Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 1/2014

01-01-2014

Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation

Authors: Yazhou Lin, Bing Yang, Fermin C. Garcia, Weizhu Ju, Fengxiang Zhang, Hongwu Chen, Jinbo Yu, Mingfang Li, Kai Gu, Kejiang Cao, David J. Callans, Francis E. Marchlinski, Minglong Chen

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 1/2014

Login to get access

Abstract

Objective

The purpose of this study is to explore the left atrium (LA) electrophysiologic abnormalities in atrial fibrillation (AF) patients detected during sinus rhythm and to determine the relationship between the type of AF and the electrophysiologic substrate in the LA.

Methods

Eighty patients with AF (30 paroxysmal AF, 22 persistent AF, and 28 long-standing AF) and 20 age- and sex-matched patients with left-sided accessory pathway were prospectively studied. High-density three-dimensional electroanatomic mapping was performed during sinus rhythm in LA, which was divided into six segments for regional analysis. Mean bipolar voltage, low voltage zone (LVZ) distribution, LA activation time, and electrogram complexity were assessed.

Results

The LA mean voltage was 3.67 ± 0.68 mV in no AF group, 2.16 ± 0.63 mV in the paroxysmal, 1.81 ± 0.36 mV in the persistent, and 1.48 ± 0.34 mV in the long-standing AF patients (P < 0.001). The total LA activation time was 75.3 ± 5.4 ms in no AF, 89.7 ± 12.3 ms in paroxysmal AF, 104.9 ± 6.1 ms in persistent AF, and 115.6 ± 12.1 ms in the long-standing AF patients, respectively (P < 0.001). With the progression of AF, there was a higher incidence of LVZ detection and increased prevalence of complex electrograms with 95 % of complex electrograms in areas with the bipolar voltage ≤ 1.3 mV in persistent and long-standing AF patients.

Conclusion

Patients with AF have abnormal electrophysiologic substrate in sinus rhythm characterized by lower mean bipolar voltage, more prevalent complex electrograms, and longer LA activation time. This substrate progresses parallel to progression of AF type.
Literature
1.
go back to reference Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Spence, S. J., Vohra, J. K., et al. (2004). Electrophysiologic and electroanatomic changes in the human atrium associated with age. Journal of the American College of Cardiology, 44, 109–116.PubMedCrossRef Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Spence, S. J., Vohra, J. K., et al. (2004). Electrophysiologic and electroanatomic changes in the human atrium associated with age. Journal of the American College of Cardiology, 44, 109–116.PubMedCrossRef
2.
go back to reference Healey, J. S., Baranchuk, A., Crystal, E., Morillo, C. A., Garfinkle, M., Yusuf, S., et al. (2005). Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: A meta-analysis. Journal of the American College of Cardiology, 45, 1832–1839.PubMedCrossRef Healey, J. S., Baranchuk, A., Crystal, E., Morillo, C. A., Garfinkle, M., Yusuf, S., et al. (2005). Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: A meta-analysis. Journal of the American College of Cardiology, 45, 1832–1839.PubMedCrossRef
3.
go back to reference Sanders, P., Morton, J. B., Davidson, N. C., Spence, S. J., Vohra, J. K., Sparks, P. B., et al. (2003). Electrical remodeling of the atria in congestive heart failure: Electrophysiological and electroanatomic mapping in humans. Circulation, 108, 1461–1468.PubMedCrossRef Sanders, P., Morton, J. B., Davidson, N. C., Spence, S. J., Vohra, J. K., Sparks, P. B., et al. (2003). Electrical remodeling of the atria in congestive heart failure: Electrophysiological and electroanatomic mapping in humans. Circulation, 108, 1461–1468.PubMedCrossRef
4.
go back to reference Verheule, S., Wilson, E., Everett, T., Shanbhag, S., Golden, C., & Olgin, J. (2003). Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation, 107, 2615–2622.PubMedCentralPubMed Verheule, S., Wilson, E., Everett, T., Shanbhag, S., Golden, C., & Olgin, J. (2003). Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation, 107, 2615–2622.PubMedCentralPubMed
5.
go back to reference Corradi, D., Callegari, S., Benussi, S., Maestri, R., Pastori, P., Nascimbene, S., Bosio, S., et al. (2005). Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Human Pathology, 36, 1080–1089.PubMedCrossRef Corradi, D., Callegari, S., Benussi, S., Maestri, R., Pastori, P., Nascimbene, S., Bosio, S., et al. (2005). Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Human Pathology, 36, 1080–1089.PubMedCrossRef
6.
go back to reference He, X., Gao, X., Peng, L., Wang, S., Zhu, Y., Ma, H., et al. (2011). Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad 7. Circulation Research, 108, 164–175.PubMedCentralPubMedCrossRef He, X., Gao, X., Peng, L., Wang, S., Zhu, Y., Ma, H., et al. (2011). Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad 7. Circulation Research, 108, 164–175.PubMedCentralPubMedCrossRef
7.
go back to reference Kawara, T., Derksen, R., de Groot, J. R., Coronel, R., Tasseron, S., Linnenbank, A. C., et al. (2001). Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation, 104, 3069–3075.PubMedCrossRef Kawara, T., Derksen, R., de Groot, J. R., Coronel, R., Tasseron, S., Linnenbank, A. C., et al. (2001). Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation, 104, 3069–3075.PubMedCrossRef
8.
go back to reference Spach, M. S., & Dolber, P. C. (1986). Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research, 58, 356–371.PubMedCrossRef Spach, M. S., & Dolber, P. C. (1986). Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research, 58, 356–371.PubMedCrossRef
9.
go back to reference Verma, A., Wazni, O. M., Marrouche, N. F., Martin, D. O., Kilicaslan, F., Minor, S., et al. (2005). Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: An independent predictor of procedural failure. Journal of the American College of Cardiology, 45, 285–292.PubMedCrossRef Verma, A., Wazni, O. M., Marrouche, N. F., Martin, D. O., Kilicaslan, F., Minor, S., et al. (2005). Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: An independent predictor of procedural failure. Journal of the American College of Cardiology, 45, 285–292.PubMedCrossRef
10.
go back to reference Chang, S. L., Tai, C. T., Lin, Y. J., Wongcharoen, W., Lo, L. W., Tuan, T. C., Udyavar, A. R., Chang, S. H., Tsao, H. M., Hsieh, M. H., Hu, Y. F., Chen, Y. J., & Chen, S. A. (2007). Biatrial substrate properties in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18, 1134–1139.PubMedCrossRef Chang, S. L., Tai, C. T., Lin, Y. J., Wongcharoen, W., Lo, L. W., Tuan, T. C., Udyavar, A. R., Chang, S. H., Tsao, H. M., Hsieh, M. H., Hu, Y. F., Chen, Y. J., & Chen, S. A. (2007). Biatrial substrate properties in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18, 1134–1139.PubMedCrossRef
11.
go back to reference Stiles, M. K., John, B., Wong, C. X., Kuklik, P., Brooks, A. G., Lau, D. H., Dimitri, H., et al. (2009). Paroxysmal atrial fibrillation is associated with abnormal atrial substrate: Characterizing the “second factor”. Journal of the American College of Cardiology, 53, 1182–1191.PubMedCrossRef Stiles, M. K., John, B., Wong, C. X., Kuklik, P., Brooks, A. G., Lau, D. H., Dimitri, H., et al. (2009). Paroxysmal atrial fibrillation is associated with abnormal atrial substrate: Characterizing the “second factor”. Journal of the American College of Cardiology, 53, 1182–1191.PubMedCrossRef
12.
go back to reference Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S. J., et al. (2012). Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. Journal of Cardiovascular Electrophysiology, 23, 232–238.PubMedCrossRef Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S. J., et al. (2012). Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. Journal of Cardiovascular Electrophysiology, 23, 232–238.PubMedCrossRef
13.
go back to reference Marcus, G. M., Yang, Y., Varosy, P. D., Ordovas, K., Tseng, Z. H., Badhwar, N., et al. (2007). Regional left atrial voltage in patients with atrial fibrillation. Heart Rhythm, 4, 138–144.PubMedCentralPubMedCrossRef Marcus, G. M., Yang, Y., Varosy, P. D., Ordovas, K., Tseng, Z. H., Badhwar, N., et al. (2007). Regional left atrial voltage in patients with atrial fibrillation. Heart Rhythm, 4, 138–144.PubMedCentralPubMedCrossRef
14.
go back to reference Assayag, P., Carre, F., Chevalier, B., Delcayre, C., Mansier, P., & Swynghedauw, B. (1997). Compensated cardiac hypertrophy: Arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovascular Research, 34, 439–444.PubMedCrossRef Assayag, P., Carre, F., Chevalier, B., Delcayre, C., Mansier, P., & Swynghedauw, B. (1997). Compensated cardiac hypertrophy: Arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovascular Research, 34, 439–444.PubMedCrossRef
15.
go back to reference Silver, M. A., Pick, R., Brilla, C. G., Jalil, J. E., Janicki, J. S., & Weber, K. T. (1990). Reactive and reparative fibrillar collagen remodeling in the hypertrophied rat left ventricle: Two experimental models of myocardial fibrosis. Cardiovascular Research, 24, 741–747.PubMedCrossRef Silver, M. A., Pick, R., Brilla, C. G., Jalil, J. E., Janicki, J. S., & Weber, K. T. (1990). Reactive and reparative fibrillar collagen remodeling in the hypertrophied rat left ventricle: Two experimental models of myocardial fibrosis. Cardiovascular Research, 24, 741–747.PubMedCrossRef
16.
go back to reference Huang, J. L., Tai, C. T., Lin, Y. J., Ting, C. T., Chen, Y. T., Chang, M. S., et al. (2006). The mechanisms of an increased dominant frequency in the left atrial posterior wall during atrial fibrillation in acute atrial dilatation. Journal of Cardiovascular Electrophysiology, 17, 178–188.PubMedCrossRef Huang, J. L., Tai, C. T., Lin, Y. J., Ting, C. T., Chen, Y. T., Chang, M. S., et al. (2006). The mechanisms of an increased dominant frequency in the left atrial posterior wall during atrial fibrillation in acute atrial dilatation. Journal of Cardiovascular Electrophysiology, 17, 178–188.PubMedCrossRef
17.
go back to reference Lellouche, N., Buch, E., Celigoj, A., Siegerman, C., Cesario, D., De Diego, C., et al. (2007). Functional characterization of atrial electrograms in sinus rhythm delineates sites of parasympathetic innervation in patients with paroxysmal atrial fibrillation. Journal of the American College of Cardiology, 50, 1324–1331.PubMedCrossRef Lellouche, N., Buch, E., Celigoj, A., Siegerman, C., Cesario, D., De Diego, C., et al. (2007). Functional characterization of atrial electrograms in sinus rhythm delineates sites of parasympathetic innervation in patients with paroxysmal atrial fibrillation. Journal of the American College of Cardiology, 50, 1324–1331.PubMedCrossRef
18.
go back to reference Miyamoto, K., Tsuchiya, T., Narita, S., Yamaguchi, T., Nagamoto, Y., Ando, S., et al. (2009). Bipolar electrogram amplitudes in the left atrium are related to local conduction velocity in patients with atrial fibrillation. Europace, 11, 1597–1605.PubMedCrossRef Miyamoto, K., Tsuchiya, T., Narita, S., Yamaguchi, T., Nagamoto, Y., Ando, S., et al. (2009). Bipolar electrogram amplitudes in the left atrium are related to local conduction velocity in patients with atrial fibrillation. Europace, 11, 1597–1605.PubMedCrossRef
19.
go back to reference Ju, W., Yang, B., Chen, H., Zhang, F., Zhai, L., Cao, K., et al. (2011). Localized reentry as a novel type of the proarrhythmic effects of linear ablation in the left atrium. Pacing and Clinical Electrophysiology, 34, 919–926.PubMedCrossRef Ju, W., Yang, B., Chen, H., Zhang, F., Zhai, L., Cao, K., et al. (2011). Localized reentry as a novel type of the proarrhythmic effects of linear ablation in the left atrium. Pacing and Clinical Electrophysiology, 34, 919–926.PubMedCrossRef
20.
go back to reference Boldt, A., Wetzel, U., Lauschke, J., Weigl, J., Gummert, J., Hindricks, G., et al. (2004). Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 90, 400–405.PubMedCrossRef Boldt, A., Wetzel, U., Lauschke, J., Weigl, J., Gummert, J., Hindricks, G., et al. (2004). Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 90, 400–405.PubMedCrossRef
21.
go back to reference Luo, M. H., Li, Y. S., & Yang, K. P. (2006). Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology, 107, 248–253.PubMedCrossRef Luo, M. H., Li, Y. S., & Yang, K. P. (2006). Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology, 107, 248–253.PubMedCrossRef
22.
go back to reference Eckstein, J., Verheule, S., de Groot, N. M., Allessie, M., & Schotten, U. (2008). Mechanisms of perpetuation of atrial fibrillation in chronically dilated atria. Progress in Biophysics and Molecular Biology, 97, 435–451.PubMedCrossRef Eckstein, J., Verheule, S., de Groot, N. M., Allessie, M., & Schotten, U. (2008). Mechanisms of perpetuation of atrial fibrillation in chronically dilated atria. Progress in Biophysics and Molecular Biology, 97, 435–451.PubMedCrossRef
23.
go back to reference Lau, D. H., Psaltis, P. J., Mackenzie, L., Kelly, D. J., Carbone, A., Worthington, M., et al. (2011). Atrial remodeling in an ovine model of anthracycline-induced nonischemic cardiomyopathy: Remodeling of the same sort. Journal of Cardiovascular Electrophysiology, 22, 175–182.PubMed Lau, D. H., Psaltis, P. J., Mackenzie, L., Kelly, D. J., Carbone, A., Worthington, M., et al. (2011). Atrial remodeling in an ovine model of anthracycline-induced nonischemic cardiomyopathy: Remodeling of the same sort. Journal of Cardiovascular Electrophysiology, 22, 175–182.PubMed
24.
go back to reference Verheule, S., Sato, T., Everett, T., Engle, S. K., Otten, D., Rubart-von der Lohe, M., et al. (2004). Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circulation Research, 94, 1458–1465.PubMedCentralPubMedCrossRef Verheule, S., Sato, T., Everett, T., Engle, S. K., Otten, D., Rubart-von der Lohe, M., et al. (2004). Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circulation Research, 94, 1458–1465.PubMedCentralPubMedCrossRef
25.
go back to reference Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A., & Nattel, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling. Cardiovascular Research, 76, 442–452.PubMedCrossRef Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A., & Nattel, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling. Cardiovascular Research, 76, 442–452.PubMedCrossRef
26.
go back to reference Ausma, J., Litjens, N., Lenders, M. H., Duimel, H., Mast, F., Wouters, L., et al. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. Journal of Molecular and Cellular Cardiology, 33, 2083–2094.PubMedCrossRef Ausma, J., Litjens, N., Lenders, M. H., Duimel, H., Mast, F., Wouters, L., et al. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. Journal of Molecular and Cellular Cardiology, 33, 2083–2094.PubMedCrossRef
27.
go back to reference Avitall, B., Bi, J., Mykytsey, A., & Chicos, A. (2008). Atrial and ventricular fibrosis induced by atrial fibrillation: Evidence to support early rhythm control. Heart Rhythm, 5, 839–845.PubMedCrossRef Avitall, B., Bi, J., Mykytsey, A., & Chicos, A. (2008). Atrial and ventricular fibrosis induced by atrial fibrillation: Evidence to support early rhythm control. Heart Rhythm, 5, 839–845.PubMedCrossRef
28.
go back to reference Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical remodeling in atrial fibrillation, time course and mechanisms. Circulation, 94, 2968–2974.PubMedCrossRef Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical remodeling in atrial fibrillation, time course and mechanisms. Circulation, 94, 2968–2974.PubMedCrossRef
29.
go back to reference Fynn, S. P., Todd, D. M., Hobbs, W. J., Armstrong, K. L., Fitzpatrick, A. P., & Garratt, C. J. (2002). Clinical evaluation of a policy of early repeated internal cardioversion for recurrence of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 13, 135–141.PubMedCrossRef Fynn, S. P., Todd, D. M., Hobbs, W. J., Armstrong, K. L., Fitzpatrick, A. P., & Garratt, C. J. (2002). Clinical evaluation of a policy of early repeated internal cardioversion for recurrence of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 13, 135–141.PubMedCrossRef
30.
go back to reference Hirayama, Y., Atarashi, H., Kobayashi, Y., Horie, T., Iwasaki, Y., Maruyama, M., et al. (2005). Angiotensin-converting enzyme inhibitor therapy inhibits the progression from paroxysmal atrial fibrillation to chronic atrial fibrillation. Circulation Journal, 69, 671–676.PubMedCrossRef Hirayama, Y., Atarashi, H., Kobayashi, Y., Horie, T., Iwasaki, Y., Maruyama, M., et al. (2005). Angiotensin-converting enzyme inhibitor therapy inhibits the progression from paroxysmal atrial fibrillation to chronic atrial fibrillation. Circulation Journal, 69, 671–676.PubMedCrossRef
31.
go back to reference Madrid, A. H., Bueno, M. G., Robollo, J. M., Marín, I., Peña, G., Bernal, E., et al. (2002). Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: A prospective and randomized study. Circulation, 106, 331–336.PubMedCrossRef Madrid, A. H., Bueno, M. G., Robollo, J. M., Marín, I., Peña, G., Bernal, E., et al. (2002). Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: A prospective and randomized study. Circulation, 106, 331–336.PubMedCrossRef
32.
go back to reference Marchlinski, F. E., Callans, D. J., Gottlieb, C. D., & Zado, E. (2000). Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 101, 1288–1296.PubMedCrossRef Marchlinski, F. E., Callans, D. J., Gottlieb, C. D., & Zado, E. (2000). Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 101, 1288–1296.PubMedCrossRef
33.
go back to reference Mahnkopf, C., Badger, T. J., Burgon, N. S., Daccarett, M., Haslam, T. S., Badger, C. T., et al. (2010). Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: Implications for disease progression and response to catheter ablation. Heart Rhythm, 7, 1475–1481.PubMedCentralPubMedCrossRef Mahnkopf, C., Badger, T. J., Burgon, N. S., Daccarett, M., Haslam, T. S., Badger, C. T., et al. (2010). Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: Implications for disease progression and response to catheter ablation. Heart Rhythm, 7, 1475–1481.PubMedCentralPubMedCrossRef
34.
go back to reference Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., et al. (2012). Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping. Circulation. Arrhythmia and Electrophysiology, 5, 32–42.PubMedCentralPubMedCrossRef Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., et al. (2012). Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping. Circulation. Arrhythmia and Electrophysiology, 5, 32–42.PubMedCentralPubMedCrossRef
35.
go back to reference Saghy, L., Callans, D. J., Garcia, F., Lin, D., Marchlinski, F. E., Riley, M., et al. (2012). Is there a relationship between complex fractionated atrial electrograms recorded during atrial fibrillation and sinus rhythm fractionation? Heart Rhythm, 9, 181–188.PubMedCrossRef Saghy, L., Callans, D. J., Garcia, F., Lin, D., Marchlinski, F. E., Riley, M., et al. (2012). Is there a relationship between complex fractionated atrial electrograms recorded during atrial fibrillation and sinus rhythm fractionation? Heart Rhythm, 9, 181–188.PubMedCrossRef
Metadata
Title
Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation
Authors
Yazhou Lin
Bing Yang
Fermin C. Garcia
Weizhu Ju
Fengxiang Zhang
Hongwu Chen
Jinbo Yu
Mingfang Li
Kai Gu
Kejiang Cao
David J. Callans
Francis E. Marchlinski
Minglong Chen
Publication date
01-01-2014
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 1/2014
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-013-9838-y

Other articles of this Issue 1/2014

Journal of Interventional Cardiac Electrophysiology 1/2014 Go to the issue