Skip to main content
Top
Published in: International Ophthalmology 3/2019

01-03-2019 | Review

Therapeutic potential of curcumin in major retinal pathologies

Authors: Krishi V. Peddada, A’sha Brown, Vivek Verma, Marcella Nebbioso

Published in: International Ophthalmology | Issue 3/2019

Login to get access

Abstract

Purpose

The retina is continually exposed to free radicals from its rich blood supply, numerous mitochondria, and photons of light which strike its surface. Most pathological processes that take place in the retina, such as inflammation, cell apoptosis, or angiogenesis, can hence involve free radicals directly or indirectly.  Since inflammatory and oxidative stress pathways underlie retinal pathology, compounds that address these factors are therefore natural choices for treatment. This review article summarizes and provides commentary on curcumin's therapeutic potential use in ophthalmology with principal focus on retinal dosorders.

Methods

Curcumin (diferuloylmethane) is a compound of the Indian spice turmeric (Curcuma longa) that has been found to be efficacious in preventing and treating a number of inflammatory diseases and neoplastic processes. Curcumin exerts anti-inflammatory, anti-tumor, antioxidant, and VEGF inhibition properties through modulation of numerous biochemical mediators. This makes curcumin particularly effective in retinal disorders.

Results

Curcumin has found a role in slowing, and in some cases even reversing, age-related macular degeneration, diabetic retinopathy, retinitis pigmentosa, proliferative vitreoretinopathy, and retinal cancers.

Conclusions

However, studies on curcumin’s efficacy have been limited mostly to animal studies. Moreover, the biomedical potential of curcumin is not easy to use, given its low solubility and oral bioavailability—more attention therefore has been given to nanoparticles and liposomes.
Literature
1.
go back to reference Shaban H, Richter C (2002) A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 383(3–4):537–545PubMed Shaban H, Richter C (2002) A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 383(3–4):537–545PubMed
2.
go back to reference Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278(20):18207–18213CrossRef Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278(20):18207–18213CrossRef
3.
go back to reference Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7275–7280CrossRef Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7275–7280CrossRef
4.
go back to reference Pescosolido N, Giannotti R, Plateroti AM, Pascarella A, Nebbioso M (2014) Curcumin: therapeutical potential in ophthalmology. Planta Med 80(4):249–254PubMed Pescosolido N, Giannotti R, Plateroti AM, Pascarella A, Nebbioso M (2014) Curcumin: therapeutical potential in ophthalmology. Planta Med 80(4):249–254PubMed
5.
go back to reference Burugula B, Ganesh BS, Chintala SK (2011) Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest Ophthalmol Vis Sci 52(7):4263–4273CrossRef Burugula B, Ganesh BS, Chintala SK (2011) Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest Ophthalmol Vis Sci 52(7):4263–4273CrossRef
6.
go back to reference Pescosolido N, Barbato A, Pascarella A, Giannotti R, Genzano M, Nebbioso M (2014) Role of protease-inhibitors in ocular diseases. Molecules 19(12):20557–20569CrossRef Pescosolido N, Barbato A, Pascarella A, Giannotti R, Genzano M, Nebbioso M (2014) Role of protease-inhibitors in ocular diseases. Molecules 19(12):20557–20569CrossRef
7.
go back to reference Qi RF, Song ZW, Chi CW (2005) Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 37(5):283–292CrossRef Qi RF, Song ZW, Chi CW (2005) Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 37(5):283–292CrossRef
8.
go back to reference Kolb H, Fernandez E, Nelson R (eds) (1995) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City Kolb H, Fernandez E, Nelson R (eds) (1995) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City
9.
go back to reference Limoli PG, Vingolo EM, Morales MU, Nebbioso M, Limoli C (2014) Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltimore) 93(29):e355CrossRef Limoli PG, Vingolo EM, Morales MU, Nebbioso M, Limoli C (2014) Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltimore) 93(29):e355CrossRef
10.
go back to reference Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M (2016) Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 7(30):46913–46923CrossRef Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M (2016) Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 7(30):46913–46923CrossRef
11.
go back to reference Grassmann F, Fauser S, Weber BH (2015) The genetics of age-related macular degeneration (AMD)—novel targets for designing treatment options? Eur J Pharm Biopharm 95(Pt B):194–202CrossRef Grassmann F, Fauser S, Weber BH (2015) The genetics of age-related macular degeneration (AMD)—novel targets for designing treatment options? Eur J Pharm Biopharm 95(Pt B):194–202CrossRef
12.
go back to reference Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29CrossRef Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29CrossRef
13.
go back to reference Adams MK, Simpson JA, Aung KZ, Makeyeva GA, Giles GG, English DR, Hopper J, Guymer RH, Baird PN, Robman LD (2011) Abdominal obesity and age-related macular degeneration. Am J Epidemiol 173(11):1246–1255CrossRef Adams MK, Simpson JA, Aung KZ, Makeyeva GA, Giles GG, English DR, Hopper J, Guymer RH, Baird PN, Robman LD (2011) Abdominal obesity and age-related macular degeneration. Am J Epidemiol 173(11):1246–1255CrossRef
14.
go back to reference Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2011) Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol 11:22CrossRef Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2011) Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol 11:22CrossRef
15.
go back to reference Cougnard-Grégoire A, Delyfer MN, Korobelnik JF, Rougier MB, Malet F, Le Goff M, Dartigues JF, Colin J, Barberger-Gateau P, Delcourt C (2013) Long-term blood pressure and age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci 54(3):1905–1912CrossRef Cougnard-Grégoire A, Delyfer MN, Korobelnik JF, Rougier MB, Malet F, Le Goff M, Dartigues JF, Colin J, Barberger-Gateau P, Delcourt C (2013) Long-term blood pressure and age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci 54(3):1905–1912CrossRef
16.
go back to reference Marquioni-Ramella MD, Suburo AM (2015) Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 14(9):1560–1577CrossRef Marquioni-Ramella MD, Suburo AM (2015) Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 14(9):1560–1577CrossRef
17.
go back to reference Fischer T (2015) The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis. Orv Hetil 156(9):358–365CrossRef Fischer T (2015) The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis. Orv Hetil 156(9):358–365CrossRef
18.
go back to reference Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ, Lu J (2015) Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther 9:5337–5344PubMedPubMedCentral Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ, Lu J (2015) Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther 9:5337–5344PubMedPubMedCentral
19.
go back to reference Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, Haque R (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544–560PubMedPubMedCentral Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, Haque R (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544–560PubMedPubMedCentral
20.
go back to reference Woo JM, Shin DY, Lee SJ, Joe Y, Zheng M, Yim JH, Callaway Z, Chung HT (2012) Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Mol Vis 18:901–908PubMedPubMedCentral Woo JM, Shin DY, Lee SJ, Joe Y, Zheng M, Yim JH, Callaway Z, Chung HT (2012) Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Mol Vis 18:901–908PubMedPubMedCentral
21.
go back to reference Li Y, Zou X, Cao K, Xu J, Yue T, Dai F, Zhou B, Lu W, Feng Z, Liu J (2013) Curcumin analog 1, 5-bis(2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol 272(3):726–735CrossRef Li Y, Zou X, Cao K, Xu J, Yue T, Dai F, Zhou B, Lu W, Feng Z, Liu J (2013) Curcumin analog 1, 5-bis(2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol 272(3):726–735CrossRef
22.
go back to reference Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46(5):672–679CrossRef Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46(5):672–679CrossRef
23.
go back to reference Nebbioso M, Federici M, Rusciano D, Evangelista M, Pescosolido N (2012) Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technol Ther 14:257–263CrossRef Nebbioso M, Federici M, Rusciano D, Evangelista M, Pescosolido N (2012) Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technol Ther 14:257–263CrossRef
24.
go back to reference Yu Y, Chen H, Su SB (2015) Neuroinflammatory responses in diabetic retinopathy. J Neuroinflamm 12:141CrossRef Yu Y, Chen H, Su SB (2015) Neuroinflammatory responses in diabetic retinopathy. J Neuroinflamm 12:141CrossRef
25.
go back to reference Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 58(6):541–549CrossRef Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 58(6):541–549CrossRef
26.
go back to reference Wan TT, Li XF, Sun YM, Li YB, Su Y (2015) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 74:145–147CrossRef Wan TT, Li XF, Sun YM, Li YB, Su Y (2015) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 74:145–147CrossRef
27.
go back to reference Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev 2014:752387CrossRef Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev 2014:752387CrossRef
28.
go back to reference Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S (2011) Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther 27(2):123–130CrossRef Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S (2011) Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther 27(2):123–130CrossRef
29.
go back to reference Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S (2012) Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 28(4):329–337CrossRef Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S (2012) Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 28(4):329–337CrossRef
30.
go back to reference Khimmaktong W, Petpiboolthai H, Sriya P, Anupunpisit V (2014) Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat’s choroid of eye. J Med Assoc Thail 97(Suppl 2):S39–S46 Khimmaktong W, Petpiboolthai H, Sriya P, Anupunpisit V (2014) Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat’s choroid of eye. J Med Assoc Thail 97(Suppl 2):S39–S46
31.
go back to reference Mrudula T, Suryanarayana P, Srinivas PN, Reddy GB (2007) Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun 361(2):528–532CrossRef Mrudula T, Suryanarayana P, Srinivas PN, Reddy GB (2007) Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun 361(2):528–532CrossRef
32.
go back to reference Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P (2012) Protein misfolding and potential therapeutic treatments in inherited retinopathies. Adv Exp Med Biol 723:567–572CrossRef Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P (2012) Protein misfolding and potential therapeutic treatments in inherited retinopathies. Adv Exp Med Biol 723:567–572CrossRef
33.
go back to reference Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401CrossRef Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401CrossRef
34.
go back to reference Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809CrossRef Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809CrossRef
35.
go back to reference Cottet S, Schorderet DF (2009) Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 9(3):375–383CrossRef Cottet S, Schorderet DF (2009) Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 9(3):375–383CrossRef
36.
go back to reference Emoto Y, Yoshizawa K, Uehara N, Kinoshita Y, Yuri T, Shikata N, Tsubura A (2013) Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague–Dawley rats. In Vivo 27(5):583–590PubMed Emoto Y, Yoshizawa K, Uehara N, Kinoshita Y, Yuri T, Shikata N, Tsubura A (2013) Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague–Dawley rats. In Vivo 27(5):583–590PubMed
37.
go back to reference Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA, Kompella UB, Reddy GB, Ayyagari R (2011) Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS ONE 6(6):e21193CrossRef Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA, Kompella UB, Reddy GB, Ayyagari R (2011) Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS ONE 6(6):e21193CrossRef
38.
go back to reference Kwon OW, Song JH, Roh MI (2016) Retinal detachment and proliferative vitreoretinopathy. Dev Ophthalmol 55:154–162CrossRef Kwon OW, Song JH, Roh MI (2016) Retinal detachment and proliferative vitreoretinopathy. Dev Ophthalmol 55:154–162CrossRef
39.
go back to reference Tikhonovich MV, Iojleva EJ, Gavrilova SA (2015) The role of inflammation in the development of proliferative vitreoretinopathy. Klin Med (Mosk) 93(7):14–20 Tikhonovich MV, Iojleva EJ, Gavrilova SA (2015) The role of inflammation in the development of proliferative vitreoretinopathy. Klin Med (Mosk) 93(7):14–20
40.
go back to reference Artem’eva OV, Samoilov AN, Zhernakov SV (2014) Proliferative vitreoretinopathy: modern view on etiology and pathogenesis. Vestn Oftalmol 130(3):67–71PubMed Artem’eva OV, Samoilov AN, Zhernakov SV (2014) Proliferative vitreoretinopathy: modern view on etiology and pathogenesis. Vestn Oftalmol 130(3):67–71PubMed
41.
go back to reference Sun Y, You ZP (2014) Curcumin inhibits human retinal pigment epithelial cell proliferation. Int J Mol Med 34(4):1013–1019CrossRef Sun Y, You ZP (2014) Curcumin inhibits human retinal pigment epithelial cell proliferation. Int J Mol Med 34(4):1013–1019CrossRef
42.
go back to reference Gong L, Jiang D, Zhu X, Guo L (2004) Curcumin inhibits the proliferation of cultured human fetal retinal pigment epithelium cells. Yan Ke Xue Bao 20(4):246–258PubMed Gong L, Jiang D, Zhu X, Guo L (2004) Curcumin inhibits the proliferation of cultured human fetal retinal pigment epithelium cells. Yan Ke Xue Bao 20(4):246–258PubMed
43.
go back to reference Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N (2010) Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 35(11):1021–1033CrossRef Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N (2010) Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 35(11):1021–1033CrossRef
44.
go back to reference Lu HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, Fan MJ, Yang JS, Cheng PY, Kuo CL, Chung JG (2009) Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and-independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol Rep 22(1):97–104PubMed Lu HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, Fan MJ, Yang JS, Cheng PY, Kuo CL, Chung JG (2009) Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and-independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol Rep 22(1):97–104PubMed
45.
go back to reference An JB, Ma JX, Liu DY, Gao YJ, Sheng MY, Wang HX, Liu LY (2009) The effect of curcumin on DNA content, mitochondrial transmembrane potential and calcium of rabbit cultured retinal pigment epithelial cells. Zhonghua Yan Ke Za Zhi 45(3):210–215PubMed An JB, Ma JX, Liu DY, Gao YJ, Sheng MY, Wang HX, Liu LY (2009) The effect of curcumin on DNA content, mitochondrial transmembrane potential and calcium of rabbit cultured retinal pigment epithelial cells. Zhonghua Yan Ke Za Zhi 45(3):210–215PubMed
46.
go back to reference Sachdeva UM, O’Brien JM (2012) Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 122(2):425–434CrossRef Sachdeva UM, O’Brien JM (2012) Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 122(2):425–434CrossRef
48.
49.
go back to reference Badiyan SN, Rao RC, Apicelli AJ, Acharya S, Verma V, Garsa AA, DeWees T, Speirs CK, Garcia-Ramirez J, Esthappan J, Grigsby PW, Harbour JW (2014) Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy. Int J Radiat Oncol Biol Phys 88(4):801–805CrossRef Badiyan SN, Rao RC, Apicelli AJ, Acharya S, Verma V, Garsa AA, DeWees T, Speirs CK, Garcia-Ramirez J, Esthappan J, Grigsby PW, Harbour JW (2014) Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy. Int J Radiat Oncol Biol Phys 88(4):801–805CrossRef
50.
go back to reference Verma V, Mehta MP (2016) Clinical outcomes of proton radiotherapy for uveal melanoma. Clin Oncol (R Coll Radiol) 28(8):e17–e27CrossRef Verma V, Mehta MP (2016) Clinical outcomes of proton radiotherapy for uveal melanoma. Clin Oncol (R Coll Radiol) 28(8):e17–e27CrossRef
51.
go back to reference Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37(5):421–428CrossRef Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37(5):421–428CrossRef
52.
go back to reference Lu HF, Yang JS, Lai KC, Hsu SC, Hsueh SC, Chen YL, Chiang JH, Lu CC, Lo C, Yang MD, Chung JG (2009) Curcumin-induced DNA damage and inhibited DNA repair genes expressions in mouse–rat hybrid retina ganglion cells (N18). Neurochem Res 34(8):1491–1497CrossRef Lu HF, Yang JS, Lai KC, Hsu SC, Hsueh SC, Chen YL, Chiang JH, Lu CC, Lo C, Yang MD, Chung JG (2009) Curcumin-induced DNA damage and inhibited DNA repair genes expressions in mouse–rat hybrid retina ganglion cells (N18). Neurochem Res 34(8):1491–1497CrossRef
53.
go back to reference Verma V (2016) Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol 7(3):275–283CrossRef Verma V (2016) Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol 7(3):275–283CrossRef
54.
go back to reference Lin HJ, Su CC, Lu HF, Yang JS, Hsu SC, Ip SW, Wu JJ, Li YC, Ho CC, Wu CC, Chung JG (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23(3):665–670CrossRef Lin HJ, Su CC, Lu HF, Yang JS, Hsu SC, Ip SW, Wu JJ, Li YC, Ho CC, Wu CC, Chung JG (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23(3):665–670CrossRef
55.
go back to reference Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59CrossRef Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59CrossRef
56.
go back to reference Lou J, Hu W, Tian R, Zhang H, Jia Y, Zhang J, Zhang L (2014) Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomed 9:2517–2525 Lou J, Hu W, Tian R, Zhang H, Jia Y, Zhang J, Zhang L (2014) Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomed 9:2517–2525
57.
go back to reference Duan Y, Cai X, Du H, Zhai G (2015) Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 128:322–330CrossRef Duan Y, Cai X, Du H, Zhai G (2015) Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 128:322–330CrossRef
59.
go back to reference Steigerwalt R, Nebbioso M, Appendino G, Belcaro G, Ciammaichella G, Cornelli U, Luzzi R, Togni S, Dugall M, Cesarone MR, Ippolito E, Errichi BM, Ledda A, Hosoi M, Corsi M (2012) Meriva®, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy. Panminerva Med 54(1 Suppl 4):11–16PubMed Steigerwalt R, Nebbioso M, Appendino G, Belcaro G, Ciammaichella G, Cornelli U, Luzzi R, Togni S, Dugall M, Cesarone MR, Ippolito E, Errichi BM, Ledda A, Hosoi M, Corsi M (2012) Meriva®, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy. Panminerva Med 54(1 Suppl 4):11–16PubMed
60.
go back to reference Du JD, Fong WK, Caliph S, Boyd BJ (2016) Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv Transl Res 6:781CrossRef Du JD, Fong WK, Caliph S, Boyd BJ (2016) Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv Transl Res 6:781CrossRef
61.
go back to reference Chaniyilparampu RN, Nair AK, Parthasarathy K, Gokaraju GR, Gokaraju RR, Bhupathiraju K, Mandapati VNSRR, Somashekara N (2010) Curcuminoids and its metabolites for the application in allergic ocular/nasal conditions. WO2010109482 Chaniyilparampu RN, Nair AK, Parthasarathy K, Gokaraju GR, Gokaraju RR, Bhupathiraju K, Mandapati VNSRR, Somashekara N (2010) Curcuminoids and its metabolites for the application in allergic ocular/nasal conditions. WO2010109482
Metadata
Title
Therapeutic potential of curcumin in major retinal pathologies
Authors
Krishi V. Peddada
A’sha Brown
Vivek Verma
Marcella Nebbioso
Publication date
01-03-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 3/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-018-0845-y

Other articles of this Issue 3/2019

International Ophthalmology 3/2019 Go to the issue