Skip to main content
Top
Published in: International Ophthalmology 3/2019

01-03-2019 | Original Paper

Validation of the structure–function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography

Authors: Qi N. Cui, Scott J. Fudemberg, Arthur F. Resende, Thuy-Anh Vu, Chen Zhou, Kamran Rahmatnejad, Lisa A. Hark, Jonathan S. Myers, L. Jay Katz, Michael Waisbourd

Published in: International Ophthalmology | Issue 3/2019

Login to get access

Abstract

Purpose

To compare the diagnostic assessment of glaucoma specialists with an automated structure–function correlation report combining visual field (VF) and spectral-domain optical coherence tomography (SD-OCT) imagining in subjects with glaucoma.

Methods

This prospective, cross-sectional study was conducted at Wills Eye Hospital, Philadelphia, PA, USA. Subjects with glaucoma received ophthalmic examination, VF testing, and SD-OCT imaging. An automated report was generated describing structure–function correlations between the two structural elements [retinal nerve fiber layer (RNFL) and Bruch’s membrane opening-minimum rim width (MRW)] and VF sectors. Three glaucoma specialists masked to the automated report and to each other identified clinically significant structure–function correlations between the VF and SD-OCT reports. Raw agreement and chance-corrected agreement (kappa statistics) between the automated report and the clinical assessments were compared.

Results

A total of 53 eyes from 45 subjects with glaucoma were included in this study. The overall agreement between the automated report and clinical assessment comparing MRW and VF was good at 74.8% with a kappa of 0.62 (95% CI 0.55–0.69). Agreements for the six different MRW sections were moderate to good with kappa values ranging from 0.54 to 0.69. For mean RNFL thickness and VF comparisons, agreement between the automated report and clinical assessment was 75.4% with a kappa of 0.62 (95% CI 0.54–0.70). For different RNFL sectors, kappa values ranged from 0.47 (moderate agreement) to 0.80 (good agreement).

Conclusions

This study suggests that the automated structure–function report combining results from the SD-OCT and the HEP may assist in the evaluation and management of glaucoma.
Literature
1.
go back to reference Medeiros FA, Lisboa R, Weinreb RN et al (2012) A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol 130(9):1107–1116CrossRefPubMedPubMedCentral Medeiros FA, Lisboa R, Weinreb RN et al (2012) A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol 130(9):1107–1116CrossRefPubMedPubMedCentral
2.
go back to reference Tatham AJ, Weinreb RN, Zangwill LM et al (2013) Estimated retinal ganglion cell counts in glaucomatous eyes with localized retinal nerve fiber layer defects. Am J Ophthalmol 156(3):578–587 e571CrossRefPubMedPubMedCentral Tatham AJ, Weinreb RN, Zangwill LM et al (2013) Estimated retinal ganglion cell counts in glaucomatous eyes with localized retinal nerve fiber layer defects. Am J Ophthalmol 156(3):578–587 e571CrossRefPubMedPubMedCentral
3.
go back to reference Lopez-Pena MJ, Ferreras A, Larrosa JM et al (2011) Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography. J Glaucoma 20(7):422–432CrossRefPubMed Lopez-Pena MJ, Ferreras A, Larrosa JM et al (2011) Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography. J Glaucoma 20(7):422–432CrossRefPubMed
4.
go back to reference Bowd C, Zangwill LM, Medeiros FA et al (2006) Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47(7):2889–2895CrossRefPubMed Bowd C, Zangwill LM, Medeiros FA et al (2006) Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47(7):2889–2895CrossRefPubMed
5.
go back to reference Leite MT, Zangwill LM, Weinreb RN et al (2012) Structure–function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma 21(1):49–54CrossRefPubMedPubMedCentral Leite MT, Zangwill LM, Weinreb RN et al (2012) Structure–function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma 21(1):49–54CrossRefPubMedPubMedCentral
6.
go back to reference Rao HL, Zangwill LM, Weinreb RN et al (2011) Structure–function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol 129(7):864–871CrossRefPubMed Rao HL, Zangwill LM, Weinreb RN et al (2011) Structure–function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol 129(7):864–871CrossRefPubMed
7.
go back to reference Chauhan BC, Burgoyne CF (2013) From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 156(2):218–227 e212CrossRefPubMedPubMedCentral Chauhan BC, Burgoyne CF (2013) From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am J Ophthalmol 156(2):218–227 e212CrossRefPubMedPubMedCentral
8.
go back to reference Belghith A, Bowd C, Medeiros FA et al (2016) Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci 57(2):675–682CrossRefPubMedPubMedCentral Belghith A, Bowd C, Medeiros FA et al (2016) Does the location of Bruch’s membrane opening change over time? Longitudinal analysis using San Diego automated layer segmentation algorithm (SALSA). Invest Ophthalmol Vis Sci 57(2):675–682CrossRefPubMedPubMedCentral
9.
go back to reference Reis AS, O’Leary N, Yang H et al (2012) Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 53(4):1852–1860CrossRefPubMedPubMedCentral Reis AS, O’Leary N, Yang H et al (2012) Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 53(4):1852–1860CrossRefPubMedPubMedCentral
10.
go back to reference Danthurebandara VM, Sharpe GP, Hutchison DM et al (2015) Enhanced structure–function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci 56(1):98–105CrossRef Danthurebandara VM, Sharpe GP, Hutchison DM et al (2015) Enhanced structure–function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement. Invest Ophthalmol Vis Sci 56(1):98–105CrossRef
11.
go back to reference Chauhan BC, O’Leary N, Almobarak FA et al (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120(3):535–543CrossRefPubMed Chauhan BC, O’Leary N, Almobarak FA et al (2013) Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology 120(3):535–543CrossRefPubMed
12.
go back to reference Pollet-Villard F, Chiquet C, Romanet JP et al (2014) Structure–function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci 55(5):2953–2962CrossRefPubMed Pollet-Villard F, Chiquet C, Romanet JP et al (2014) Structure–function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Invest Ophthalmol Vis Sci 55(5):2953–2962CrossRefPubMed
13.
go back to reference Malik R, Belliveau AC, Sharpe GP et al (2016) Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology 123:1181–1189CrossRefPubMed Malik R, Belliveau AC, Sharpe GP et al (2016) Diagnostic accuracy of optical coherence tomography and scanning laser tomography for identifying glaucoma in myopic eyes. Ophthalmology 123:1181–1189CrossRefPubMed
14.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW et al (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107(10):1809–1815CrossRefPubMed Garway-Heath DF, Poinoosawmy D, Fitzke FW et al (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107(10):1809–1815CrossRefPubMed
15.
go back to reference Strouthidis NG, Vinciotti V, Tucker AJ et al (2006) Structure and function in glaucoma: the relationship between a functional visual field map and an anatomic retinal map. Investig Ophthalmol Vis Sci 47(12):5356–5362CrossRef Strouthidis NG, Vinciotti V, Tucker AJ et al (2006) Structure and function in glaucoma: the relationship between a functional visual field map and an anatomic retinal map. Investig Ophthalmol Vis Sci 47(12):5356–5362CrossRef
16.
go back to reference Ballae Ganeshrao S, Turpin A, Denniss J et al (2015) Enhancing structure–function correlations in glaucoma with customized spatial mapping. Ophthalmology 122(8):1695–1705CrossRefPubMed Ballae Ganeshrao S, Turpin A, Denniss J et al (2015) Enhancing structure–function correlations in glaucoma with customized spatial mapping. Ophthalmology 122(8):1695–1705CrossRefPubMed
17.
go back to reference Altman D (1991) Practical statistics for medical research. Chapman and Hall, London Altman D (1991) Practical statistics for medical research. Chapman and Hall, London
18.
go back to reference Katz J (1988) Two eyes of one? The data analyst’s dilemma. Ophthalmic Surg 19(8):585–589PubMed Katz J (1988) Two eyes of one? The data analyst’s dilemma. Ophthalmic Surg 19(8):585–589PubMed
19.
go back to reference Kanamori A, Naka M, Nagai-Kusuhara A et al (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126(11):1500–1506CrossRefPubMed Kanamori A, Naka M, Nagai-Kusuhara A et al (2008) Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol 126(11):1500–1506CrossRefPubMed
20.
go back to reference Wu H, de Boer JF, Chen TC (2012) Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. Am J Ophthalmol 153(5):815–826 e812CrossRefPubMedPubMedCentral Wu H, de Boer JF, Chen TC (2012) Diagnostic capability of spectral-domain optical coherence tomography for glaucoma. Am J Ophthalmol 153(5):815–826 e812CrossRefPubMedPubMedCentral
21.
go back to reference Sehi M, Zhang X, Greenfield DS et al (2013) Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthalmol 155(1):73–82 e71CrossRefPubMed Sehi M, Zhang X, Greenfield DS et al (2013) Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthalmol 155(1):73–82 e71CrossRefPubMed
22.
go back to reference He L, Yang H, Gardiner SK et al (2014) Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Investig Ophthalmol Vis Sci 55(1):574–586CrossRef He L, Yang H, Gardiner SK et al (2014) Longitudinal detection of optic nerve head changes by spectral domain optical coherence tomography in early experimental glaucoma. Investig Ophthalmol Vis Sci 55(1):574–586CrossRef
Metadata
Title
Validation of the structure–function correlation report from the heidelberg edge perimeter and spectral-domain optical coherence tomography
Authors
Qi N. Cui
Scott J. Fudemberg
Arthur F. Resende
Thuy-Anh Vu
Chen Zhou
Kamran Rahmatnejad
Lisa A. Hark
Jonathan S. Myers
L. Jay Katz
Michael Waisbourd
Publication date
01-03-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 3/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-018-0836-z

Other articles of this Issue 3/2019

International Ophthalmology 3/2019 Go to the issue