRefPubMed Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–5. doi:10.​1038/​nbt.​3212.CrossRefPubMed
9.
go back to reference Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014;25:656–64. doi:10.1021/bc400439x.CrossRefPubMed Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O. Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem. 2014;25:656–64. doi:10.​1021/​bc400439x.CrossRefPubMed
10.
go back to reference Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem. 2011;54:3606–23. doi:10.1021/jm2002958.CrossRefPubMed Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, et al. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J Med Chem. 2011;54:3606–23. doi:10.​1021/​jm2002958.CrossRefPubMed
12.
go back to reference Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–32. doi:10.1038/nbt.1480.CrossRefPubMed Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26:925–32. doi:10.​1038/​nbt.​1480.CrossRefPubMed
14.
go back to reference Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.PubMed
15.
go back to reference Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 2014;25:1223–32. doi:10.1021/bc5000109.CrossRefPubMed Kim MT, Chen Y, Marhoul J, Jacobson F. Statistical modeling of the drug load distribution on trastuzumab emtansine (Kadcyla), a lysine-linked antibody drug conjugate. Bioconjug Chem. 2014;25:1223–32. doi:10.​1021/​bc5000109.CrossRefPubMed
16.
go back to reference Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnol. 2003;21:778–84. doi:10.1038/nbt832.CrossRef Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnol. 2003;21:778–84. doi:10.​1038/​nbt832.CrossRef
18.
go back to reference Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nature Biotechnol. 2012;30:184–9. doi:10.1038/nbt.2108.CrossRef Shen BQ, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nature Biotechnol. 2012;30:184–9. doi:10.​1038/​nbt.​2108.CrossRef
20.
go back to reference Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014;25:1124–36. doi:10.1021/bc500148x.CrossRefPubMed Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V, et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem. 2014;25:1124–36. doi:10.​1021/​bc500148x.CrossRefPubMed
21.
go back to reference Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, et al. Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc. 2012;134:1847–52. doi:10.1021/ja210335f.CrossRefPubMed Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, et al. Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc. 2012;134:1847–52. doi:10.​1021/​ja210335f.CrossRefPubMed
24.
26.
go back to reference Casi G, Huguenin-Dezot N, Zuberbuhler K, Scheuermann J, Neri D. Site-specific traceless coupling of potent cytotoxic drugs to recombinant antibodies for pharmacodelivery. J Am Chem Soc. 2012;134:5887–92. doi:10.1021/ja211589m.CrossRefPubMed Casi G, Huguenin-Dezot N, Zuberbuhler K, Scheuermann J, Neri D. Site-specific traceless coupling of potent cytotoxic drugs to recombinant antibodies for pharmacodelivery. J Am Chem Soc. 2012;134:5887–92. doi:10.​1021/​ja211589m.CrossRefPubMed
33.
go back to reference Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014;25:351–61. doi:10.1021/bc400490z.CrossRefPubMed Zimmerman ES, Heibeck TH, Gill A, Li X, Murray CJ, Madlansacay MR, et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem. 2014;25:351–61. doi:10.​1021/​bc400490z.CrossRefPubMed
35.
go back to reference Ramakrishnan B, Qasba PK. Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem. 2002;277:20833–9. doi:10.1074/jbc.M111183200.CrossRefPubMed Ramakrishnan B, Qasba PK. Structure-based design of beta 1,4-galactosyltransferase I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity: point mutation broadens beta 4Gal-T1 donor specificity. J Biol Chem. 2002;277:20833–9. doi:10.​1074/​jbc.​M111183200.CrossRefPubMed
36.
go back to reference Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, et al. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem. 2009;20:1228–36. doi:10.1021/bc900103p.CrossRefPubMedPubMedCentral Boeggeman E, Ramakrishnan B, Pasek M, Manzoni M, Puri A, Loomis KH, et al. Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem. 2009;20:1228–36. doi:10.​1021/​bc900103p.CrossRefPubMedPubMedCentral
37.
38.
go back to reference Van DFL. Van Gr. Google Patents: WIJDEVEN MA; 2014. Van DFL. Van Gr. Google Patents: WIJDEVEN MA; 2014.
39.
42.
go back to reference Jeger S, Zimmermann K, Blanc A, Grunberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl. 2010;49:9995–7. doi:10.1002/anie.201004243.CrossRefPubMed Jeger S, Zimmermann K, Blanc A, Grunberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl. 2010;49:9995–7. doi:10.​1002/​anie.​201004243.CrossRefPubMed
43.
go back to reference Dennler P, Chiotellis A, Fischer E, Bregeon D, Belmant C, Gauthier L, et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem. 2014;25:569–78. doi:10.1021/bc400574z.CrossRefPubMed Dennler P, Chiotellis A, Fischer E, Bregeon D, Belmant C, Gauthier L, et al. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem. 2014;25:569–78. doi:10.​1021/​bc400574z.CrossRefPubMed
45.
go back to reference Farias SE, Strop P, Delaria K, Galindo Casas M, Dorywalska M, Shelton DL, et al. Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem. 2014;25:240–50. doi:10.1021/bc4003794.CrossRefPubMed Farias SE, Strop P, Delaria K, Galindo Casas M, Dorywalska M, Shelton DL, et al. Mass spectrometric characterization of transglutaminase based site-specific antibody-drug conjugates. Bioconjug Chem. 2014;25:240–50. doi:10.​1021/​bc4003794.CrossRefPubMed
46.
go back to reference Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, et al. Locked by design: A conformationally constrained transglutaminase tag enables efficient site-specific conjugation. Angew Chem Int Ed Engl. 2015;54:13420–4. doi:10.1002/anie.201504851.CrossRefPubMed Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, et al. Locked by design: A conformationally constrained transglutaminase tag enables efficient site-specific conjugation. Angew Chem Int Ed Engl. 2015;54:13420–4. doi:10.​1002/​anie.​201504851.CrossRefPubMed
49.
go back to reference Mohlmann S, Mahlert C, Greven S, Scholz P, Harrenga A. In vitro sortagging of an antibody fab fragment: overcoming unproductive reactions of sortase with water and lysine side chains. Chembiochem. 2011;12:1774–80. doi:10.1002/cbic.201100002.CrossRefPubMed Mohlmann S, Mahlert C, Greven S, Scholz P, Harrenga A. In vitro sortagging of an antibody fab fragment: overcoming unproductive reactions of sortase with water and lysine side chains. Chembiochem. 2011;12:1774–80. doi:10.​1002/​cbic.​201100002.CrossRefPubMed
53.
go back to reference Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, et al. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell. 2005;121:541–52. doi:10.1016/j.cell.2005.03.001.CrossRefPubMed Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, et al. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell. 2005;121:541–52. doi:10.​1016/​j.​cell.​2005.​03.​001.CrossRefPubMed
56.
go back to reference Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, et al. Hydrazino-pictet-spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem. 2013;24:846–51. doi:10.1021/bc400042a.CrossRefPubMed Agarwal P, Kudirka R, Albers AE, Barfield RM, de Hart GW, Drake PM, et al. Hydrazino-pictet-spengler ligation as a biocompatible method for the generation of stable protein conjugates. Bioconjug Chem. 2013;24:846–51. doi:10.​1021/​bc400042a.CrossRefPubMed
57.
go back to reference Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem. 2014;25:1331–41. doi:10.1021/bc500189z.CrossRefPubMedPubMedCentral Drake PM, Albers AE, Baker J, Banas S, Barfield RM, Bhat AS, et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjug Chem. 2014;25:1331–41. doi:10.​1021/​bc500189z.CrossRefPubMedPubMedCentral
59.
go back to reference Schumacher D, Helma J, Mann FA, Pichler G, Natale F, Krause E, et al. Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed Engl. 2015;54:13787–91. doi:10.1002/anie.201505456.CrossRefPubMed Schumacher D, Helma J, Mann FA, Pichler G, Natale F, Krause E, et al. Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed Engl. 2015;54:13787–91. doi:10.​1002/​anie.​201505456.CrossRefPubMed
Metadata
Title
Current Status: Site-Specific Antibody Drug Conjugates
Authors
Dominik Schumacher
Christian P. R. Hackenberger
Heinrich Leonhardt
Jonas Helma
Publication date
01-05-2016
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue Special Issue 1/2016
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-016-0265-6

Other articles of this Special Issue 1/2016

Journal of Clinical Immunology 1/2016 Go to the issue