Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 1/2014

01-01-2014 | REVIEWS

The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias

Author: T. Alexander Quinn

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 1/2014

Login to get access

Abstract

Cardiac mechanical and electrical activities are tightly linked through an intra-cardiac regulatory loop (mechano-electric coupling). This connection is essential for normal heart function and auto-regulation. In diseases associated with altered myocardial mechanical properties or function, however, feedback from the mechanical environment to the origin and spread of excitation can result in deadly cardiac arrhythmias. Ventricular tachyarrhythmias, especially, are encountered in cardiac diseases associated with volume and pressure overload or changes in tissue mechanics. Little is known about the influence of changes in mechano-electric coupling on cardiac rhythm in these settings or the potential therapeutic benefit of its manipulation. Improved understanding may be central to explaining the origin of arrhythmias that occur with these pathologies and to the development of novel mechanics-based therapies. The present review explores the potential role of mechano-electric coupling in ventricular arrhythmogenesis, with a focus on the importance of non-uniformity in mechanical function for the induction and sustenance of ventricular tachyarrhythmias.
Literature
1.
go back to reference Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198–205.PubMed Bers, D. M. (2002). Cardiac excitation–contraction coupling. Nature, 415(6868), 198–205.PubMed
2.
go back to reference Kohl, P., Hunter, P., & Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 71(1), 91–138.PubMed Kohl, P., Hunter, P., & Noble, D. (1999). Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Progress in Biophysics and Molecular Biology, 71(1), 91–138.PubMed
3.
go back to reference Kohl, P., Sachs, F., & Franz, M. R. (2011). Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press. Kohl, P., Sachs, F., & Franz, M. R. (2011). Cardiac mechano-electric coupling and arrhythmias. Oxford: Oxford University Press.
4.
go back to reference Taggart, P., & Sutton, P. M. (1999). Cardiac mechano-electric feedback in man: Clinical relevance. Progress in Biophysics and Molecular Biology, 71(1), 139–154.PubMed Taggart, P., & Sutton, P. M. (1999). Cardiac mechano-electric feedback in man: Clinical relevance. Progress in Biophysics and Molecular Biology, 71(1), 139–154.PubMed
5.
go back to reference Lab, M. J. (1982). Contraction–excitation feedback in myocardium. Physiological basis and clinical relevance. Circulation Research, 50(6), 757–766.PubMed Lab, M. J. (1982). Contraction–excitation feedback in myocardium. Physiological basis and clinical relevance. Circulation Research, 50(6), 757–766.PubMed
6.
go back to reference Barsheshet, A., Wang, P. J., Moss, A. J., Solomon, S. D., Al-Ahmad, A., McNitt, S., et al. (2011). Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Journal of the American College of Cardiology, 57(24), 2416–2423.PubMed Barsheshet, A., Wang, P. J., Moss, A. J., Solomon, S. D., Al-Ahmad, A., McNitt, S., et al. (2011). Reverse remodeling and the risk of ventricular tachyarrhythmias in the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Journal of the American College of Cardiology, 57(24), 2416–2423.PubMed
7.
go back to reference Drakos, S. G., Terrovitis, J. V., Nanas, J. N., Charitos, E. I., Ntalianis, A. S., Malliaras, K. G., et al. (2011). Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. The Annals of Thoracic Surgery, 91(3), 764–769.PubMed Drakos, S. G., Terrovitis, J. V., Nanas, J. N., Charitos, E. I., Ntalianis, A. S., Malliaras, K. G., et al. (2011). Reverse electrophysiologic remodeling after cardiac mechanical unloading for end-stage nonischemic cardiomyopathy. The Annals of Thoracic Surgery, 91(3), 764–769.PubMed
8.
go back to reference Waxman, M. B., Wald, R. W., Finley, J. P., Bonet, J. F., Downar, E., & Sharma, A. D. (1980). Valsalva termination of ventricular tachycardia. Circulation, 62(4), 843–851.PubMed Waxman, M. B., Wald, R. W., Finley, J. P., Bonet, J. F., Downar, E., & Sharma, A. D. (1980). Valsalva termination of ventricular tachycardia. Circulation, 62(4), 843–851.PubMed
9.
go back to reference Ambrosi, P., Habib, G., Kreitmann, B., Faugere, G., & Metras, D. (1995). Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet, 346(8976), 713.PubMed Ambrosi, P., Habib, G., Kreitmann, B., Faugere, G., & Metras, D. (1995). Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet, 346(8976), 713.PubMed
10.
go back to reference Wei, J. Y., Greene, H. L., & Weisfeldt, M. L. (1980). Cough-facilitated conversion of ventricular tachycardia. American Journal of Cardiology, 45(1), 174–176.PubMed Wei, J. Y., Greene, H. L., & Weisfeldt, M. L. (1980). Cough-facilitated conversion of ventricular tachycardia. American Journal of Cardiology, 45(1), 174–176.PubMed
11.
go back to reference Lee, Y. C., & Sutton, F. J. (1982). Valsalva termination of ventricular tachycardia. Circulation, 65(6), 1287–1288.PubMed Lee, Y. C., & Sutton, F. J. (1982). Valsalva termination of ventricular tachycardia. Circulation, 65(6), 1287–1288.PubMed
12.
go back to reference Taggart, P., Sutton, P., John, R., Lab, M., & Swanton, H. (1992). Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. British Heart Journal, 67(3), 221–229.PubMedCentralPubMed Taggart, P., Sutton, P., John, R., Lab, M., & Swanton, H. (1992). Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. British Heart Journal, 67(3), 221–229.PubMedCentralPubMed
13.
go back to reference Franz, M. R. (1996). Mechano-electrical feedback in ventricular myocardium. Cardiovascular Research, 32(1), 15–24.PubMed Franz, M. R. (1996). Mechano-electrical feedback in ventricular myocardium. Cardiovascular Research, 32(1), 15–24.PubMed
14.
go back to reference Franz, M. R., Burkhoff, D., Yue, D. T., & Sagawa, K. (1989). Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovascular Research, 23(3), 213–223.PubMed Franz, M. R., Burkhoff, D., Yue, D. T., & Sagawa, K. (1989). Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovascular Research, 23(3), 213–223.PubMed
15.
go back to reference Franz, M. R., Cima, R., Wang, D., Profitt, D., & Kurz, R. (1992). Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation, 86(3), 968–978.PubMed Franz, M. R., Cima, R., Wang, D., Profitt, D., & Kurz, R. (1992). Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation, 86(3), 968–978.PubMed
16.
go back to reference Hansen, D. E., Craig, C. S., & Hondeghem, L. M. (1990). Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation, 81(3), 1094–1105.PubMed Hansen, D. E., Craig, C. S., & Hondeghem, L. M. (1990). Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation, 81(3), 1094–1105.PubMed
17.
go back to reference Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., & Hansen, D. E. (1992). Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. The American Journal of Physiology, 263(2 Pt 2), H613–H621.PubMed Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., & Hansen, D. E. (1992). Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. The American Journal of Physiology, 263(2 Pt 2), H613–H621.PubMed
18.
go back to reference Bode, F., Franz, M., Wilke, I., Bonnemeier, H., Schunkert, H., & Wiegand, U. (2006). Ventricular fibrillation induced by stretch pulse: Implications for sudden death due to Commotio cordis. Journal of Cardiovascular Electrophysiology, 17(9), 1011–1017.PubMed Bode, F., Franz, M., Wilke, I., Bonnemeier, H., Schunkert, H., & Wiegand, U. (2006). Ventricular fibrillation induced by stretch pulse: Implications for sudden death due to Commotio cordis. Journal of Cardiovascular Electrophysiology, 17(9), 1011–1017.PubMed
19.
go back to reference Seo, K., Inagaki, M., Nishimura, S., Hidaka, I., Sugimachi, M., Hisada, T., et al. (2010). Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circulation Research, 106(1), 176–184.PubMed Seo, K., Inagaki, M., Nishimura, S., Hidaka, I., Sugimachi, M., Hisada, T., et al. (2010). Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circulation Research, 106(1), 176–184.PubMed
20.
go back to reference Chen, R. L., Penny, D. J., Greve, G., & Lab, M. J. (2004). Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventricle of anesthetized lambs. American Journal of Physiology. Heart and Circulatory Physiology, 286(3), H1008–H1014.PubMed Chen, R. L., Penny, D. J., Greve, G., & Lab, M. J. (2004). Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventricle of anesthetized lambs. American Journal of Physiology. Heart and Circulatory Physiology, 286(3), H1008–H1014.PubMed
21.
go back to reference Greve, G., Lab, M. J., Chen, R., Barron, D., White, P. A., Redington, A. N., et al. (2001). Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: Evidence for arrhythmogenic right ventricular mechanoelectrical feedback. Experimental Physiology, 86(5), 651–657.PubMed Greve, G., Lab, M. J., Chen, R., Barron, D., White, P. A., Redington, A. N., et al. (2001). Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: Evidence for arrhythmogenic right ventricular mechanoelectrical feedback. Experimental Physiology, 86(5), 651–657.PubMed
22.
go back to reference Reiter, M. J., Synhorst, D. P., & Mann, D. E. (1988). Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circulation Research, 62(3), 554–562.PubMed Reiter, M. J., Synhorst, D. P., & Mann, D. E. (1988). Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circulation Research, 62(3), 554–562.PubMed
23.
go back to reference Rosen, S., Lahorra, M., Cohen, M. V., & Buttrick, P. (1991). Ventricular fibrillation threshold is influenced by left ventricular stretch and mass in the absence of ischaemia. Cardiovascular Research, 25(6), 458–462.PubMed Rosen, S., Lahorra, M., Cohen, M. V., & Buttrick, P. (1991). Ventricular fibrillation threshold is influenced by left ventricular stretch and mass in the absence of ischaemia. Cardiovascular Research, 25(6), 458–462.PubMed
24.
go back to reference Jalal, S., Williams, G. R., Mann, D. E., & Reiter, M. J. (1992). Effect of acute ventricular dilatation on fibrillation thresholds in the isolated rabbit heart. The American Journal of Physiology, 263(4 Pt 2), H1306–H1310.PubMed Jalal, S., Williams, G. R., Mann, D. E., & Reiter, M. J. (1992). Effect of acute ventricular dilatation on fibrillation thresholds in the isolated rabbit heart. The American Journal of Physiology, 263(4 Pt 2), H1306–H1310.PubMed
25.
go back to reference Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H., & Kan, J. S. (1988). Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: Evidence for contraction–excitation feedback in humans. Circulation, 77(1), 70–77.PubMed Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H., & Kan, J. S. (1988). Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: Evidence for contraction–excitation feedback in humans. Circulation, 77(1), 70–77.PubMed
26.
go back to reference Reiter, M. J., Stromberg, K. D., Whitman, T. A., Adamson, P. B., Benditt, D. G., & Gold, M. R. (2013). Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: Insights from the REDUCEhf trial. Circulation. Arrhythmia and Electrophysiology, 6(2), 272–278.PubMed Reiter, M. J., Stromberg, K. D., Whitman, T. A., Adamson, P. B., Benditt, D. G., & Gold, M. R. (2013). Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure: Insights from the REDUCEhf trial. Circulation. Arrhythmia and Electrophysiology, 6(2), 272–278.PubMed
27.
go back to reference Kusminsky, R. E. (2007). Complications of central venous catheterization. Journal of the American College of Surgeons, 204(4), 681–696.PubMed Kusminsky, R. E. (2007). Complications of central venous catheterization. Journal of the American College of Surgeons, 204(4), 681–696.PubMed
28.
go back to reference Fiaccadori, E., Gonzi, G., Zambrelli, P., & Tortorella, G. (1996). Cardiac arrhythmias during central venous catheter procedures in acute renal failure: A prospective study. Journal of the American Society of Nephrology, 7(7), 1079–1084.PubMed Fiaccadori, E., Gonzi, G., Zambrelli, P., & Tortorella, G. (1996). Cardiac arrhythmias during central venous catheter procedures in acute renal failure: A prospective study. Journal of the American Society of Nephrology, 7(7), 1079–1084.PubMed
29.
go back to reference Bohm, A., Pinter, A., & Preda, I. (2002). Ventricular tachycardia induced by a pacemaker lead. Acta Cardiologica, 57(1), 23–24.PubMed Bohm, A., Pinter, A., & Preda, I. (2002). Ventricular tachycardia induced by a pacemaker lead. Acta Cardiologica, 57(1), 23–24.PubMed
30.
go back to reference Lee, J. C., Epstein, L. M., Huffer, L. L., Stevenson, W. G., Koplan, B. A., & Tedrow, U. B. (2009). ICD lead proarrhythmia cured by lead extraction. Heart Rhythm, 6(5), 613–618.PubMed Lee, J. C., Epstein, L. M., Huffer, L. L., Stevenson, W. G., Koplan, B. A., & Tedrow, U. B. (2009). ICD lead proarrhythmia cured by lead extraction. Heart Rhythm, 6(5), 613–618.PubMed
31.
go back to reference Lindsay, A. C., Wong, T., Segal, O., & Peters, N. S. (2006). An unusual twist: Ventricular tachycardia induced by a loop in a right ventricular pacing wire. Quarterly Journal of Medicine, 99(5), 347–348. Lindsay, A. C., Wong, T., Segal, O., & Peters, N. S. (2006). An unusual twist: Ventricular tachycardia induced by a loop in a right ventricular pacing wire. Quarterly Journal of Medicine, 99(5), 347–348.
32.
go back to reference Berdowski, J., Tijssen, J. G., & Koster, R. W. (2010). Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circulation. Arrhythmia and Electrophysiology, 3(1), 72–78.PubMed Berdowski, J., Tijssen, J. G., & Koster, R. W. (2010). Chest compressions cause recurrence of ventricular fibrillation after the first successful conversion by defibrillation in out-of-hospital cardiac arrest. Circulation. Arrhythmia and Electrophysiology, 3(1), 72–78.PubMed
33.
go back to reference Cayla, G., Macia, J. C., & Pasquie, J. L. (2007). Images in cardiovascular medicine. Precordial thump in the catheterization laboratory experimental evidence for Commotio cordis. Circulation, 115(11), e332.PubMed Cayla, G., Macia, J. C., & Pasquie, J. L. (2007). Images in cardiovascular medicine. Precordial thump in the catheterization laboratory experimental evidence for Commotio cordis. Circulation, 115(11), e332.PubMed
34.
go back to reference Zipes, D. P., & Jalife, J. (2009). Cardiac electrophysiology: From cell to bedside. Philadelphia: Saunders. Zipes, D. P., & Jalife, J. (2009). Cardiac electrophysiology: From cell to bedside. Philadelphia: Saunders.
35.
go back to reference Janse, M. J., & Wit, A. L. (1989). Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews, 69(4), 1049–1169.PubMed Janse, M. J., & Wit, A. L. (1989). Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiological Reviews, 69(4), 1049–1169.PubMed
36.
go back to reference Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovascular Research, 32(1), 3–14.PubMed Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovascular Research, 32(1), 3–14.PubMed
37.
go back to reference Reiter, M. J. (1996). Effects of mechano-electrical feedback: Potential arrhythmogenic influence in patients with congestive heart failure. Cardiovascular Research, 32(1), 44–51.PubMed Reiter, M. J. (1996). Effects of mechano-electrical feedback: Potential arrhythmogenic influence in patients with congestive heart failure. Cardiovascular Research, 32(1), 44–51.PubMed
38.
go back to reference Kohl, P., Bollensdorff, C., & Garny, A. (2006). Effects of mechanosensitive ion channels on ventricular electrophysiology: Experimental and theoretical models. Experimental Physiology, 91(2), 307–321.PubMed Kohl, P., Bollensdorff, C., & Garny, A. (2006). Effects of mechanosensitive ion channels on ventricular electrophysiology: Experimental and theoretical models. Experimental Physiology, 91(2), 307–321.PubMed
39.
go back to reference Kohl, P. (2009). Cardiac stretch-activated channels and mechano-electric transduction. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology: From cell to bedside (pp. 115–126). Philadelphia: Saunders. Kohl, P. (2009). Cardiac stretch-activated channels and mechano-electric transduction. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology: From cell to bedside (pp. 115–126). Philadelphia: Saunders.
40.
go back to reference Quinn, T. A., & Kohl, P. (2011). Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In P. Kohl, F. Sachs, & M. R. Franz (Eds.), Cardiac mechano-electric coupling and arrhythmias (pp. 160–167). Oxford: Oxford University Press. Quinn, T. A., & Kohl, P. (2011). Mechanical triggers and facilitators of ventricular tachy-arrhythmias. In P. Kohl, F. Sachs, & M. R. Franz (Eds.), Cardiac mechano-electric coupling and arrhythmias (pp. 160–167). Oxford: Oxford University Press.
41.
go back to reference Craelius, W., Chen, V., & el-Sherif, N. (1988). Stretch activated ion channels in ventricular myocytes. Bioscience Reports, 8(5), 407–414.PubMed Craelius, W., Chen, V., & el-Sherif, N. (1988). Stretch activated ion channels in ventricular myocytes. Bioscience Reports, 8(5), 407–414.PubMed
42.
go back to reference White, E., Boyett, M. R., & Orchard, C. H. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. The Journal of Physiology, 482(Pt 1), 93–107.PubMed White, E., Boyett, M. R., & Orchard, C. H. (1995). The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. The Journal of Physiology, 482(Pt 1), 93–107.PubMed
43.
go back to reference Lab, M. J. (1978). Depolarization produced by mechanical changes in normal and abnormal myocardium. The Journal of Physiology, 284(Suppl), 143P–144P.PubMed Lab, M. J. (1978). Depolarization produced by mechanical changes in normal and abnormal myocardium. The Journal of Physiology, 284(Suppl), 143P–144P.PubMed
44.
go back to reference White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., & Garnier, D. (1993). The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiology, 78(1), 65–78.PubMed White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., & Garnier, D. (1993). The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Experimental Physiology, 78(1), 65–78.PubMed
45.
go back to reference Zeng, T., Bett, G. C., & Sachs, F. (2000). Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 278(2), H548–H557.PubMed Zeng, T., Bett, G. C., & Sachs, F. (2000). Stretch-activated whole cell currents in adult rat cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology, 278(2), H548–H557.PubMed
46.
go back to reference Kohl, P., Nesbitt, A. D., Cooper, P. J., & Lei, M. (2001). Sudden cardiac death by Commotio cordis: role of mechano-electric feedback. Cardiovascular Research, 50(2), 280–289.PubMed Kohl, P., Nesbitt, A. D., Cooper, P. J., & Lei, M. (2001). Sudden cardiac death by Commotio cordis: role of mechano-electric feedback. Cardiovascular Research, 50(2), 280–289.PubMed
47.
go back to reference Akar, F. G., Laurita, K. R., & Rosenbaum, D. S. (2000). Cellular basis for dispersion of repolarization underlying reentrant arrhythmias. Journal of Electrocardiology, 33(Suppl), 23–31.PubMed Akar, F. G., Laurita, K. R., & Rosenbaum, D. S. (2000). Cellular basis for dispersion of repolarization underlying reentrant arrhythmias. Journal of Electrocardiology, 33(Suppl), 23–31.PubMed
48.
go back to reference Nash, M. P., Bradley, C. P., Sutton, P. M., Clayton, R. H., Kallis, P., Hayward, M. P., et al. (2006). Whole heart action potential duration restitution properties in cardiac patients: A combined clinical and modelling study. Experimental Physiology, 91(2), 339–354.PubMed Nash, M. P., Bradley, C. P., Sutton, P. M., Clayton, R. H., Kallis, P., Hayward, M. P., et al. (2006). Whole heart action potential duration restitution properties in cardiac patients: A combined clinical and modelling study. Experimental Physiology, 91(2), 339–354.PubMed
49.
go back to reference Quinn, T. A., & Kohl, P. (2013). Combining wet and dry research: experience with model development for cardiac mechano-electric structure–function studies. Cardiovascular Research, 97(4), 601–611.PubMed Quinn, T. A., & Kohl, P. (2013). Combining wet and dry research: experience with model development for cardiac mechano-electric structure–function studies. Cardiovascular Research, 97(4), 601–611.PubMed
50.
go back to reference Quinn, T. A., & Kohl, P. (2011). Systems biology of the heart: Hype or hope? Annals of the New York Academy of Sciences, 1245(1), 40–43.PubMed Quinn, T. A., & Kohl, P. (2011). Systems biology of the heart: Hype or hope? Annals of the New York Academy of Sciences, 1245(1), 40–43.PubMed
51.
go back to reference Garny, A., & Kohl, P. (2004). Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences, 1015(1), 133–143.PubMed Garny, A., & Kohl, P. (2004). Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Annals of the New York Academy of Sciences, 1015(1), 133–143.PubMed
52.
go back to reference Li, W., Kohl, P., & Trayanova, N. (2004). Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D. Journal of Molecular Histology, 35(7), 679–686.PubMed Li, W., Kohl, P., & Trayanova, N. (2004). Induction of ventricular arrhythmias following mechanical impact: A simulation study in 3D. Journal of Molecular Histology, 35(7), 679–686.PubMed
53.
go back to reference Quinn, T. A., Jin, H., & Kohl, P. (2011). Mechanically-induced premature ventricular excitation is mediated by cation non-selective stretch-activated channels and depends on the extent of local tissue deformation in isolated rabbit heart. Circulation, 124(21 Suppl), A13098. Quinn, T. A., Jin, H., & Kohl, P. (2011). Mechanically-induced premature ventricular excitation is mediated by cation non-selective stretch-activated channels and depends on the extent of local tissue deformation in isolated rabbit heart. Circulation, 124(21 Suppl), A13098.
54.
go back to reference Quinn, T. A., & Kohl, P. (2012). Critical window for mechanically-induced arrhythmias exists in time and in space. Circulation, 126(21 Suppl), A11162. Quinn, T. A., & Kohl, P. (2012). Critical window for mechanically-induced arrhythmias exists in time and in space. Circulation, 126(21 Suppl), A11162.
55.
go back to reference Calkins, H., Maughan, W. L., Weisman, H. F., Sugiura, S., Sagawa, K., & Levine, J. H. (1989). Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts. Circulation, 79(3), 687–697.PubMed Calkins, H., Maughan, W. L., Weisman, H. F., Sugiura, S., Sagawa, K., & Levine, J. H. (1989). Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts. Circulation, 79(3), 687–697.PubMed
56.
go back to reference Dean, J. W., & Lab, M. J. (1990). Regional changes in ventricular excitability during load manipulation of the in situ pig heart. The Journal of Physiology, 429(1), 387–400.PubMed Dean, J. W., & Lab, M. J. (1990). Regional changes in ventricular excitability during load manipulation of the in situ pig heart. The Journal of Physiology, 429(1), 387–400.PubMed
57.
go back to reference Cheung, Y. F. (2012). The role of 3D wall motion tracking in heart failure. Nature Reviews Cardiology, 9(11), 644–657.PubMed Cheung, Y. F. (2012). The role of 3D wall motion tracking in heart failure. Nature Reviews Cardiology, 9(11), 644–657.PubMed
58.
go back to reference Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Y. L., et al. (2006). Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1843), 1367–1383.PubMed Solovyova, O., Katsnelson, L. B., Konovalov, P., Lookin, O., Moskvin, A. S., Protsenko, Y. L., et al. (2006). Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 364(1843), 1367–1383.PubMed
59.
go back to reference Markhasin, V. S., Solovyova, O., Katsnelson, L. B., Protsenko, Y., Kohl, P., & Noble, D. (2003). Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Progress in Biophysics and Molecular Biology, 82(1–3), 207–220.PubMed Markhasin, V. S., Solovyova, O., Katsnelson, L. B., Protsenko, Y., Kohl, P., & Noble, D. (2003). Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Progress in Biophysics and Molecular Biology, 82(1–3), 207–220.PubMed
60.
go back to reference Coronel, R., Wilms-Schopman, F. J., & deGroot, J. R. (2002). Origin of ischemia-induced phase 1b ventricular arrhythmias in pig hearts. Journal of the American College of Cardiology, 39(1), 166–176.PubMed Coronel, R., Wilms-Schopman, F. J., & deGroot, J. R. (2002). Origin of ischemia-induced phase 1b ventricular arrhythmias in pig hearts. Journal of the American College of Cardiology, 39(1), 166–176.PubMed
61.
go back to reference Van Leuven, S. L., Waldman, L. K., McCulloch, A. D., & Covell, J. W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. The American Journal of Physiology, 267(6 Pt 2), H2348–H2362.PubMed Van Leuven, S. L., Waldman, L. K., McCulloch, A. D., & Covell, J. W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. The American Journal of Physiology, 267(6 Pt 2), H2348–H2362.PubMed
62.
go back to reference Theroux, P., Franklin, D., Ross, J., Jr., & Kemper, W. S. (1974). Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circulation Research, 35(6), 896–908.PubMed Theroux, P., Franklin, D., Ross, J., Jr., & Kemper, W. S. (1974). Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circulation Research, 35(6), 896–908.PubMed
63.
go back to reference Prinzen, F. W., Arts, T., Hoeks, A. P., & Reneman, R. S. (1989). Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflügers Archiv, 415(2), 220–229.PubMed Prinzen, F. W., Arts, T., Hoeks, A. P., & Reneman, R. S. (1989). Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflügers Archiv, 415(2), 220–229.PubMed
64.
go back to reference Gallagher, K. P., Gerren, R. A., Choy, M., Stirling, M. C., & Dysko, R. C. (1987). Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. The American Journal of Physiology, 253(4 Pt 2), H826–H837.PubMed Gallagher, K. P., Gerren, R. A., Choy, M., Stirling, M. C., & Dysko, R. C. (1987). Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. The American Journal of Physiology, 253(4 Pt 2), H826–H837.PubMed
65.
go back to reference Sakai, K., Watanabe, K., & Millard, R. W. (1985). Defining the mechanical border zone: A study in the pig heart. The American Journal of Physiology, 249(1 Pt 2), H88–H94.PubMed Sakai, K., Watanabe, K., & Millard, R. W. (1985). Defining the mechanical border zone: A study in the pig heart. The American Journal of Physiology, 249(1 Pt 2), H88–H94.PubMed
66.
go back to reference Hirche, H., Hoeher, M., & Risse, J. H. (1987). Inotropic changes in ischaemic and non-ischaemic myocardium and arrhythmias within the first 120 minutes of coronary occlusion in pigs. Basic Research in Cardiology, 82(Suppl 2), 301–310.PubMed Hirche, H., Hoeher, M., & Risse, J. H. (1987). Inotropic changes in ischaemic and non-ischaemic myocardium and arrhythmias within the first 120 minutes of coronary occlusion in pigs. Basic Research in Cardiology, 82(Suppl 2), 301–310.PubMed
67.
go back to reference Barrabes, J. A., Garcia-Dorado, D., Padilla, F., Agullo, L., Trobo, L., Carballo, J., et al. (2002). Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Research in Cardiology, 97(6), 445–451.PubMed Barrabes, J. A., Garcia-Dorado, D., Padilla, F., Agullo, L., Trobo, L., Carballo, J., et al. (2002). Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Research in Cardiology, 97(6), 445–451.PubMed
68.
go back to reference Parker, K. K., Lavelle, J. A., Taylor, L. K., Wang, Z., & Hansen, D. E. (2004). Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. Journal of Applied Physiology, 97(1), 377–383.PubMed Parker, K. K., Lavelle, J. A., Taylor, L. K., Wang, Z., & Hansen, D. E. (2004). Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. Journal of Applied Physiology, 97(1), 377–383.PubMed
69.
go back to reference Califf, R. M., Burks, J. M., Behar, V. S., Margolis, J. R., & Wagner, G. S. (1978). Relationships among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation, 57(4), 725–732.PubMed Califf, R. M., Burks, J. M., Behar, V. S., Margolis, J. R., & Wagner, G. S. (1978). Relationships among ventricular arrhythmias, coronary artery disease, and angiographic and electrocardiographic indicators of myocardial fibrosis. Circulation, 57(4), 725–732.PubMed
70.
go back to reference Siogas, K., Pappas, S., Graekas, G., Goudevenos, J., Liapi, G., & Sideris, D. A. (1998). Segmental wall motion abnormalities alter vulnerability to ventricular ectopic beats associated with acute increases in aortic pressure in patients with underlying coronary artery disease. Heart, 79(3), 268–273.PubMed Siogas, K., Pappas, S., Graekas, G., Goudevenos, J., Liapi, G., & Sideris, D. A. (1998). Segmental wall motion abnormalities alter vulnerability to ventricular ectopic beats associated with acute increases in aortic pressure in patients with underlying coronary artery disease. Heart, 79(3), 268–273.PubMed
71.
go back to reference Horner, S. M., Lab, M. J., Murphy, C. F., Dick, D. J., Zhou, B., & Harrison, F. G. (1994). Mechanically induced changes in action potential duration and left ventricular segment length in acute regional ischaemia in the in situ porcine heart. Cardiovascular Research, 28(4), 528–534. Horner, S. M., Lab, M. J., Murphy, C. F., Dick, D. J., Zhou, B., & Harrison, F. G. (1994). Mechanically induced changes in action potential duration and left ventricular segment length in acute regional ischaemia in the in situ porcine heart. Cardiovascular Research, 28(4), 528–534.
72.
go back to reference Van Wagoner, D. R. (1993). Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circulation Research, 72(5), 973–983.PubMed Van Wagoner, D. R. (1993). Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circulation Research, 72(5), 973–983.PubMed
73.
go back to reference Tseng, G. N. (1992). Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. The American Journal of Physiology, 262(4 Pt 1), C1056–C1068.PubMed Tseng, G. N. (1992). Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. The American Journal of Physiology, 262(4 Pt 1), C1056–C1068.PubMed
74.
go back to reference Horner, S. M., Murphy, C. F., Coen, B., Dick, D. J., & Lab, M. J. (1996). Sympathomimetic modulation of load-dependent changes in the action potential duration in the in situ porcine heart. Cardiovascular Research, 32(1), 148–157. Horner, S. M., Murphy, C. F., Coen, B., Dick, D. J., & Lab, M. J. (1996). Sympathomimetic modulation of load-dependent changes in the action potential duration in the in situ porcine heart. Cardiovascular Research, 32(1), 148–157.
75.
go back to reference Lu, F., Jun-Xian, C., Rong-Sheng, X., Jia, L., Ying, H., Li-Qun, Z., et al. (2007). The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace, 9(8), 578–584. Lu, F., Jun-Xian, C., Rong-Sheng, X., Jia, L., Ying, H., Li-Qun, Z., et al. (2007). The effect of streptomycin on stretch-induced electrophysiological changes of isolated acute myocardial infarcted hearts in rats. Europace, 9(8), 578–584.
76.
go back to reference Durrer, J. D., Lie, K. I., van Capelle, F. J., & Durrer, D. (1982). Effect of sodium nitroprusside on mortality in acute myocardial infarction. The New England Journal of Medicine, 306(19), 1121–1128.PubMed Durrer, J. D., Lie, K. I., van Capelle, F. J., & Durrer, D. (1982). Effect of sodium nitroprusside on mortality in acute myocardial infarction. The New England Journal of Medicine, 306(19), 1121–1128.PubMed
77.
go back to reference Mukherjee, D., Feldman, M. S., & Helfant, R. H. (1976). Nitroprusside therapy. Treatment of hypertensive patients with recurrent resting chest pain, ST-segment elevation, and ventricular arrhythmias. Journal of the American Medical Association, 235(22), 2406–2409.PubMed Mukherjee, D., Feldman, M. S., & Helfant, R. H. (1976). Nitroprusside therapy. Treatment of hypertensive patients with recurrent resting chest pain, ST-segment elevation, and ventricular arrhythmias. Journal of the American Medical Association, 235(22), 2406–2409.PubMed
78.
go back to reference Opthof, T., Sutton, P., Coronel, R., Wright, S., Kallis, P., & Taggart, P. (2012). The association of abnormal ventricular wall motion and increased dispersion of repolarization in humans is independent of the presence of myocardial infarction. Frontiers in Physiology, 3(Jul 3), Article 235. Opthof, T., Sutton, P., Coronel, R., Wright, S., Kallis, P., & Taggart, P. (2012). The association of abnormal ventricular wall motion and increased dispersion of repolarization in humans is independent of the presence of myocardial infarction. Frontiers in Physiology, 3(Jul 3), Article 235.
79.
go back to reference Kohl, P., & Camelliti, P. (2012). Fibroblast–myocyte connections in the heart. Heart Rhythm, 9(3), 461–464.PubMed Kohl, P., & Camelliti, P. (2012). Fibroblast–myocyte connections in the heart. Heart Rhythm, 9(3), 461–464.PubMed
80.
go back to reference de Bakker, J. M., & van Rijen, H. M. (2006). Continuous and discontinuous propagation in heart muscle. Journal of Cardiovascular Electrophysiology, 17(5), 567–573.PubMed de Bakker, J. M., & van Rijen, H. M. (2006). Continuous and discontinuous propagation in heart muscle. Journal of Cardiovascular Electrophysiology, 17(5), 567–573.PubMed
81.
go back to reference Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810.PubMed Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810.PubMed
82.
go back to reference Kizana, E., Ginn, S. L., Smyth, C. M., Boyd, A., Thomas, S. P., Allen, D. G., et al. (2006). Fibroblasts modulate cardiomyocyte excitability: implications for cardiac gene therapy. Gene Therapy, 13(22), 1611–1615.PubMed Kizana, E., Ginn, S. L., Smyth, C. M., Boyd, A., Thomas, S. P., Allen, D. G., et al. (2006). Fibroblasts modulate cardiomyocyte excitability: implications for cardiac gene therapy. Gene Therapy, 13(22), 1611–1615.PubMed
83.
go back to reference Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428.PubMed Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428.PubMed
84.
go back to reference Goshima, K., & Tonomura, Y. (1969). Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Experimental Cell Research, 56(2), 387–392.PubMed Goshima, K., & Tonomura, Y. (1969). Synchronized beating of embryonic mouse myocardial cells mediated by FL cells in monolayer culture. Experimental Cell Research, 56(2), 387–392.PubMed
85.
go back to reference Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. (2010). Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020.PubMedCentralPubMed Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. (2010). Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020.PubMedCentralPubMed
86.
go back to reference Walker, N. L., Burton, F. L., Kettlewell, S., Smith, G. L., & Cobbe, S. M. (2007). Mapping of epicardial activation in a rabbit model of chronic myocardial infarction. Journal of Cardiovascular Electrophysiology, 18(8), 862–868.PubMed Walker, N. L., Burton, F. L., Kettlewell, S., Smith, G. L., & Cobbe, S. M. (2007). Mapping of epicardial activation in a rabbit model of chronic myocardial infarction. Journal of Cardiovascular Electrophysiology, 18(8), 862–868.PubMed
87.
go back to reference Saba, S., Mathier, M. A., Mehdi, H., Liu, T., Choi, B. R., London, B., et al. (2008). Dual-dye optical mapping after myocardial infarction: Does the site of ventricular stimulation alter the properties of electrical propagation? Journal of Cardiovascular Electrophysiology, 19(2), 197–202.PubMed Saba, S., Mathier, M. A., Mehdi, H., Liu, T., Choi, B. R., London, B., et al. (2008). Dual-dye optical mapping after myocardial infarction: Does the site of ventricular stimulation alter the properties of electrical propagation? Journal of Cardiovascular Electrophysiology, 19(2), 197–202.PubMed
88.
go back to reference Stockbridge, L. L., & French, A. S. (1988). Stretch-activated cation channels in human fibroblasts. Biophysical Journal, 54(1), 187–190.PubMedCentralPubMed Stockbridge, L. L., & French, A. S. (1988). Stretch-activated cation channels in human fibroblasts. Biophysical Journal, 54(1), 187–190.PubMedCentralPubMed
89.
go back to reference Kohl, P., & Noble, D. (1996). Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovascular Research, 32(1), 62–68.PubMed Kohl, P., & Noble, D. (1996). Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovascular Research, 32(1), 62–68.PubMed
90.
go back to reference Thompson, S. A., Copeland, C. R., Reich, D. H., & Tung, L. (2011). Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 123(19), 2083–2093.PubMedCentralPubMed Thompson, S. A., Copeland, C. R., Reich, D. H., & Tung, L. (2011). Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. Circulation, 123(19), 2083–2093.PubMedCentralPubMed
91.
go back to reference Roden, D. M. (2008). Clinical practice. Long-QT syndrome. The New England Journal of Medicine, 358(2), 169–176.PubMed Roden, D. M. (2008). Clinical practice. Long-QT syndrome. The New England Journal of Medicine, 358(2), 169–176.PubMed
92.
go back to reference Odening, K. E., Jung, B. A., Lang, C. N., Cabrera Lozoya, R., Ziupa, D., Menza, M., et al. (2013). Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits. Heart Rhythm, 10(10), 1533–1541.PubMed Odening, K. E., Jung, B. A., Lang, C. N., Cabrera Lozoya, R., Ziupa, D., Menza, M., et al. (2013). Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits. Heart Rhythm, 10(10), 1533–1541.PubMed
93.
go back to reference Kohl, P. (2013). From ion channel to organismic phenotype: An example of integrative translational research into cardiac electromechanics. Heart Rhythm, 10(10), 1542–1543.PubMed Kohl, P. (2013). From ion channel to organismic phenotype: An example of integrative translational research into cardiac electromechanics. Heart Rhythm, 10(10), 1542–1543.PubMed
94.
go back to reference Ashikaga, H., van der Spoel, T. I., Coppola, B. A., & Omens, J. H. (2009). Transmural myocardial mechanics during isovolumic contraction. Journal of the American College of Cardiology Cardiovascular Imaging, 2(2), 202–211.PubMedCentralPubMed Ashikaga, H., van der Spoel, T. I., Coppola, B. A., & Omens, J. H. (2009). Transmural myocardial mechanics during isovolumic contraction. Journal of the American College of Cardiology Cardiovascular Imaging, 2(2), 202–211.PubMedCentralPubMed
95.
go back to reference Gallacher, D. J., Van de Water, A., van der Linde, H., Hermans, A. N., Lu, H. R., Towart, R., et al. (2007). In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovascular Research, 76(2), 247–256.PubMed Gallacher, D. J., Van de Water, A., van der Linde, H., Hermans, A. N., Lu, H. R., Towart, R., et al. (2007). In vivo mechanisms precipitating torsades de pointes in a canine model of drug-induced long-QT1 syndrome. Cardiovascular Research, 76(2), 247–256.PubMed
96.
go back to reference Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., et al. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16(10), 1087–1096.PubMed Chorro, F. J., Trapero, I., Guerrero, J., Such, L. M., Canoves, J., Mainar, L., et al. (2005). Modification of ventricular fibrillation activation patterns induced by local stretching. Journal of Cardiovascular Electrophysiology, 16(10), 1087–1096.PubMed
97.
go back to reference Trapero, I., Chorro, F. J., Such-Miquel, L., Canoves, J., Tormos, A., Pelechano, F., et al. (2008). Efectos de la estreptomicina en las modificaciones de la activacion miocardica durante la fibrilacion ventricular inducidas por el estiramiento [Effect of streptomycin on stretch-induced change in myocardial activation during ventricular fibrillation]. Revista Española de Cardiología, 61(2), 201–205.PubMed Trapero, I., Chorro, F. J., Such-Miquel, L., Canoves, J., Tormos, A., Pelechano, F., et al. (2008). Efectos de la estreptomicina en las modificaciones de la activacion miocardica durante la fibrilacion ventricular inducidas por el estiramiento [Effect of streptomycin on stretch-induced change in myocardial activation during ventricular fibrillation]. Revista Española de Cardiología, 61(2), 201–205.PubMed
98.
go back to reference Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Canoves, J., et al. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1860–H1869.PubMed Chorro, F. J., Trapero, I., Such-Miquel, L., Pelechano, F., Mainar, L., Canoves, J., et al. (2009). Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. American Journal of Physiology. Heart and Circulatory Physiology, 297(5), H1860–H1869.PubMed
99.
go back to reference Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., et al. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206(1), 29–41.PubMed Brines, L., Such-Miquel, L., Gallego, D., Trapero, I., Del Canto, I., Zarzoso, M., et al. (2012). Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiologica, 206(1), 29–41.PubMed
100.
go back to reference Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., et al. (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. The Journal of General Physiology, 115(5), 583–598.PubMedCentralPubMed Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., et al. (2000). Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. The Journal of General Physiology, 115(5), 583–598.PubMedCentralPubMed
101.
go back to reference Bode, F., Sachs, F., & Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature, 409(6816), 35–36.PubMed Bode, F., Sachs, F., & Franz, M. R. (2001). Tarantula peptide inhibits atrial fibrillation. Nature, 409(6816), 35–36.PubMed
102.
go back to reference Trayanova, N. A. (2011). Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics. Circulation Research, 108(1), 113–128.PubMedCentralPubMed Trayanova, N. A. (2011). Whole-heart modeling: Applications to cardiac electrophysiology and electromechanics. Circulation Research, 108(1), 113–128.PubMedCentralPubMed
103.
go back to reference Trayanova, N. A., Constantino, J., & Gurev, V. (2010). Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology, 43(6), 479–485.PubMedCentralPubMed Trayanova, N. A., Constantino, J., & Gurev, V. (2010). Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology, 43(6), 479–485.PubMedCentralPubMed
104.
go back to reference Jie, X., Gurev, V., & Trayanova, N. (2010). Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circulation Research, 106(1), 185–192.PubMedCentralPubMed Jie, X., Gurev, V., & Trayanova, N. (2010). Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circulation Research, 106(1), 185–192.PubMedCentralPubMed
105.
go back to reference Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299(1), H134–H143.PubMed Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299(1), H134–H143.PubMed
106.
go back to reference Hu, Y., Gurev, V., Constantino, J., Bayer, J. D., & Trayanova, N. A. (2013). Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PloS One, 8(4), e60287.PubMedCentralPubMed Hu, Y., Gurev, V., Constantino, J., Bayer, J. D., & Trayanova, N. A. (2013). Effects of mechano-electric feedback on scroll wave stability in human ventricular fibrillation. PloS One, 8(4), e60287.PubMedCentralPubMed
107.
go back to reference Calaghan, S. C., & White, E. (1999). The role of calcium in the response of cardiac muscle to stretch. Progress in Biophysics and Molecular Biology, 71(1), 59–90.PubMed Calaghan, S. C., & White, E. (1999). The role of calcium in the response of cardiac muscle to stretch. Progress in Biophysics and Molecular Biology, 71(1), 59–90.PubMed
108.
go back to reference ter Keurs, H. E. (2012). The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H38–H50.PubMed ter Keurs, H. E. (2012). The interaction of Ca2+ with sarcomeric proteins: Role in function and dysfunction of the heart. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H38–H50.PubMed
109.
go back to reference ter Keurs, H. E., & Boyden, P. A. (2007). Calcium and arrhythmogenesis. Physiological Reviews, 87(2), 457–506.PubMed ter Keurs, H. E., & Boyden, P. A. (2007). Calcium and arrhythmogenesis. Physiological Reviews, 87(2), 457–506.PubMed
110.
go back to reference Allen, D. G., & Kentish, J. C. (1985). The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 17(9), 821–840.PubMed Allen, D. G., & Kentish, J. C. (1985). The cellular basis of the length-tension relation in cardiac muscle. Journal of Molecular and Cellular Cardiology, 17(9), 821–840.PubMed
111.
go back to reference Iribe, G., Ward, C. W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R. A., et al. (2009). Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circulation Research, 104(6), 787–795.PubMedCentralPubMed Iribe, G., Ward, C. W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R. A., et al. (2009). Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circulation Research, 104(6), 787–795.PubMedCentralPubMed
112.
go back to reference Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: rapid mechano-chemo transduction in heart. Science, 333(6048), 1440–1445.PubMed Prosser, B. L., Ward, C. W., & Lederer, W. J. (2011). X-ROS signaling: rapid mechano-chemo transduction in heart. Science, 333(6048), 1440–1445.PubMed
113.
go back to reference Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307–314.PubMed Prosser, B. L., Ward, C. W., & Lederer, W. J. (2013). X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovascular Research, 98(2), 307–314.PubMed
114.
go back to reference Allen, D. G., & Kentish, J. C. (1988). Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. The Journal of Physiology, 407(1), 489–503.PubMed Allen, D. G., & Kentish, J. C. (1988). Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. The Journal of Physiology, 407(1), 489–503.PubMed
115.
go back to reference Allen, D. G., & Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. The Journal of Physiology, 327(1), 79–94.PubMed Allen, D. G., & Kurihara, S. (1982). The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. The Journal of Physiology, 327(1), 79–94.PubMed
116.
go back to reference ter Keurs, H. E., Wakayama, Y., Sugai, Y., Price, G., Kagaya, Y., Boyden, P. A., et al. (2006). Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle. Annals of the New York Academy of Sciences, 1080(1), 248–267.PubMed ter Keurs, H. E., Wakayama, Y., Sugai, Y., Price, G., Kagaya, Y., Boyden, P. A., et al. (2006). Role of sarcomere mechanics and Ca2+ overload in Ca2+ waves and arrhythmias in rat cardiac muscle. Annals of the New York Academy of Sciences, 1080(1), 248–267.PubMed
117.
go back to reference Wakayama, Y., Miura, M., Stuyvers, B. D., Boyden, P. A., & ter Keurs, H. E. (2005). Spatial nonuniformity of excitation–contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circulation Research, 96(12), 1266–1273.PubMed Wakayama, Y., Miura, M., Stuyvers, B. D., Boyden, P. A., & ter Keurs, H. E. (2005). Spatial nonuniformity of excitation–contraction coupling causes arrhythmogenic Ca2+ waves in rat cardiac muscle. Circulation Research, 96(12), 1266–1273.PubMed
118.
go back to reference Banijamali, H. S., Gao, W. D., MacIntosh, B. R., & ter Keurs, H. E. (1991). Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Effect of ryanodine. Circulation Research, 69(4), 937–948.PubMed Banijamali, H. S., Gao, W. D., MacIntosh, B. R., & ter Keurs, H. E. (1991). Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Effect of ryanodine. Circulation Research, 69(4), 937–948.PubMed
119.
go back to reference Miura, M., Wakayama, Y., Endoh, H., Nakano, M., Sugai, Y., Hirose, M., et al. (2008). Spatial non-uniformity of excitation–contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovascular Research, 80(1), 55–61.PubMed Miura, M., Wakayama, Y., Endoh, H., Nakano, M., Sugai, Y., Hirose, M., et al. (2008). Spatial non-uniformity of excitation–contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. Cardiovascular Research, 80(1), 55–61.PubMed
120.
go back to reference Wakayama, Y., Miura, M., Sugai, Y., Kagaya, Y., Watanabe, J., ter Keurs, H. E., et al. (2001). Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions. American Journal of Physiology. Heart and Circulatory Physiology, 281(5), H2133–H2142.PubMed Wakayama, Y., Miura, M., Sugai, Y., Kagaya, Y., Watanabe, J., ter Keurs, H. E., et al. (2001). Stretch and quick release of rat cardiac trabeculae accelerates Ca2+ waves and triggered propagated contractions. American Journal of Physiology. Heart and Circulatory Physiology, 281(5), H2133–H2142.PubMed
121.
go back to reference Miura, M., Nishio, T., Hattori, T., Murai, N., Stuyvers, B. D., Shindoh, C., et al. (2010). Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation, 121(25), 2711–2717.PubMedCentralPubMed Miura, M., Nishio, T., Hattori, T., Murai, N., Stuyvers, B. D., Shindoh, C., et al. (2010). Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. Circulation, 121(25), 2711–2717.PubMedCentralPubMed
122.
go back to reference Jeyaraj, D., Wilson, L. D., Zhong, J., Flask, C., Saffitz, J. E., Deschenes, I., et al. (2007). Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation, 115(25), 3145–3155.PubMed Jeyaraj, D., Wilson, L. D., Zhong, J., Flask, C., Saffitz, J. E., Deschenes, I., et al. (2007). Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation, 115(25), 3145–3155.PubMed
123.
go back to reference Spragg, D. D., Akar, F. G., Helm, R. H., Tunin, R. S., Tomaselli, G. F., & Kass, D. A. (2005). Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovascular Research, 67(1), 77–86.PubMed Spragg, D. D., Akar, F. G., Helm, R. H., Tunin, R. S., Tomaselli, G. F., & Kass, D. A. (2005). Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovascular Research, 67(1), 77–86.PubMed
124.
go back to reference Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.PubMed Cleland, J. G., Daubert, J. C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., et al. (2006). Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase]. European Heart Journal, 27(16), 1928–1932.PubMed
Metadata
Title
The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias
Author
T. Alexander Quinn
Publication date
01-01-2014
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 1/2014
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-013-9852-0

Other articles of this Issue 1/2014

Journal of Interventional Cardiac Electrophysiology 1/2014 Go to the issue