Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 8/2009

01-08-2009 | SHORT COMMUNICATION

Is gestation in Prader-Willi syndrome affected by the genetic subtype?

Authors: Merlin G. Butler, Jennifer Sturich, Susan E. Myers, June-Anne Gold, Virginia Kimonis, Daniel J. Driscoll

Published in: Journal of Assisted Reproduction and Genetics | Issue 8/2009

Login to get access

Abstract

Background

Prader-Willi syndrome (PWS) is a complex genetic disorder with errors in genomic imprinting, generally due to a paternal deletion of chromosome 15q11-q13 region. Maternal disomy 15 (both 15s from the mother) is the second most common form of PWS resulting from a trisomic zygote followed by trisomy rescue in early pregnancy and loss of the paternal chromosome 15. However, trisomy 15 or mosaicism for trisomy 15 may be present in the placenta possibly leading to placental abnormalities affecting gestational age and delivery.

Methods and Subjects

We examined growth and gestational data from 167 PWS infants (93 males and 74 females; 105 infants with 15q11-q13 deletion and 62 infants with maternal disomy 15) to determine if there are differences in gestation between the two genetic subtypes.

Results

No significant differences in growth data (birth weight, length, head circumference) or average gestational ages were found between the two genetic subgroups. However, post-term deliveries (> 42 weeks gestation) were more common in the maternal disomy group (i.e., 12 of 62 infants) compared with the deletion group (i.e., 7 of 105 infants) (chi-square test = 6.22; p < 0.02). The distribution of gestational ages in the 15q11-q13 deletion group was more bell-shaped or normal while the distribution in the maternal disomy group suggested a bimodal pattern.

Conclusions

Maternal disomy 15 in PWS may contribute to disturbances in gestational age and delivery by impacting on placental structure or function secondary to the abnormal chromosomal number in the placental cells or in mechanisms leading to the maternal disomy status in PWS infants.
Literature
1.
go back to reference Bittel DC, Butler MG. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7(14):1–20.CrossRefPubMed Bittel DC, Butler MG. Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005;7(14):1–20.CrossRefPubMed
2.
go back to reference Butler MG, Hanchett J, Thompson T. Clinical findings and natural history of Prader-Willi syndrome. In: Butler MG, Lee PDK, Whitman BY, editors. Management of Prader-Willi Syndrome. 3rd ed. Springer-Verlag Publishers: New York; 2006. p. 3–48. Butler MG, Hanchett J, Thompson T. Clinical findings and natural history of Prader-Willi syndrome. In: Butler MG, Lee PDK, Whitman BY, editors. Management of Prader-Willi Syndrome. 3rd ed. Springer-Verlag Publishers: New York; 2006. p. 3–48.
3.
go back to reference Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(11):4183–97.CrossRefPubMed Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(11):4183–97.CrossRefPubMed
5.
go back to reference Butler MG, Thompson T. Prader-Willi syndrome: Clinical and genetic findings. The Endocrinologist. 2000;10:3S–16S.CrossRef Butler MG, Thompson T. Prader-Willi syndrome: Clinical and genetic findings. The Endocrinologist. 2000;10:3S–16S.CrossRef
6.
go back to reference Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics. 2004;113(3 Pt 1):565–73.CrossRefPubMed Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics. 2004;113(3 Pt 1):565–73.CrossRefPubMed
7.
go back to reference Bittel DC, Kibiryeva N, Butler MG. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics. 2006;118(4):e1276–1283.CrossRefPubMed Bittel DC, Kibiryeva N, Butler MG. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics. 2006;118(4):e1276–1283.CrossRefPubMed
8.
go back to reference Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997;16(1):16–7.PubMed Kubota T, Das S, Christian SL, Baylin SB, Herman JG, Ledbetter DH. Methylation-specific PCR simplifies imprinting analysis. Nat Genet. 1997;16(1):16–7.PubMed
9.
go back to reference Glenn CC, Porter KA, Jong MT, Nicholls RD, Driscoll DJ. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet. 1993;2(12):2001–5.CrossRefPubMed Glenn CC, Porter KA, Jong MT, Nicholls RD, Driscoll DJ. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol Genet. 1993;2(12):2001–5.CrossRefPubMed
10.
go back to reference Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001;2:153–75.CrossRefPubMed Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001;2:153–75.CrossRefPubMed
11.
go back to reference Cassidy SB, Lai LW, Erickson RP, Magnuson L, Thomas E, Gendron R, et al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992;51(4):701–8.PubMed Cassidy SB, Lai LW, Erickson RP, Magnuson L, Thomas E, Gendron R, et al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992;51(4):701–8.PubMed
12.
go back to reference Warburton D, Byrne J, Canki N. Trisomy. In: Warburton D, Byrne J, Canki N, editors. Chromosome anomalies and prenatal development: An atlas. New York: Oxford University Press; 1991. p. 57–62. Warburton D, Byrne J, Canki N. Trisomy. In: Warburton D, Byrne J, Canki N, editors. Chromosome anomalies and prenatal development: An atlas. New York: Oxford University Press; 1991. p. 57–62.
13.
go back to reference Christian SL, Smith AC, Macha M, Black SH, Elder FF, Johnson JM, et al. Prenatal diagnosis of uniparental disomy 15 following trisomy 15 mosaicism. Prenat Diagn. 1996;16(4):323–32.CrossRefPubMed Christian SL, Smith AC, Macha M, Black SH, Elder FF, Johnson JM, et al. Prenatal diagnosis of uniparental disomy 15 following trisomy 15 mosaicism. Prenat Diagn. 1996;16(4):323–32.CrossRefPubMed
14.
go back to reference Harris A, Collins J, Vetrie D, Cole C, Bobrow M. X inactivation as a mechanism of selection against lethal alleles: further investigation of incontinentia pigmenti and X linked lymphoproliferative disease. J Med Genet. 1992;29(9):608–14.CrossRefPubMed Harris A, Collins J, Vetrie D, Cole C, Bobrow M. X inactivation as a mechanism of selection against lethal alleles: further investigation of incontinentia pigmenti and X linked lymphoproliferative disease. J Med Genet. 1992;29(9):608–14.CrossRefPubMed
15.
go back to reference Sangha KK, Stephenson MD, Brown CJ, Robinson WP. Extremely skewed X-chromosome inactivation is increased in women with recurrent spontaneous abortion. Am J Hum Genet. 1999;65(3):913–7.CrossRefPubMed Sangha KK, Stephenson MD, Brown CJ, Robinson WP. Extremely skewed X-chromosome inactivation is increased in women with recurrent spontaneous abortion. Am J Hum Genet. 1999;65(3):913–7.CrossRefPubMed
16.
go back to reference Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A, Roscher AA. Symptoms in carriers of adrenoleukodystrophy relate to skewed X inactivation. Ann Neurol. 2002;52(5):683–8.CrossRefPubMed Maier EM, Kammerer S, Muntau AC, Wichers M, Braun A, Roscher AA. Symptoms in carriers of adrenoleukodystrophy relate to skewed X inactivation. Ann Neurol. 2002;52(5):683–8.CrossRefPubMed
17.
go back to reference Talebizadeh Z, Bittel DC, Veatch OJ, Kibiryeva N, Butler MG. Brief report: Non-random X chromosome inactivation in females with autism. J Autism Dev Disord. 2005;35(5):675–81.CrossRefPubMed Talebizadeh Z, Bittel DC, Veatch OJ, Kibiryeva N, Butler MG. Brief report: Non-random X chromosome inactivation in females with autism. J Autism Dev Disord. 2005;35(5):675–81.CrossRefPubMed
18.
go back to reference Migeon BR. Non-random X chromosome inactivation in mammalian cells. Cytogenet Cell Genet. 1998;80(1–4):142–8.CrossRefPubMed Migeon BR. Non-random X chromosome inactivation in mammalian cells. Cytogenet Cell Genet. 1998;80(1–4):142–8.CrossRefPubMed
19.
go back to reference Lau AW, Brown CJ, Penaherrera M, Langlois S, Kalousek DK, Robinson WP. Skewed X-chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet. 1997;61(6):1353–61.CrossRefPubMed Lau AW, Brown CJ, Penaherrera M, Langlois S, Kalousek DK, Robinson WP. Skewed X-chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet. 1997;61(6):1353–61.CrossRefPubMed
20.
go back to reference Krepischi AC, Kok F, Otto PG. X chromosome-inactivation patterns in patients with Rett syndrome. Hum Genet. 1998;102(3):319–21.CrossRefPubMed Krepischi AC, Kok F, Otto PG. X chromosome-inactivation patterns in patients with Rett syndrome. Hum Genet. 1998;102(3):319–21.CrossRefPubMed
21.
go back to reference Ledbetter DH, Zachary JM, Simpson JL, Golbus MS, Pergament E, Jackson L et al. Cytogenetic results from the U.S. Collaborative Study on CVS. Prenat Diagn. 1992; 12(5):317–45. Ledbetter DH, Zachary JM, Simpson JL, Golbus MS, Pergament E, Jackson L et al. Cytogenetic results from the U.S. Collaborative Study on CVS. Prenat Diagn. 1992; 12(5):317–45.
22.
go back to reference Butler MG, Theodoro MF, Bittel DC, Kuipers PJ, Driscoll DJ, Talebizadeh Z. X-chromosome inactivation patterns in females with Prader-Willi syndrome. Am J Med Genet A. 2007;143(5):469–75.PubMed Butler MG, Theodoro MF, Bittel DC, Kuipers PJ, Driscoll DJ, Talebizadeh Z. X-chromosome inactivation patterns in females with Prader-Willi syndrome. Am J Med Genet A. 2007;143(5):469–75.PubMed
23.
go back to reference Woodage T, Prasad M, Dixon JW, Selby RE, Romain DR, Columbano-Green LM, et al. Bloom syndrome and maternal uniparental disomy for chromosome 15. Am J Hum Genet. 1994;55(1):74–80.PubMed Woodage T, Prasad M, Dixon JW, Selby RE, Romain DR, Columbano-Green LM, et al. Bloom syndrome and maternal uniparental disomy for chromosome 15. Am J Hum Genet. 1994;55(1):74–80.PubMed
24.
go back to reference Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with distal deletion of the long arm of chromosome 15 (q26.1-qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991; 38:74–9. Roback EW, Barakat AJ, Dev VG, Mbikay M, Chretien M, Butler MG. An infant with distal deletion of the long arm of chromosome 15 (q26.1-qter) and loss of insulin-like growth factor 1 receptor gene. Am J Med Genet. 1991; 38:74–9.
25.
go back to reference Eggermann T. Silver-Russell and Beckwith-Wiedemann syndromes: Opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm Res. 2009;71:30–5.CrossRefPubMed Eggermann T. Silver-Russell and Beckwith-Wiedemann syndromes: Opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm Res. 2009;71:30–5.CrossRefPubMed
26.
go back to reference Eggermann T, Eggermann K, Schonherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008;24:195–204.CrossRefPubMed Eggermann T, Eggermann K, Schonherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet. 2008;24:195–204.CrossRefPubMed
27.
go back to reference Bliek J, Verde G, Callaway J, Maas SM, de Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17:611–9.CrossRefPubMed Bliek J, Verde G, Callaway J, Maas SM, de Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17:611–9.CrossRefPubMed
Metadata
Title
Is gestation in Prader-Willi syndrome affected by the genetic subtype?
Authors
Merlin G. Butler
Jennifer Sturich
Susan E. Myers
June-Anne Gold
Virginia Kimonis
Daniel J. Driscoll
Publication date
01-08-2009
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 8/2009
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-009-9341-7

Other articles of this Issue 8/2009

Journal of Assisted Reproduction and Genetics 8/2009 Go to the issue