Skip to main content
Top
Published in: Inflammation 1/2022

01-02-2022 | Obesity | Review

Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance

Authors: Layla Al-Mansoori, Hend Al-Jaber, Mohammad Shoaib Prince, Mohamed A. Elrayess

Published in: Inflammation | Issue 1/2022

Login to get access

Abstract

Obesity, manifested by increased adiposity, represents a main cause of morbidity in the developed countries, causing increased risk of insulin resistance and type 2 diabetes mellitus. Recruitment of macrophages and activation of innate immunity represent the initial insult, which can be further exacerbated through secretion of chemokines and adipocytokines from activated macrophages and other cells within the adipose tissue. These events can impact adipogenesis, causing dysfunction of the adipose tissue and increased risk of insulin resistance. Various factors mediate adiposity and related insulin resistance including inflammatory and non-inflammatory factors such as pro and anti-inflammatory cytokines, adipokines and growth factors. In this review we will discuss the role of these factors in adipogenesis and development of insulin resistance and type 2 diabetes mellitus in the context of obesity. Understanding the molecular mechanisms that mediate adipogenesis and insulin resistance could help the development of novel therapeutic strategies for individuals at higher risk of insulin resistance and type 2 diabetes mellitus.
Literature
1.
go back to reference Wild, S., G. Roglic, A. Green, R. Sicree, and H. King. 2004. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.PubMed Wild, S., G. Roglic, A. Green, R. Sicree, and H. King. 2004. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 27: 1047–1053.PubMed
2.
go back to reference Roglic, G. 2016. World Health Organization: Global report on diabetes. Geneva, Switzerland: World Health Organization. Roglic, G. 2016. World Health Organization: Global report on diabetes. Geneva, Switzerland: World Health Organization.
3.
go back to reference Ali, A.T., W.E. Hochfeld, R. Myburgh, and M.S. Pepper. 2013. Adipocyte and adipogenesis. European Journal of Cell Biology 92: 229–236.PubMed Ali, A.T., W.E. Hochfeld, R. Myburgh, and M.S. Pepper. 2013. Adipocyte and adipogenesis. European Journal of Cell Biology 92: 229–236.PubMed
4.
go back to reference Hogan, P., T. Dall, P. Nikolov, and A. American Diabetes. 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26: 917–932.PubMed Hogan, P., T. Dall, P. Nikolov, and A. American Diabetes. 2003. Economic costs of diabetes in the US in 2002. Diabetes Care 26: 917–932.PubMed
5.
go back to reference Blair, M. 2016. Diabetes Mellitus Review. Urologic Nursing 36: 27–36.PubMed Blair, M. 2016. Diabetes Mellitus Review. Urologic Nursing 36: 27–36.PubMed
6.
go back to reference Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. 1998. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. American Journal of the Clinical Nutrients 68:899–917. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. 1998. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. American Journal of the Clinical Nutrients 68:899–917.
7.
go back to reference Jaganjac, M., S. Almuraikhy, F. Al-Khelaifi, M. Al-Jaber, M. Bashah, N.A. Mazloum, K. Zarkovic, N. Zarkovic, G. Waeg, W. Kafienah, and M.A. Elrayess. 2017. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients. Redox Biology 12: 483–490.PubMedPubMedCentral Jaganjac, M., S. Almuraikhy, F. Al-Khelaifi, M. Al-Jaber, M. Bashah, N.A. Mazloum, K. Zarkovic, N. Zarkovic, G. Waeg, W. Kafienah, and M.A. Elrayess. 2017. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients. Redox Biology 12: 483–490.PubMedPubMedCentral
8.
go back to reference de Luca, C., and J.M. Olefsky. 2008. Inflammation and insulin resistance. FEBS Letters 582: 97–105.PubMed de Luca, C., and J.M. Olefsky. 2008. Inflammation and insulin resistance. FEBS Letters 582: 97–105.PubMed
9.
go back to reference Ros Perez, M., and G. Medina-Gomez. 2011. Obesity, adipogenesis and insulin resistance. Endocrinología y Nutrición 58: 360–369.PubMed Ros Perez, M., and G. Medina-Gomez. 2011. Obesity, adipogenesis and insulin resistance. Endocrinología y Nutrición 58: 360–369.PubMed
10.
go back to reference Gustafson, B., S. Hedjazifar, S. Gogg, A. Hammarstedt, and U. Smith. 2015. Insulin resistance and impaired adipogenesis. Trends in Endocrinology and Metabolism 26: 193–200.PubMed Gustafson, B., S. Hedjazifar, S. Gogg, A. Hammarstedt, and U. Smith. 2015. Insulin resistance and impaired adipogenesis. Trends in Endocrinology and Metabolism 26: 193–200.PubMed
11.
go back to reference Greenberg, A.S., and M.L. McDaniel. 2002. Identifying the links between obesity, insulin resistance and beta-cell function: Potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. European Journal of Clinical Investigation 32 (Suppl 3): 24–34.PubMed Greenberg, A.S., and M.L. McDaniel. 2002. Identifying the links between obesity, insulin resistance and beta-cell function: Potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. European Journal of Clinical Investigation 32 (Suppl 3): 24–34.PubMed
12.
go back to reference Deng, Y., and P.E. Scherer. 2010. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences 1212: E1–E19.PubMedPubMedCentral Deng, Y., and P.E. Scherer. 2010. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences 1212: E1–E19.PubMedPubMedCentral
13.
go back to reference Rajpathak, S.N., M. He, Q. Sun, R.C. Kaplan, R. Muzumdar, T.E. Rohan, M.J. Gunter, M. Pollak, M. Kim, J.E. Pessin, et al. 2012. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes 61: 2248–2254.PubMedPubMedCentral Rajpathak, S.N., M. He, Q. Sun, R.C. Kaplan, R. Muzumdar, T.E. Rohan, M.J. Gunter, M. Pollak, M. Kim, J.E. Pessin, et al. 2012. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes 61: 2248–2254.PubMedPubMedCentral
15.
go back to reference MacDougald, O.A., and S. Mandrup. 2002. Adipogenesis: Forces that tip the scales. Trends in Endocrinology and Metabolism 13: 5–11.PubMed MacDougald, O.A., and S. Mandrup. 2002. Adipogenesis: Forces that tip the scales. Trends in Endocrinology and Metabolism 13: 5–11.PubMed
16.
go back to reference Tam, J., D.G. Duda, J.Y. Perentes, R.S. Quadri, D. Fukumura, and R.K. Jain. 2009. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 4:e4974. Tam, J., D.G. Duda, J.Y. Perentes,  R.S. Quadri, D. Fukumura, and R.K. Jain. 2009. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 4:e4974.
17.
go back to reference Feve, B. 2005. Adipogenesis: Cellular and molecular aspects. Best Practice & Research Clinical Endocrinology & Metabolism 19: 483–499. Feve, B. 2005. Adipogenesis: Cellular and molecular aspects. Best Practice & Research Clinical Endocrinology & Metabolism 19: 483–499.
18.
go back to reference Rosen, E.D., and B.M. Spiegelman. 2000. Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16: 145–171.PubMed Rosen, E.D., and B.M. Spiegelman. 2000. Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16: 145–171.PubMed
19.
go back to reference Cinti, S. 2001. The adipose organ: Morphological perspectives of adipose tissues. The Proceedings of the Nutrition Society 60: 319–328.PubMed Cinti, S. 2001. The adipose organ: Morphological perspectives of adipose tissues. The Proceedings of the Nutrition Society 60: 319–328.PubMed
20.
go back to reference Camp, H.S., D. Ren, and T. Leff. 2002. Adipogenesis and fat-cell function in obesity and diabetes. Trends in Molecular Medicine 8: 442–447.PubMed Camp, H.S., D. Ren, and T. Leff. 2002. Adipogenesis and fat-cell function in obesity and diabetes. Trends in Molecular Medicine 8: 442–447.PubMed
21.
go back to reference Grant, R.W., and V.D. Dixit. 2015. Adipose tissue as an immunological organ. Obesity (Silver Spring) 23: 512–518. Grant, R.W., and V.D. Dixit. 2015. Adipose tissue as an immunological organ. Obesity (Silver Spring) 23: 512–518.
22.
go back to reference Lefterova, M.I., and M.A. Lazar. 2009. New developments in adipogenesis. Trends in Endocrinology and Metabolism 20: 107–114.PubMed Lefterova, M.I., and M.A. Lazar. 2009. New developments in adipogenesis. Trends in Endocrinology and Metabolism 20: 107–114.PubMed
23.
go back to reference Garten, A., S. Schuster, and W. Kiess. 2012. The insulin-like growth factors in adipogenesis and obesity. Endocrinology and Metabolism Clinics of North America 41 (283–295): v–vi. Garten, A., S. Schuster, and W. Kiess. 2012. The insulin-like growth factors in adipogenesis and obesity. Endocrinology and Metabolism Clinics of North America 41 (283–295): v–vi.
24.
go back to reference Khalilpourfarshbafi, M., K. Gholami, D.D. Murugan, M.Z. Abdul Sattar, and N.A. Abdullah. 2019. Differential effects of dietary flavonoids on adipogenesis. European Journal of Nutrition 58: 5–25.PubMed Khalilpourfarshbafi, M., K. Gholami, D.D. Murugan, M.Z. Abdul Sattar, and N.A. Abdullah. 2019. Differential effects of dietary flavonoids on adipogenesis. European Journal of Nutrition 58: 5–25.PubMed
25.
go back to reference Guo, S. 2014. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. Journal of Endocrinology 220: T1–T23. Guo, S. 2014. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. Journal of Endocrinology 220: T1–T23.
26.
go back to reference Petrie, J.R., T.J. Guzik, and R.M. Touyz. 2018. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology 34: 575–584. Petrie, J.R., T.J. Guzik, and R.M. Touyz. 2018. Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Canadian Journal of Cardiology 34: 575–584.
27.
go back to reference Bodhini, D., and V. Mohan. 2018. Mediators of insulin resistance & cardiometabolic risk: Newer insights. Indian Journal of Medical Research 148: 127–129. Bodhini, D., and V. Mohan. 2018. Mediators of insulin resistance & cardiometabolic risk: Newer insights. Indian Journal of Medical Research 148: 127–129.
28.
go back to reference Kitessa, S.M., and M.Y. Abeywardena. 2016. Lipid-Induced Insulin Resistance in Skeletal Muscle: The Chase for the Culprit Goes from Total Intramuscular Fat to Lipid Intermediates, and Finally to Species of Lipid Intermediates. Nutrients 8. Kitessa, S.M., and M.Y. Abeywardena. 2016. Lipid-Induced Insulin Resistance in Skeletal Muscle: The Chase for the Culprit Goes from Total Intramuscular Fat to Lipid Intermediates, and Finally to Species of Lipid Intermediates. Nutrients 8.
29.
go back to reference Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G.A., Beguinot, F., and C. Miele. 2019. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. International of Journal Molecular Sciences 20. Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G.A., Beguinot, F.,  and C. Miele. 2019. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. International of Journal Molecular Sciences 20.
30.
go back to reference Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–435.PubMed Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–435.PubMed
31.
go back to reference Newton, K., and V.M. Dixit. 2012. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4. Newton, K., and V.M. Dixit. 2012. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4.
32.
go back to reference Almuraikhy, S., W. Kafienah, M. Bashah, I. Diboun, M. Jaganjac, F. Al-Khelaifi, H. Abdesselem, N.A. Mazloum, M. Alsayrafi, V. Mohamed-Ali, and M.A. Elrayess. 2016. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance. Diabetologia 59: 2406–2416.PubMedPubMedCentral Almuraikhy, S., W. Kafienah, M. Bashah, I. Diboun, M. Jaganjac, F. Al-Khelaifi, H. Abdesselem, N.A. Mazloum, M. Alsayrafi, V. Mohamed-Ali, and M.A. Elrayess. 2016. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance. Diabetologia 59: 2406–2416.PubMedPubMedCentral
33.
go back to reference Klover, P.J., A.H. Clementi, and R.A. Mooney. 2005. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 146: 3417–3427.PubMed Klover, P.J., A.H. Clementi, and R.A. Mooney. 2005. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 146: 3417–3427.PubMed
34.
go back to reference Bahar, B., J.V. O’Doherty, and T. Sweeney. 2011. A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis. British Journal of Nutrition 106: 1142–1153. Bahar, B., J.V. O’Doherty, and T. Sweeney. 2011. A potential role of IL-6 in the chito-oligosaccharide-mediated inhibition of adipogenesis. British Journal of Nutrition 106: 1142–1153.
35.
go back to reference Cawthorn, W.P., F. Heyd, K. Hegyi, and J.K. Sethi. 2007. Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death and Differentiation 14: 1361–1373.PubMed Cawthorn, W.P., F. Heyd, K. Hegyi, and J.K. Sethi. 2007. Tumour necrosis factor-alpha inhibits adipogenesis via a beta-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death and Differentiation 14: 1361–1373.PubMed
36.
go back to reference Isakson, P., A. Hammarstedt, B. Gustafson, and U. Smith. 2009. Impaired preadipocyte differentiation in human abdominal obesity: Role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58: 1550–1557.PubMedPubMedCentral Isakson, P., A. Hammarstedt, B. Gustafson, and U. Smith. 2009. Impaired preadipocyte differentiation in human abdominal obesity: Role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58: 1550–1557.PubMedPubMedCentral
37.
go back to reference Palacios-Ortega, S., M. Varela-Guruceaga, M. Algarabel, F. Ignacio Milagro, J. Alfredo Martinez, and C. de Miguel. 2015. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes. Cellular Physiology and Biochemistry 36: 1499–1516.PubMed Palacios-Ortega, S., M. Varela-Guruceaga, M. Algarabel, F. Ignacio Milagro, J. Alfredo Martinez, and C. de Miguel. 2015. Effect of TNF-Alpha on Caveolin-1 Expression and Insulin Signaling During Adipocyte Differentiation and in Mature Adipocytes. Cellular Physiology and Biochemistry 36: 1499–1516.PubMed
38.
go back to reference Gagnon, A., C. Foster, A. Landry, and A. Sorisky. 2013. The role of interleukin 1beta in the anti-adipogenic action of macrophages on human preadipocytes. Journal of Endocrinology 217: 197–206. Gagnon, A., C. Foster, A. Landry, and A. Sorisky. 2013. The role of interleukin 1beta in the anti-adipogenic action of macrophages on human preadipocytes. Journal of Endocrinology 217: 197–206.
39.
go back to reference Moratal, C., J. Raffort, N. Arrighi, S. Rekima, S. Schaub, C.A. Dechesne, G. Chinetti, and C. Dani. 2018. IL-1beta- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Science and Reports 8: 17005. Moratal, C., J. Raffort, N. Arrighi, S. Rekima, S. Schaub, C.A. Dechesne, G. Chinetti, and C. Dani. 2018. IL-1beta- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Science and Reports 8: 17005.
40.
go back to reference Lagathu, C., L. Yvan-Charvet, J.P. Bastard, M. Maachi, A. Quignard-Boulange, J. Capeau, and M. Caron. 2006. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49: 2162–2173.PubMed Lagathu, C., L. Yvan-Charvet, J.P. Bastard, M. Maachi, A. Quignard-Boulange, J. Capeau, and M. Caron. 2006. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49: 2162–2173.PubMed
41.
go back to reference Martinez-Martinez, E., V. Cachofeiro, E. Rousseau, V. Alvarez, L. Calvier, A. Fernandez-Celis, C. Leroy, M. Miana, R. Jurado-Lopez, A.M. Briones, et al. 2015. Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Molecular and Cellular Endocrinology 411: 20–27.PubMed Martinez-Martinez, E., V. Cachofeiro, E. Rousseau, V. Alvarez, L. Calvier, A. Fernandez-Celis, C. Leroy, M. Miana, R. Jurado-Lopez, A.M. Briones, et al. 2015. Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Molecular and Cellular Endocrinology 411: 20–27.PubMed
42.
go back to reference Miller, A.M., D.L. Asquith, A.J. Hueber, L.A. Anderson, W.M. Holmes, A.N. McKenzie, D. Xu, N. Sattar, I.B. McInnes, and F.Y. Liew. 2010. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circulation Research 107: 650–658.PubMedPubMedCentral Miller, A.M., D.L. Asquith, A.J. Hueber, L.A. Anderson, W.M. Holmes, A.N. McKenzie, D. Xu, N. Sattar, I.B. McInnes, and F.Y. Liew. 2010. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circulation Research 107: 650–658.PubMedPubMedCentral
43.
go back to reference Han, J.M., D. Wu, H.C. Denroche, Y. Yao, C.B. Verchere, and M.K. Levings. 2015. IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. The Journal of Immunology 194: 4777–4783.PubMed Han, J.M., D. Wu, H.C. Denroche, Y. Yao, C.B. Verchere, and M.K. Levings. 2015. IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. The Journal of Immunology 194: 4777–4783.PubMed
44.
go back to reference Yang, Y.S., X.Y. Li, J. Hong, W.Q. Gu, Y.F. Zhang, J. Yang, H.D. Song, J.L. Chen, and G. Ning. 2007. Interleukin-18 enhances glucose uptake in 3T3-L1 adipocytes. Endocrine 32: 297–302.PubMed Yang, Y.S., X.Y. Li, J. Hong, W.Q. Gu, Y.F. Zhang, J. Yang, H.D. Song, J.L. Chen, and G. Ning. 2007. Interleukin-18 enhances glucose uptake in 3T3-L1 adipocytes. Endocrine 32: 297–302.PubMed
45.
go back to reference Almendro, V., G. Fuster, E. Ametller, P. Costelli, F. Pilla, S. Busquets, M. Figueras, J.M. Argiles, and F.J. Lopez-Soriano. 2009. Interleukin-15 increases calcineurin expression in 3T3-L1 cells: Possible involvement on in vivo adipocyte differentiation. International Journal of Molecular Medicine 24: 453–458.PubMed Almendro, V., G. Fuster, E. Ametller, P. Costelli, F. Pilla, S. Busquets, M. Figueras, J.M. Argiles, and F.J. Lopez-Soriano. 2009. Interleukin-15 increases calcineurin expression in 3T3-L1 cells: Possible involvement on in vivo adipocyte differentiation. International Journal of Molecular Medicine 24: 453–458.PubMed
46.
go back to reference Lacraz, G., V. Rakotoarivelo, S.M. Labbe, M. Vernier, C. Noll, M. Mayhue, J. Stankova, A. Schwertani, G. Grenier, and A. Carpentier et al. 2016. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues. PLoS One 11:e0162995. Lacraz, G., V. Rakotoarivelo, S.M. Labbe, M. Vernier, C. Noll, M. Mayhue, J. Stankova, A. Schwertani, G. Grenier, and A. Carpentier et al. 2016. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues. PLoS One 11:e0162995.
47.
go back to reference He, D., Z. Jiang, Y. Tian, H. Han, M. Xia, W. Wei, L. Zhang, and J. Chen. 2018. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Animal Genetics 49: 19–28.PubMed He, D., Z. Jiang, Y. Tian, H. Han, M. Xia, W. Wei, L. Zhang, and J. Chen. 2018. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Animal Genetics 49: 19–28.PubMed
48.
go back to reference Chang, E.J., S.K. Lee, Y.S. Song, Y.J. Jang, H.S. Park, J.P. Hong, A.R. Ko, D.Y. Kim, J.H. Kim, Y.J. Lee, and Y.S. Heo. 2014. IL-34 is associated with obesity, chronic inflammation, and insulin resistance. Journal of Clinical Endocrinology and Metabolism 99: E1263-1271.PubMed Chang, E.J., S.K. Lee, Y.S. Song, Y.J. Jang, H.S. Park, J.P. Hong, A.R. Ko, D.Y. Kim, J.H. Kim, Y.J. Lee, and Y.S. Heo. 2014. IL-34 is associated with obesity, chronic inflammation, and insulin resistance. Journal of Clinical Endocrinology and Metabolism 99: E1263-1271.PubMed
49.
go back to reference Lee, M., S.J. Song, M.S. Choi, R. Yu, and T. Park. 2015. IL-7 receptor deletion ameliorates diet-induced obesity and insulin resistance in mice. Diabetologia 58: 2361–2370.PubMed Lee, M., S.J. Song, M.S. Choi, R. Yu, and T. Park. 2015. IL-7 receptor deletion ameliorates diet-induced obesity and insulin resistance in mice. Diabetologia 58: 2361–2370.PubMed
50.
go back to reference Lucas, S., S. Taront, C. Magnan, L. Fauconnier, M. Delacre, L. Macia, A. Delanoye, C. Verwaerde, C. Spriet, and P. Saule et al. 2012. Interleukin-7 regulates adipose tissue mass and insulin sensitivity in high-fat diet-fed mice through lymphocyte-dependent and independent mechanisms. PLoS One 7:e40351. Lucas, S., S. Taront, C. Magnan, L. Fauconnier, M. Delacre, L. Macia, A. Delanoye, C. Verwaerde, C. Spriet, and P. Saule et al. 2012. Interleukin-7 regulates adipose tissue mass and insulin sensitivity in high-fat diet-fed mice through lymphocyte-dependent and independent mechanisms. PLoS One 7:e40351.
51.
go back to reference van Asseldonk, E.J., R. Stienstra, T.B. Koenen, L.J. van Tits, L.A. Joosten, C.J. Tack, and M.G. Netea. 2010. The effect of the interleukin-1 cytokine family members IL-1F6 and IL-1F8 on adipocyte differentiation. Obesity (Silver Spring) 18: 2234–2236. van Asseldonk, E.J., R. Stienstra, T.B. Koenen, L.J. van Tits, L.A. Joosten, C.J. Tack, and M.G. Netea. 2010. The effect of the interleukin-1 cytokine family members IL-1F6 and IL-1F8 on adipocyte differentiation. Obesity (Silver Spring) 18: 2234–2236.
52.
go back to reference Katagiri, S., H. Makishima, K. Azuma, Y. Nannya, Y. Saitoh, S. Yoshizawa, D. Akahane, H. Fujimoto, Y. Ito, R. Velaga, et al. 2020. Predisposed genomic instability in pre-treatment bone marrow evolves to therapy-related myeloid neoplasms in malignant lymphoma. Haematologica 105: e337–e339.PubMedPubMedCentral Katagiri, S., H. Makishima, K. Azuma, Y. Nannya, Y. Saitoh, S. Yoshizawa, D. Akahane, H. Fujimoto, Y. Ito, R. Velaga, et al. 2020. Predisposed genomic instability in pre-treatment bone marrow evolves to therapy-related myeloid neoplasms in malignant lymphoma. Haematologica 105: e337–e339.PubMedPubMedCentral
53.
go back to reference Miyaoka, Y., M. Tanaka, T. Naiki, and A. Miyajima. 2006. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. Journal of Biological Chemistry 281: 37913–37920. Miyaoka, Y., M. Tanaka, T. Naiki, and A. Miyajima. 2006. Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways. Journal of Biological Chemistry 281: 37913–37920.
54.
go back to reference Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 99: E217-225.PubMed Sanchez-Infantes, D., U.A. White, C.M. Elks, R.F. Morrison, J.M. Gimble, R.V. Considine, A.W. Ferrante, E. Ravussin, and J.M. Stephens. 2014. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 99: E217-225.PubMed
55.
go back to reference Ahmed, M., and S.L. Gaffen. 2013. IL-17 inhibits adipogenesis in part via C/EBPalpha. PPARgamma and Kruppel-like factors. Cytokine 61: 898–905.PubMed Ahmed, M., and S.L. Gaffen. 2013. IL-17 inhibits adipogenesis in part via C/EBPalpha. PPARgamma and Kruppel-like factors. Cytokine 61: 898–905.PubMed
56.
go back to reference Zuniga, L.A., W.J. Shen, B. Joyce-Shaikh, E.A. Pyatnova, A.G. Richards, C. Thom, S.M. Andrade, D.J. Cua, F.B. Kraemer, and E.C. Butcher. 2010. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. The Journal of Immunology 185: 6947–6959.PubMed Zuniga, L.A., W.J. Shen, B. Joyce-Shaikh, E.A. Pyatnova, A.G. Richards, C. Thom, S.M. Andrade, D.J. Cua, F.B. Kraemer, and E.C. Butcher. 2010. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. The Journal of Immunology 185: 6947–6959.PubMed
57.
go back to reference Shin, J.H., D.W. Shin, and M. Noh. 2009. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochemical Pharmacology 77: 1835–1844.PubMed Shin, J.H., D.W. Shin, and M. Noh. 2009. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochemical Pharmacology 77: 1835–1844.PubMed
58.
go back to reference Lee, K., S.H. Um, D.K. Rhee, and S. Pyo. 2016. Interferon-alpha inhibits adipogenesis via regulation of JAK/STAT1 signaling. Biochimica et Biophysica Acta 1860: 2416–2427.PubMed Lee, K., S.H. Um, D.K. Rhee, and S. Pyo. 2016. Interferon-alpha inhibits adipogenesis via regulation of JAK/STAT1 signaling. Biochimica et Biophysica Acta 1860: 2416–2427.PubMed
59.
go back to reference Ellulu, M.S., I. Patimah, H. Khaza’ai, A. Rahmat, and Y. Abed. 2017. Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science 13: 851–863.PubMed Ellulu, M.S., I. Patimah, H. Khaza’ai, A. Rahmat, and Y. Abed. 2017. Obesity and inflammation: The linking mechanism and the complications. Archives of Medical Science 13: 851–863.PubMed
60.
go back to reference Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52: 2784–2789.PubMed Klover, P.J., T.A. Zimmers, L.G. Koniaris, and R.A. Mooney. 2003. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52: 2784–2789.PubMed
61.
go back to reference Janssens, K., H. Slaets, and N. Hellings. 2015. Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis. Annals of the New York Academy of Sciences 1351: 52–60.PubMed Janssens, K., H. Slaets, and N. Hellings. 2015. Immunomodulatory properties of the IL-6 cytokine family in multiple sclerosis. Annals of the New York Academy of Sciences 1351: 52–60.PubMed
62.
go back to reference Copaescu, A., O. Smibert, A. Gibson, E.J. Phillips, and J.A. Trubiano. 2020. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 146:518–534 e511. Copaescu, A., O. Smibert, A. Gibson, E.J. Phillips, and J.A. Trubiano. 2020. The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. J Allergy Clin Immunol 146:518–534 e511.
63.
go back to reference Cawthorn, W.P., and J.K. Sethi. 2008. TNF-alpha and adipocyte biology. FEBS Letters 582: 117–131.PubMed Cawthorn, W.P., and J.K. Sethi. 2008. TNF-alpha and adipocyte biology. FEBS Letters 582: 117–131.PubMed
64.
go back to reference Ballak, D.B., R. Stienstra, C.J. Tack, C.A. Dinarello, and J.A. van Diepen. 2015. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 75: 280–290.PubMedPubMedCentral Ballak, D.B., R. Stienstra, C.J. Tack, C.A. Dinarello, and J.A. van Diepen. 2015. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 75: 280–290.PubMedPubMedCentral
65.
go back to reference Han, J.M., D. Wu, H.C. Denroche, Y. Yao, and C.B. Verchere Levings. 2015. MK: IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. Journal of immunology (Baltimore, Md : 1950) 194:4777–4783. Han, J.M., D. Wu, H.C. Denroche, Y. Yao, and C.B. Verchere Levings. 2015. MK: IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. Journal of immunology (Baltimore, Md : 1950) 194:4777–4783.
66.
go back to reference Yasuda, K., K. Nakanishi, and H. Tsutsui. 2019. Interleukin-18 in Health and Disease. International of Journal Molecular Sciences 20. Yasuda, K., K. Nakanishi, and H. Tsutsui. 2019. Interleukin-18 in Health and Disease. International of Journal Molecular Sciences 20.
67.
go back to reference Quinn, L.S., L. Strait-Bodey, B.G. Anderson, J.M. Argiles, and P.J. Havel. 2005. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway. Cell Biology International 29: 449–457.PubMed Quinn, L.S., L. Strait-Bodey, B.G. Anderson, J.M. Argiles, and P.J. Havel. 2005. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-to-fat signaling pathway. Cell Biology International 29: 449–457.PubMed
68.
go back to reference Hang, H., J.L. Bailey, and C.M. Elks. 2019. Oncostatin M Mediates Adipocyte Expression and Secretion of Stromal-Derived Factor 1. Biology (Basel) 8. Hang, H., J.L. Bailey, and C.M. Elks. 2019. Oncostatin M Mediates Adipocyte Expression and Secretion of Stromal-Derived Factor 1. Biology (Basel) 8.
69.
go back to reference Somm, E., P. Cettour-Rose, C. Asensio, A. Charollais, M. Klein, C. Theander-Carrillo, C.E. Juge-Aubry, J.M. Dayer, M.J. Nicklin, P. Meda, et al. 2006. Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia 49: 387–393.PubMed Somm, E., P. Cettour-Rose, C. Asensio, A. Charollais, M. Klein, C. Theander-Carrillo, C.E. Juge-Aubry, J.M. Dayer, M.J. Nicklin, P. Meda, et al. 2006. Interleukin-1 receptor antagonist is upregulated during diet-induced obesity and regulates insulin sensitivity in rodents. Diabetologia 49: 387–393.PubMed
70.
go back to reference Somm, E., E. Henrichot, A. Pernin, C.E. Juge-Aubry, P. Muzzin, J.M. Dayer, M.J. Nicklin, and C.A. Meier. 2005. Decreased fat mass in interleukin-1 receptor antagonist-deficient mice: Impact on adipogenesis, food intake, and energy expenditure. Diabetes 54: 3503–3509.PubMed Somm, E., E. Henrichot, A. Pernin, C.E. Juge-Aubry, P. Muzzin, J.M. Dayer, M.J. Nicklin, and C.A. Meier. 2005. Decreased fat mass in interleukin-1 receptor antagonist-deficient mice: Impact on adipogenesis, food intake, and energy expenditure. Diabetes 54: 3503–3509.PubMed
71.
go back to reference Chang, Y.H., K.T. Ho, S.H. Lu, C.N. Huang, and M.Y. Shiau. 2012. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. International Journal of Obesity 36: 993–998.PubMed Chang, Y.H., K.T. Ho, S.H. Lu, C.N. Huang, and M.Y. Shiau. 2012. Regulation of glucose/lipid metabolism and insulin sensitivity by interleukin-4. International Journal of Obesity 36: 993–998.PubMed
72.
go back to reference Wensveen, F.M., S. Valentic, M. Sestan, T. Turk Wensveen, and B. Polic. 2015. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. European Journal of Immunology 45: 2446–2456.PubMed Wensveen, F.M., S. Valentic, M. Sestan, T. Turk Wensveen, and B. Polic. 2015. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. European Journal of Immunology 45: 2446–2456.PubMed
73.
go back to reference Yang, C.P., M.Y. Shiau, Y.R. Lai, K.T. Ho, C.W. Hsiao, C.J. Chen, Y.L. Lo, and Y.H. Chang. 2018. Interleukin-4 Boosts Insulin-Induced Energy Deposits by Enhancing Glucose Uptake and Lipogenesis in Hepatocytes. Oxidative Medicine and Cellular Longevity 2018: 6923187.PubMedPubMedCentral Yang, C.P., M.Y. Shiau, Y.R. Lai, K.T. Ho, C.W. Hsiao, C.J. Chen, Y.L. Lo, and Y.H. Chang. 2018. Interleukin-4 Boosts Insulin-Induced Energy Deposits by Enhancing Glucose Uptake and Lipogenesis in Hepatocytes. Oxidative Medicine and Cellular Longevity 2018: 6923187.PubMedPubMedCentral
74.
go back to reference Molofsky, A.B., J.C. Nussbaum, H.E. Liang, S.J. Van Dyken, L.E. Cheng, A. Mohapatra, A. Chawla, and R.M. Locksley. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. Journal of Experimental Medicine 210: 535–549.PubMedCentral Molofsky, A.B., J.C. Nussbaum, H.E. Liang, S.J. Van Dyken, L.E. Cheng, A. Mohapatra, A. Chawla, and R.M. Locksley. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. Journal of Experimental Medicine 210: 535–549.PubMedCentral
75.
go back to reference Johnson, A.M., A. Costanzo, M.G. Gareau, A.M. Armando, O. Quehenberger, J.M. Jameson, and J.M. Olefsky. 2015. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One 10:e0122195. Johnson, A.M., A. Costanzo,  M.G. Gareau, A.M. Armando, O. Quehenberger, J.M. Jameson, and J.M. Olefsky. 2015. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One 10:e0122195.
76.
go back to reference Acosta, J.R., B. Tavira, I. Douagi, A. Kulyte, P. Arner, M. Ryden, and J. Laurencikiene. 2019. Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. Journal of Clinical Endocrinology and Metabolism 104: 4552–4562.PubMed Acosta, J.R., B. Tavira, I. Douagi, A. Kulyte, P. Arner, M. Ryden, and J. Laurencikiene. 2019. Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. Journal of Clinical Endocrinology and Metabolism 104: 4552–4562.PubMed
77.
go back to reference Rajbhandari, P., B.J. Thomas, A.C. Feng, C. Hong, J. Wang, L. Vergnes, T. Sallam, B. Wang, J. Sandhu, and M.M. Seldin et al. 2018. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 172:218–233 e217. Rajbhandari, P., B.J. Thomas, A.C. Feng, C. Hong, J. Wang, L. Vergnes, T. Sallam, B. Wang, J. Sandhu, and M.M. Seldin et al. 2018. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 172:218–233 e217.
78.
go back to reference Annamalai, D., and N.A. Clipstone. 2014. Prostaglandin F2alpha inhibits adipogenesis via an autocrine-mediated interleukin-11/glycoprotein 130/STAT1-dependent signaling cascade. Journal of Cellular Biochemistry 115: 1308–1321.PubMed Annamalai, D., and N.A. Clipstone. 2014. Prostaglandin F2alpha inhibits adipogenesis via an autocrine-mediated interleukin-11/glycoprotein 130/STAT1-dependent signaling cascade. Journal of Cellular Biochemistry 115: 1308–1321.PubMed
79.
go back to reference Kwon, H., S. Laurent, Y. Tang, H. Zong, P. Vemulapalli, and J.E. Pessin. 2014. Adipocyte-specific IKKbeta signaling suppresses adipose tissue inflammation through an IL-13-dependent paracrine feedback pathway. Cell Reports 9: 1574–1583.PubMed Kwon, H., S. Laurent, Y. Tang, H. Zong, P. Vemulapalli, and J.E. Pessin. 2014. Adipocyte-specific IKKbeta signaling suppresses adipose tissue inflammation through an IL-13-dependent paracrine feedback pathway. Cell Reports 9: 1574–1583.PubMed
80.
go back to reference Zamani, N., and C.W. Brown. 2011. Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocrine Reviews 32: 387–403.PubMed Zamani, N., and C.W. Brown. 2011. Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocrine Reviews 32: 387–403.PubMed
81.
go back to reference Meier, C.A., E. Bobbioni, C. Gabay, F. Assimacopoulos-Jeannet, A. Golay, and J.M. Dayer. 2002. IL-1 receptor antagonist serum levels are increased in human obesity: A possible link to the resistance to leptin? Journal of Clinical Endocrinology and Metabolism 87: 1184–1188.PubMed Meier, C.A., E. Bobbioni, C. Gabay, F. Assimacopoulos-Jeannet, A. Golay, and J.M. Dayer. 2002. IL-1 receptor antagonist serum levels are increased in human obesity: A possible link to the resistance to leptin? Journal of Clinical Endocrinology and Metabolism 87: 1184–1188.PubMed
82.
83.
go back to reference de-Lima-Junior, J.C., G.F. Souza, A. Moura-Assis, R.S. Gaspar, J.M. Gaspar, A.L. Rocha, D.L. Ferrucci, T.I. Lima, S.C. Victorio, and I.L.P. Bonfante et al. 2019. Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine 39:436–447. de-Lima-Junior, J.C., G.F. Souza, A. Moura-Assis, R.S. Gaspar, J.M. Gaspar, A.L. Rocha, D.L. Ferrucci, T.I. Lima, S.C. Victorio, and I.L.P. Bonfante et al. 2019. Abnormal brown adipose tissue mitochondrial structure and function in IL10 deficiency. EBioMedicine 39:436–447.
84.
go back to reference Hong, E.G., H.J. Ko, Y.R. Cho, H.J. Kim, Z. Ma, T.Y. Yu, R.H. Friedline, E. Kurt-Jones, R. Finberg, M.A. Fischer, et al. 2009. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58: 2525–2535.PubMedPubMedCentral Hong, E.G., H.J. Ko, Y.R. Cho, H.J. Kim, Z. Ma, T.Y. Yu, R.H. Friedline, E. Kurt-Jones, R. Finberg, M.A. Fischer, et al. 2009. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58: 2525–2535.PubMedPubMedCentral
85.
go back to reference Lind, M. 1996. Growth factors: Possible new clinical tools. A review. Acta Acta Orthopaedica Scandinavica 67: 407–417.PubMed Lind, M. 1996. Growth factors: Possible new clinical tools. A review. Acta Acta Orthopaedica Scandinavica 67: 407–417.PubMed
86.
go back to reference Stone, W.L., L. Leavitt, M. Varacallo. 2021. Physiology, Growth Factor. In StatPearls. Treasure Island (FL) Stone, W.L., L. Leavitt, M. Varacallo. 2021. Physiology, Growth Factor. In StatPearls. Treasure Island (FL)
87.
go back to reference Karaman, S., M. Hollmen, S.Y. Yoon, H.F. Alkan, K. Alitalo, C. Wolfrum, and M. Detmar. 2016. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Science and Reports 6: 31566. Karaman, S., M. Hollmen, S.Y. Yoon, H.F. Alkan, K. Alitalo, C. Wolfrum, and M. Detmar. 2016. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Science and Reports 6: 31566.
88.
go back to reference Karaman, S., M. Hollmen, M.R. Robciuc, A. Alitalo, H. Nurmi, B. Morf, D. Buschle, H.F. Alkan, A.M. Ochsenbein, K. Alitalo, et al. 2015. Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol Metab 4: 93–105.PubMed Karaman, S., M. Hollmen, M.R. Robciuc, A. Alitalo, H. Nurmi, B. Morf, D. Buschle, H.F. Alkan, A.M. Ochsenbein, K. Alitalo, et al. 2015. Blockade of VEGF-C and VEGF-D modulates adipose tissue inflammation and improves metabolic parameters under high-fat diet. Mol Metab 4: 93–105.PubMed
89.
go back to reference Yoshino, J., B.W. Patterson, and S. Klein. 2019. Adipose Tissue CTGF Expression is Associated with Adiposity and Insulin Resistance in Humans. Obesity (Silver Spring) 27: 957–962. Yoshino, J., B.W. Patterson, and S. Klein. 2019. Adipose Tissue CTGF Expression is Associated with Adiposity and Insulin Resistance in Humans. Obesity (Silver Spring) 27: 957–962.
90.
go back to reference Lewitt, M.S. 2017. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity. Biochem Insights 10: 1178626417703995.PubMedPubMedCentral Lewitt, M.S. 2017. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity. Biochem Insights 10: 1178626417703995.PubMedPubMedCentral
91.
go back to reference Witkowska-Sedek, E., D. Labochka, A. Stelmaszczyk-Emmel, A. Majcher, A. Kucharska, M. Sobol, K. Kadziela, and B. Pyrzak. 2018. Evaluation of glucose metabolism in children with growth hormone deficiency during long-term growth hormone treatment. Journal of Physiology Pharmacology 69. Witkowska-Sedek, E., D. Labochka, A. Stelmaszczyk-Emmel, A. Majcher, A. Kucharska, M. Sobol, K. Kadziela, and B. Pyrzak. 2018. Evaluation of glucose metabolism in children with growth hormone deficiency during long-term growth hormone treatment. Journal of Physiology Pharmacology 69.
92.
go back to reference Li, H., G. Wu, Q. Fang, M. Zhang, X. Hui, B. Sheng, L. Wu, Y. Bao, P. Li, A. Xu, and W. Jia. 2018. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nature Communications 9: 272.PubMedPubMedCentral Li, H., G. Wu, Q. Fang, M. Zhang, X. Hui, B. Sheng, L. Wu, Y. Bao, P. Li, A. Xu, and W. Jia. 2018. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nature Communications 9: 272.PubMedPubMedCentral
93.
go back to reference Tsurutani, Y., M. Fujimoto, M. Takemoto, H. Irisuna, M. Koshizaka, S. Onishi, T. Ishikawa, M. Mezawa, P. He, S. Honjo, et al. 2011. The roles of transforming growth factor-beta and Smad3 signaling in adipocyte differentiation and obesity. Biochemical and Biophysical Research Communications 407: 68–73.PubMed Tsurutani, Y., M. Fujimoto, M. Takemoto, H. Irisuna, M. Koshizaka, S. Onishi, T. Ishikawa, M. Mezawa, P. He, S. Honjo, et al. 2011. The roles of transforming growth factor-beta and Smad3 signaling in adipocyte differentiation and obesity. Biochemical and Biophysical Research Communications 407: 68–73.PubMed
94.
go back to reference Inoh, Y., T. Furuno, N. Hirashima, D. Kitamoto, and M. Nakanishi. 2011. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochemical and Biophysical Research Communications 414: 635–640.PubMed Inoh, Y., T. Furuno, N. Hirashima, D. Kitamoto, and M. Nakanishi. 2011. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochemical and Biophysical Research Communications 414: 635–640.PubMed
95.
go back to reference Tan, C.K., N. Leuenberger, M.J. Tan, Y.W. Yan, Y. Chen, R. Kambadur, W. Wahli, and N.S. Tan. 2011. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60: 464–476.PubMedPubMedCentral Tan, C.K., N. Leuenberger, M.J. Tan, Y.W. Yan, Y. Chen, R. Kambadur, W. Wahli, and N.S. Tan. 2011. Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60: 464–476.PubMedPubMedCentral
96.
go back to reference Freitas, P., D. Carvalho, A.C. Santos, A.J. Madureira, E. Martinez, J. Pereira, A. Sarmento, and J.L. Medina. 2014. Adipokines, hormones related to body composition, and insulin resistance in HIV fat redistribution syndrome. BMC Infectious Diseases 14: 347.PubMedPubMedCentral Freitas, P., D. Carvalho, A.C. Santos, A.J. Madureira, E. Martinez, J. Pereira, A. Sarmento, and J.L. Medina. 2014. Adipokines, hormones related to body composition, and insulin resistance in HIV fat redistribution syndrome. BMC Infectious Diseases 14: 347.PubMedPubMedCentral
97.
go back to reference Harris, R.B. 2014. Direct and indirect effects of leptin on adipocyte metabolism. Biochimica et Biophysica Acta 1842: 414–423.PubMed Harris, R.B. 2014. Direct and indirect effects of leptin on adipocyte metabolism. Biochimica et Biophysica Acta 1842: 414–423.PubMed
98.
go back to reference Escote, X., S. Gomez-Zorita, M. Lopez-Yoldi, I. Milton-Laskibar, A. Fernandez-Quintela, J.A. Martinez, M.J. Moreno-Aliaga, and M.P. Portillo. 2017. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. International of Journal Molecular Sciences 18. Escote, X., S. Gomez-Zorita, M. Lopez-Yoldi, I. Milton-Laskibar, A. Fernandez-Quintela, J.A. Martinez, M.J. Moreno-Aliaga, and M.P. Portillo. 2017. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. International of Journal Molecular Sciences 18.
99.
go back to reference Achari, A.E., and S.K. Jain. 2017. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci 18. Achari, A.E.,  and S.K. Jain. 2017. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int J Mol Sci 18.
100.
go back to reference Heiker, J.T. 2014. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. Journal of Peptide Science 20: 299–306.PubMed Heiker, J.T. 2014. Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. Journal of Peptide Science 20: 299–306.PubMed
101.
go back to reference Gao, C.L., G.L. Liu, S. Liu, X.H. Chen, C.B. Ji, C.M. Zhang, Z.K. Xia, and X.R. Guo. 2011. Overexpression of PGC-1beta improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Molecular and Cellular Biochemistry 353: 215–223.PubMed Gao, C.L., G.L. Liu, S. Liu, X.H. Chen, C.B. Ji, C.M. Zhang, Z.K. Xia, and X.R. Guo. 2011. Overexpression of PGC-1beta improves insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. Molecular and Cellular Biochemistry 353: 215–223.PubMed
102.
go back to reference Than, A., H.L. He, S.H. Chua, D. Xu, L. Sun, M.K. Leow, and P. Chen. 2015. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. Journal of Biological Chemistry 290: 14679–14691.PubMedCentral Than, A., H.L. He, S.H. Chua, D. Xu, L. Sun, M.K. Leow, and P. Chen. 2015. Apelin Enhances Brown Adipogenesis and Browning of White Adipocytes. Journal of Biological Chemistry 290: 14679–14691.PubMedCentral
103.
go back to reference Losko, M., D. Dolicka, N. Pydyn, U. Jankowska, S. Kedracka-Krok, M. Kulecka, A. Paziewska, M. Mikula, P. Major, M. Winiarski, et al. 2020. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cellular and Molecular Life Sciences 77: 4899–4919.PubMed Losko, M., D. Dolicka, N. Pydyn, U. Jankowska, S. Kedracka-Krok, M. Kulecka, A. Paziewska, M. Mikula, P. Major, M. Winiarski, et al. 2020. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cellular and Molecular Life Sciences 77: 4899–4919.PubMed
104.
go back to reference Qu, H., H. Deng, and Z. Hu. 2013. Plasma progranulin concentrations are increased in patients with type 2 diabetes and obesity and correlated with insulin resistance. Mediators Inflammation 2013:360190. Qu, H., H. Deng, and Z. Hu. 2013. Plasma progranulin concentrations are increased in patients with type 2 diabetes and obesity and correlated with insulin resistance. Mediators Inflammation 2013:360190.
105.
go back to reference Schmid, A., A. Hochberg, A.F. Kreiss, J. Gehl, M. Patz, M. Thomalla, F. Hanses, T. Karrasch, A. Schaffler. 2020. Role of progranulin in adipose tissue innate immunity. Cytokine 125:154796. Schmid, A., A. Hochberg, A.F. Kreiss, J. Gehl, M. Patz, M. Thomalla, F. Hanses, T. Karrasch, A. Schaffler. 2020. Role of progranulin in adipose tissue innate immunity. Cytokine 125:154796.
Metadata
Title
Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance
Authors
Layla Al-Mansoori
Hend Al-Jaber
Mohammad Shoaib Prince
Mohamed A. Elrayess
Publication date
01-02-2022
Publisher
Springer US
Published in
Inflammation / Issue 1/2022
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01559-z

Other articles of this Issue 1/2022

Inflammation 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.