Skip to main content
Top
Published in: Journal of Clinical Immunology 4/2013

01-05-2013 | Original Research

Pleural Mesothelial Cells Promote Expansion of IL-17–Producing CD8+ T Cells in Tuberculous Pleural Effusion

Authors: X. Li, Q. Zhou, W. B. Yang, X. Z. Xiong, R. H. Du, J. C. Zhang

Published in: Journal of Clinical Immunology | Issue 4/2013

Login to get access

Abstract

IL-17–producing CD8+ T lymphocytes (Tc17 cells) have recently been detected in many cancers and autoimmune diseases. However, the possible implication of Tc17 cells in tuberculous pleural effusion remains unclarified. In this study, distribution and phenotypic features of Tc17 cells in both tuberculous pleural effusion (TPE) and peripheral blood from patients with tuberculosis were determined. The effects of proinflammatory cytokines and local accessory cells (pleural mesothelial cells) on Tc17 cell expansion were also explored. We found that TPE contained more Tc17 cells than the blood. Compared with IFN-γ–producing CD8+ T cells, Tc17 cells displayed higher expression of chemokine receptors (CCRs) and lower expression of cytotoxic molecules. In particularly, Tc17 cells in TPE exhibited high expression levels of CCR6, which could migrate in response to CCL20. Furthermore, IL-1β, IL-6, IL-23, or their various combinations could promote Tc17 cell expansion from CD8+ T cells, whereas the proliferative response of Tc17 cells to above cytokines was lower than that of Th17 cells. Pleural mesothelial cells (PMCs) were able to stimulate Tc17 cell expansion via cell contact in an IL-1β/IL-6/IL-23 independent fashion. Thus this study demonstrates that Tc17 cells marks a subset of non-cytotoxic, CCR6+ CD8+ T lymphocytes with low proliferative capacity. The overrepresentation of Tc17 cells in TPE may be due to Tc17 cell expansion stimulated by pleural proinflammatory cytokines and to recruitment of Tc17 cells from peripheral blood. Additionally, PMCs may promote the production of IL-17 by CD8+ T cells at sites of TPE via cell–cell interactions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matsuzaki G, Umemura M. [Interleukin network in pulmonary tuberculosis]. Nihon rinsho Japanese journal of clinical medicine. 2011;69(8):1368–72.PubMed Matsuzaki G, Umemura M. [Interleukin network in pulmonary tuberculosis]. Nihon rinsho Japanese journal of clinical medicine. 2011;69(8):1368–72.PubMed
2.
go back to reference Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev. 2008;226:191–204.PubMedCrossRef Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev. 2008;226:191–204.PubMedCrossRef
3.
4.
go back to reference Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. Early T-cell responses in tuberculosis immunity. Immunol Rev. 2008;225:284–99.PubMedCrossRef Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. Early T-cell responses in tuberculosis immunity. Immunol Rev. 2008;225:284–99.PubMedCrossRef
5.
go back to reference Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol. 2001;1(1):20–30.PubMedCrossRef Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol. 2001;1(1):20–30.PubMedCrossRef
6.
go back to reference Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol. 2000;165(1):353–63.PubMed Serbina NV, Liu CC, Scanga CA, Flynn JL. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J Immunol. 2000;165(1):353–63.PubMed
7.
go back to reference Serbina NV, Flynn JL. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun. 1999;67(8):3980–8.PubMed Serbina NV, Flynn JL. Early emergence of CD8(+) T cells primed for production of type 1 cytokines in the lungs of Mycobacterium tuberculosis-infected mice. Infect Immun. 1999;67(8):3980–8.PubMed
8.
go back to reference Tascon RE, Stavropoulos E, Lukacs KV, Colston MJ. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun. 1998;66(2):830–4.PubMed Tascon RE, Stavropoulos E, Lukacs KV, Colston MJ. Protection against Mycobacterium tuberculosis infection by CD8+ T cells requires the production of gamma interferon. Infect Immun. 1998;66(2):830–4.PubMed
9.
go back to reference Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282(5386):121–5.PubMedCrossRef Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282(5386):121–5.PubMedCrossRef
10.
go back to reference Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997;276(5319):1684–7.PubMedCrossRef Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, et al. Differential effects of cytolytic T cell subsets on intracellular infection. Science. 1997;276(5319):1684–7.PubMedCrossRef
11.
go back to reference Wilkinson KA, Wilkinson RJ, Pathan A, Ewer K, Prakash M, Klenerman P, et al. Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005;40(1):184-7. Wilkinson KA, Wilkinson RJ, Pathan A, Ewer K, Prakash M, Klenerman P, et al. Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005;40(1):184-7.
12.
go back to reference Chen SP. WU YB, Wu C, Expression and clinical significance of CD8+CD25+FOXP3+T regulatory lymphocyte in malignant pleural effusion. Journal of Chinese Medical Oncology. 2000;2(4):296–300. Chen SP. WU YB, Wu C, Expression and clinical significance of CD8+CD25+FOXP3+T regulatory lymphocyte in malignant pleural effusion. Journal of Chinese Medical Oncology. 2000;2(4):296–300.
14.
go back to reference Blanco FC, Bianco MV, Meikle V, Garbaccio S, Vagnoni L, Forrellad M, et al. Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis (Edinb). 2011;91(1):57–63.CrossRef Blanco FC, Bianco MV, Meikle V, Garbaccio S, Vagnoni L, Forrellad M, et al. Increased IL-17 expression is associated with pathology in a bovine model of tuberculosis. Tuberculosis (Edinb). 2011;91(1):57–63.CrossRef
15.
go back to reference Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine & growth factor reviews. 2010;21(6):455–62.CrossRef Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine & growth factor reviews. 2010;21(6):455–62.CrossRef
16.
go back to reference Ye ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clinical and vaccine immunology: CVI. 2011;18(10):1608–15.PubMedCrossRef Ye ZJ, Zhou Q, Du RH, Li X, Huang B, Shi HZ. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clinical and vaccine immunology: CVI. 2011;18(10):1608–15.PubMedCrossRef
17.
go back to reference Chen X, Zhang M, Liao M, Graner MW, Wu C, Yang Q, et al. Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T Cells. Am J Respir Crit Care Med. 2010;181(7):734–42.PubMedCrossRef Chen X, Zhang M, Liao M, Graner MW, Wu C, Yang Q, et al. Reduced Th17 response in patients with tuberculosis correlates with IL-6R expression on CD4+ T Cells. Am J Respir Crit Care Med. 2010;181(7):734–42.PubMedCrossRef
18.
go back to reference Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, et al. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol. 2010;185(3):1544–9.PubMedCrossRef Kuang DM, Peng C, Zhao Q, Wu Y, Zhu LY, Wang J, et al. Tumor-activated monocytes promote expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol. 2010;185(3):1544–9.PubMedCrossRef
19.
go back to reference Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183(11):7161–8.PubMedCrossRef Yen HR, Harris TJ, Wada S, Grosso JF, Getnet D, Goldberg MV, et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183(11):7161–8.PubMedCrossRef
20.
go back to reference Garcia-Hernandez Mde L, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW. Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol. 2010;184(8):4215–27.PubMedCrossRef Garcia-Hernandez Mde L, Hamada H, Reome JB, Misra SK, Tighe MP, Dutton RW. Adoptive transfer of tumor-specific Tc17 effector T cells controls the growth of B16 melanoma in mice. J Immunol. 2010;184(8):4215–27.PubMedCrossRef
21.
go back to reference Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, McKinstry KK, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182(6):3469-81. Hamada H, Garcia-Hernandez Mde L, Reome JB, Misra SK, Strutt TM, McKinstry KK, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182(6):3469-81.
22.
go back to reference Ye ZJ, Zhou Q, Yuan ML, Du RH, Yang WB, Xiong XZ, et al. Differentiation and Recruitment of IL-22-Producing Helper T Cells Stimulated by Pleural Mesothelial Cells in Tuberculous Pleurisy. Am J Respir Crit Care Med. 2012;185(6):660–9.PubMedCrossRef Ye ZJ, Zhou Q, Yuan ML, Du RH, Yang WB, Xiong XZ, et al. Differentiation and Recruitment of IL-22-Producing Helper T Cells Stimulated by Pleural Mesothelial Cells in Tuberculous Pleurisy. Am J Respir Crit Care Med. 2012;185(6):660–9.PubMedCrossRef
23.
go back to reference Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration; international review of thoracic diseases. 2008;75(2):121–33.PubMedCrossRef Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration; international review of thoracic diseases. 2008;75(2):121–33.PubMedCrossRef
24.
go back to reference Hua CC, Chang LC, Chen YC, Chang SC. Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest. 1999;116(5):1292–6.PubMedCrossRef Hua CC, Chang LC, Chen YC, Chang SC. Proinflammatory cytokines and fibrinolytic enzymes in tuberculous and malignant pleural effusions. Chest. 1999;116(5):1292–6.PubMedCrossRef
25.
go back to reference Hoheisel G, Izbicki G, Roth M, Chan CH, Leung JC, Reichenberger F, et al. Compartmentalization of pro-inflammatory cytokines in tuberculous pleurisy. Respiratory medicine. 1998;92(1):14–7.PubMedCrossRef Hoheisel G, Izbicki G, Roth M, Chan CH, Leung JC, Reichenberger F, et al. Compartmentalization of pro-inflammatory cytokines in tuberculous pleurisy. Respiratory medicine. 1998;92(1):14–7.PubMedCrossRef
26.
go back to reference Maeda J, Ueki N, Ohkawa T, Iwahashi N, Nakano T, Hada T, et al. Local production and localization of transforming growth factor-beta in tuberculous pleurisy. Clin Exp Immunol. 1993;92(1):32–8.PubMedCrossRef Maeda J, Ueki N, Ohkawa T, Iwahashi N, Nakano T, Hada T, et al. Local production and localization of transforming growth factor-beta in tuberculous pleurisy. Clin Exp Immunol. 1993;92(1):32–8.PubMedCrossRef
27.
go back to reference Tajima M, Wakita D, Satoh T, Kitamura H, Nishimura T. IL-17/IFN-gamma double producing CD8+ T (Tc17/IFN-gamma) cells: a novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int Immunol. 2011;23(12):751–9. Epub 2011/11/01.PubMedCrossRef Tajima M, Wakita D, Satoh T, Kitamura H, Nishimura T. IL-17/IFN-gamma double producing CD8+ T (Tc17/IFN-gamma) cells: a novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int Immunol. 2011;23(12):751–9. Epub 2011/11/01.PubMedCrossRef
28.
go back to reference Kondo T, Takata H, Takiguchi M. Functional expression of chemokine receptor CCR6 on human effector memory CD8+ T cells. Eur J Immunol. 2007;37(1):54–65.PubMedCrossRef Kondo T, Takata H, Takiguchi M. Functional expression of chemokine receptor CCR6 on human effector memory CD8+ T cells. Eur J Immunol. 2007;37(1):54–65.PubMedCrossRef
29.
go back to reference Lazarevic V, Nolt D, Flynn JL. Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J Immunol. 2005;175(2):1107–17.PubMed Lazarevic V, Nolt D, Flynn JL. Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses. J Immunol. 2005;175(2):1107–17.PubMed
30.
go back to reference Smith SM, Klein MR, Malin AS, Sillah J, Huygen K, Andersen P, et al. Human CD8(+) T cells specific for Mycobacterium tuberculosis secreted antigens in tuberculosis patients and healthy BCG-vaccinated controls in The Gambia. Infect Immun. 2000;68(12):7144–8.PubMedCrossRef Smith SM, Klein MR, Malin AS, Sillah J, Huygen K, Andersen P, et al. Human CD8(+) T cells specific for Mycobacterium tuberculosis secreted antigens in tuberculosis patients and healthy BCG-vaccinated controls in The Gambia. Infect Immun. 2000;68(12):7144–8.PubMedCrossRef
31.
go back to reference Andersson J, Samarina A, Fink J, Rahman S, Grundstrom S. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect Immun. 2007;75(11):5210–22.PubMedCrossRef Andersson J, Samarina A, Fink J, Rahman S, Grundstrom S. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect Immun. 2007;75(11):5210–22.PubMedCrossRef
32.
go back to reference Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177(7):4662–9.PubMed Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol. 2006;177(7):4662–9.PubMed
33.
go back to reference Vanden Eijnden S, Goriely S, De Wit D, Willems F, Goldman M. IL-23 up-regulates IL-10 and induces IL-17 synthesis by polyclonally activated naive T cells in human. Eur J Immunol. 2005;35(2):469–75.CrossRef Vanden Eijnden S, Goriely S, De Wit D, Willems F, Goldman M. IL-23 up-regulates IL-10 and induces IL-17 synthesis by polyclonally activated naive T cells in human. Eur J Immunol. 2005;35(2):469–75.CrossRef
34.
go back to reference Khader SA, Gopal R. IL-17 in protective immunity to intracellular pathogens. Virulence. 2010;1(5):423–7.PubMedCrossRef Khader SA, Gopal R. IL-17 in protective immunity to intracellular pathogens. Virulence. 2010;1(5):423–7.PubMedCrossRef
35.
go back to reference Shin HC, Benbernou N, Fekkar H, Esnault S, Guenounou M. Regulation of IL-17, IFN-gamma and IL-10 in human CD8(+) T cells by cyclic AMP-dependent signal transduction pathway. Cytokine. 1998;10(11):841–50.PubMedCrossRef Shin HC, Benbernou N, Fekkar H, Esnault S, Guenounou M. Regulation of IL-17, IFN-gamma and IL-10 in human CD8(+) T cells by cyclic AMP-dependent signal transduction pathway. Cytokine. 1998;10(11):841–50.PubMedCrossRef
36.
go back to reference Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Investig Ophthalmol Vis Sci. 2008;49(7):3058–64.CrossRef Chi W, Zhu X, Yang P, Liu X, Lin X, Zhou H, et al. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Investig Ophthalmol Vis Sci. 2008;49(7):3058–64.CrossRef
37.
go back to reference Liu H, Rohowsky-Kochan C. Regulation of IL-17 in human CCR6+ effector memory T cells. J Immunol. 2008;180(12):7948–57.PubMed Liu H, Rohowsky-Kochan C. Regulation of IL-17 in human CCR6+ effector memory T cells. J Immunol. 2008;180(12):7948–57.PubMed
38.
go back to reference Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393(6684):478–80. Epub 1998/06/12.PubMedCrossRef Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393(6684):478–80. Epub 1998/06/12.PubMedCrossRef
39.
go back to reference Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480–3. Epub 1998/06/12.PubMedCrossRef Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480–3. Epub 1998/06/12.PubMedCrossRef
40.
go back to reference Ethuin F, Gerard B, Benna JE, Boutten A, Gougereot-Pocidalo MA, Jacob L, et al. Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Laboratory investigation. a journal of technical methods and pathology. 2004;84(10):1363–71. Epub 2004/06/29. Ethuin F, Gerard B, Benna JE, Boutten A, Gougereot-Pocidalo MA, Jacob L, et al. Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Laboratory investigation. a journal of technical methods and pathology. 2004;84(10):1363–71. Epub 2004/06/29.
41.
go back to reference Linhares UC, Schiavoni PB, Barros PO, Kasahara TM, Teixeira B, Ferreira TB, et al. The Ex Vivo Production of IL-6 and IL-21 by CD4(+) T Cells is Directly Associated with Neurological Disability in Neuromyelitis Optica Patients. Journal of clinical immunology. 2012. Epub 2012/09/06 Linhares UC, Schiavoni PB, Barros PO, Kasahara TM, Teixeira B, Ferreira TB, et al. The Ex Vivo Production of IL-6 and IL-21 by CD4(+) T Cells is Directly Associated with Neurological Disability in Neuromyelitis Optica Patients. Journal of clinical immunology. 2012. Epub 2012/09/06
42.
go back to reference Jones GW, McLoughlin RM, Hammond VJ, Parker CR, Williams JD, Malhotra R, et al. Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 trans signaling in the local maintenance of Th17 cells. J Immunol. 2010;184(4):2130–9.PubMedCrossRef Jones GW, McLoughlin RM, Hammond VJ, Parker CR, Williams JD, Malhotra R, et al. Loss of CD4+ T cell IL-6R expression during inflammation underlines a role for IL-6 trans signaling in the local maintenance of Th17 cells. J Immunol. 2010;184(4):2130–9.PubMedCrossRef
43.
go back to reference Zola H, Flego L. Expression of interleukin-6 receptor on blood lymphocytes without in vitro activation. Immunology. 1992;76(2):338–40.PubMed Zola H, Flego L. Expression of interleukin-6 receptor on blood lymphocytes without in vitro activation. Immunology. 1992;76(2):338–40.PubMed
44.
go back to reference McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev. 1998;165:231–47.PubMedCrossRef McAdam AJ, Schweitzer AN, Sharpe AH. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev. 1998;165:231–47.PubMedCrossRef
45.
go back to reference Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity. 2008;28(2):258–70.PubMedCrossRef Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity. 2008;28(2):258–70.PubMedCrossRef
46.
go back to reference Antony VB, Hott JW, Kunkel SL, Godbey SW, Burdick MD, Strieter RM. Pleural mesothelial cell expression of C-C (monocyte chemotactic peptide) and C-X-C (interleukin 8) chemokines. American journal of respiratory cell and molecular biology. 1995;12(6):581–8. Epub 1995/06/01.PubMedCrossRef Antony VB, Hott JW, Kunkel SL, Godbey SW, Burdick MD, Strieter RM. Pleural mesothelial cell expression of C-C (monocyte chemotactic peptide) and C-X-C (interleukin 8) chemokines. American journal of respiratory cell and molecular biology. 1995;12(6):581–8. Epub 1995/06/01.PubMedCrossRef
47.
go back to reference Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Investig. 1998;102(6):1112–24. Epub 1998/09/17.PubMedCrossRef Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, et al. CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Investig. 1998;102(6):1112–24. Epub 1998/09/17.PubMedCrossRef
Metadata
Title
Pleural Mesothelial Cells Promote Expansion of IL-17–Producing CD8+ T Cells in Tuberculous Pleural Effusion
Authors
X. Li
Q. Zhou
W. B. Yang
X. Z. Xiong
R. H. Du
J. C. Zhang
Publication date
01-05-2013
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 4/2013
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-012-9860-3

Other articles of this Issue 4/2013

Journal of Clinical Immunology 4/2013 Go to the issue