Skip to main content
Top
Published in: Inflammation 3/2021

01-06-2021 | Review

The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells

Authors: Yi-jin Wu, Li Wang, Chao-fan Ji, Shao-fei Gu, Qin Yin, Jian Zuo

Published in: Inflammation | Issue 3/2021

Login to get access

Abstract

Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Literature
1.
go back to reference Czura, C.J., S.G. Friedman, and K.J. Tracey. 2003. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research 9 (6): 409–413.PubMedCrossRef Czura, C.J., S.G. Friedman, and K.J. Tracey. 2003. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research 9 (6): 409–413.PubMedCrossRef
2.
go back to reference Pavlov, V.A., and K.J. Tracey. 2004. Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61 (18): 2322–2331.PubMedCrossRef Pavlov, V.A., and K.J. Tracey. 2004. Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61 (18): 2322–2331.PubMedCrossRef
3.
go back to reference Czura, C.J., and K.J. Tracey. 2005. Autonomic neural regulation of immunity. Journal of Internal Medicine 257 (2): 156–166.PubMedCrossRef Czura, C.J., and K.J. Tracey. 2005. Autonomic neural regulation of immunity. Journal of Internal Medicine 257 (2): 156–166.PubMedCrossRef
4.
go back to reference Wei, W. 2016. Soft regulation of inflammatory immune response. Chinese Pharmacological Bulletin 32 (3): 297–303. Wei, W. 2016. Soft regulation of inflammatory immune response. Chinese Pharmacological Bulletin 32 (3): 297–303.
6.
go back to reference Qian, Y.S., Q.Y. Zhao, S.J. Zhang, Y.J. Zhang, Y.C. Wang, H.Y. Zhao, Z.X. Dai, Y.H. Tang, X. Wang, T. Wang, and C.X. Huang. 2018. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation. Zhonghua Yi Xue Za Zhi 98 (11): 855–859.PubMed Qian, Y.S., Q.Y. Zhao, S.J. Zhang, Y.J. Zhang, Y.C. Wang, H.Y. Zhao, Z.X. Dai, Y.H. Tang, X. Wang, T. Wang, and C.X. Huang. 2018. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation. Zhonghua Yi Xue Za Zhi 98 (11): 855–859.PubMed
7.
go back to reference Jarczyk, J., B.A. Yard, and S. Hoeger. 2019. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney & Blood Pressure Research 44 (4): 435–448.CrossRef Jarczyk, J., B.A. Yard, and S. Hoeger. 2019. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney & Blood Pressure Research 44 (4): 435–448.CrossRef
8.
go back to reference Li, Z., H. Hao, Y. Gao, Z. Wang, W. Lu, and J. Liu. 2019. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochemica 121 (6): 742–749.PubMedCrossRef Li, Z., H. Hao, Y. Gao, Z. Wang, W. Lu, and J. Liu. 2019. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochemica 121 (6): 742–749.PubMedCrossRef
10.
go back to reference Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.PubMedCrossRef Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.PubMedCrossRef
11.
go back to reference van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The Journal of Infectious Diseases 191 (12): 2138–2148.PubMedCrossRef van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The Journal of Infectious Diseases 191 (12): 2138–2148.PubMedCrossRef
12.
go back to reference Ghia, J.E., P. Blennerhassett, and S.M. Collins. 2008. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. The Journal of Clinical Investigation 118 (6): 2209–2218.PubMedPubMedCentral Ghia, J.E., P. Blennerhassett, and S.M. Collins. 2008. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. The Journal of Clinical Investigation 118 (6): 2209–2218.PubMedPubMedCentral
13.
go back to reference Yeboah, M.M., X. Xue, B. Duan, M. Ochani, K.J. Tracey, M. Susin, and C.N. Metz. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney International 74 (1): 62–69.PubMedPubMedCentralCrossRef Yeboah, M.M., X. Xue, B. Duan, M. Ochani, K.J. Tracey, M. Susin, and C.N. Metz. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney International 74 (1): 62–69.PubMedPubMedCentralCrossRef
14.
go back to reference Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 11008–11013.PubMedPubMedCentralCrossRef Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 11008–11013.PubMedPubMedCentralCrossRef
15.
go back to reference Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203 (7): 1623–1628.PubMedPubMedCentralCrossRef Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203 (7): 1623–1628.PubMedPubMedCentralCrossRef
16.
go back to reference Revathikumar, P., J. Estelius, U. Karmakar, E. Le Maître, M. Korotkova, P.J. Jakobsson, and J. Lampa. 2018. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 13 (2): e0193210.PubMedPubMedCentralCrossRef Revathikumar, P., J. Estelius, U. Karmakar, E. Le Maître, M. Korotkova, P.J. Jakobsson, and J. Lampa. 2018. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 13 (2): e0193210.PubMedPubMedCentralCrossRef
17.
go back to reference Bellinger, D.L., S.Y. Felten, D. Lorton, and D.L. Felten. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain, Behavior, and Immunity 3 (4): 291–311.PubMedCrossRef Bellinger, D.L., S.Y. Felten, D. Lorton, and D.L. Felten. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain, Behavior, and Immunity 3 (4): 291–311.PubMedCrossRef
18.
go back to reference Bellinger, D.L., S.Y. Felten, T.J. Collier, and D.L. Felten. 1987. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. Journal of Neuroscience Research 18 (1): 55–63 126–129.PubMedCrossRef Bellinger, D.L., S.Y. Felten, T.J. Collier, and D.L. Felten. 1987. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. Journal of Neuroscience Research 18 (1): 55–63 126–129.PubMedCrossRef
19.
go back to reference Martelli, D., M.J. McKinley, and R.M. McAllen. 2014. The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience 182: 65–69.PubMedCrossRef Martelli, D., M.J. McKinley, and R.M. McAllen. 2014. The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience 182: 65–69.PubMedCrossRef
20.
go back to reference Jensen, A.A., B. Frølund, T. Liljefors, and P. Krogsgaard-Larsen. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry 48 (15): 4705–4745.PubMedCrossRef Jensen, A.A., B. Frølund, T. Liljefors, and P. Krogsgaard-Larsen. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry 48 (15): 4705–4745.PubMedCrossRef
21.
go back to reference Lukas, R.J., J.P. Changeux, N. Le Novère, E.X. Albuquerque, D.J. Balfour, D.K. Berg, D. Bertrand, V.A. Chiappinelli, P.B. Clarke, A.C. Collins, J.A. Dani, S.R. Grady, K.J. Kellar, J.M. Lindstrom, M.J. Marks, M. Quik, P.W. Taylor, and S. Wonnacott. 1999. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacological Reviews 51 (2): 397–401.PubMed Lukas, R.J., J.P. Changeux, N. Le Novère, E.X. Albuquerque, D.J. Balfour, D.K. Berg, D. Bertrand, V.A. Chiappinelli, P.B. Clarke, A.C. Collins, J.A. Dani, S.R. Grady, K.J. Kellar, J.M. Lindstrom, M.J. Marks, M. Quik, P.W. Taylor, and S. Wonnacott. 1999. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacological Reviews 51 (2): 397–401.PubMed
22.
go back to reference Romanelli, M.N., and F. Gualtieri. 2003. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Medicinal Research Reviews 23 (4): 393–426.PubMedCrossRef Romanelli, M.N., and F. Gualtieri. 2003. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Medicinal Research Reviews 23 (4): 393–426.PubMedCrossRef
23.
go back to reference Hurst, R., H. Rollema, and D. Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics 137 (1): 22–54.CrossRef Hurst, R., H. Rollema, and D. Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics 137 (1): 22–54.CrossRef
24.
go back to reference Gault, J., M. Robinson, R. Berger, C. Drebing, J. Logel, J. Hopkins, T. Moore, S. Jacobs, J. Meriwether, M.J. Choi, E.J. Kim, K. Walton, K. Buiting, A. Davis, C. Breese, R. Freedman, and S. Leonard. 1998. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52 (2): 173–185.PubMedCrossRef Gault, J., M. Robinson, R. Berger, C. Drebing, J. Logel, J. Hopkins, T. Moore, S. Jacobs, J. Meriwether, M.J. Choi, E.J. Kim, K. Walton, K. Buiting, A. Davis, C. Breese, R. Freedman, and S. Leonard. 1998. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52 (2): 173–185.PubMedCrossRef
25.
go back to reference Canastar, A., J. Logel, S. Graw, J. Finlay-Schultz, C. Osborne, M. Palionyte, C. Drebing, M. Plehaty, L. Wilson, R. Eyeson, and S. Leonard. 2012. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. Journal of Molecular Neuroscience 47 (2): 389–400.PubMedCrossRef Canastar, A., J. Logel, S. Graw, J. Finlay-Schultz, C. Osborne, M. Palionyte, C. Drebing, M. Plehaty, L. Wilson, R. Eyeson, and S. Leonard. 2012. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. Journal of Molecular Neuroscience 47 (2): 389–400.PubMedCrossRef
26.
go back to reference Kombo, D.C., A.A. Mazurov, J. Chewning, P.S. Hammond, K. Tallapragada, T.A. Hauser, J. Speake, D. Yohannes, and W.S. Caldwell. 2012. Discovery of novel α7 nicotinic acetylcholine receptor ligands via pharmacophoric and docking studies of benzylidene anabaseine analogs. Bioorganic & Medicinal Chemistry Letters 22 (2): 1179–1186.CrossRef Kombo, D.C., A.A. Mazurov, J. Chewning, P.S. Hammond, K. Tallapragada, T.A. Hauser, J. Speake, D. Yohannes, and W.S. Caldwell. 2012. Discovery of novel α7 nicotinic acetylcholine receptor ligands via pharmacophoric and docking studies of benzylidene anabaseine analogs. Bioorganic & Medicinal Chemistry Letters 22 (2): 1179–1186.CrossRef
27.
go back to reference Wang, H.Y., D.H. Lee, M.R. D'Andrea, P.A. Peterson, R.P. Shank, and A.B. Reitz. 2000. beta-Amyloid (1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. The Journal of Biological Chemistry 275 (8): 5626–5632.PubMedCrossRef Wang, H.Y., D.H. Lee, M.R. D'Andrea, P.A. Peterson, R.P. Shank, and A.B. Reitz. 2000. beta-Amyloid (1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. The Journal of Biological Chemistry 275 (8): 5626–5632.PubMedCrossRef
28.
go back to reference Burghaus, L., U. Schütz, U. Krempel, J. Lindstrom, and H. Schröder. 2003. Loss of nicotinic acetylcholine receptor subunits alpha4 and alpha7 in the cerebral cortex of Parkinson patients. Parkinsonism & Related Disorders 9 (5): 243–246.CrossRef Burghaus, L., U. Schütz, U. Krempel, J. Lindstrom, and H. Schröder. 2003. Loss of nicotinic acetylcholine receptor subunits alpha4 and alpha7 in the cerebral cortex of Parkinson patients. Parkinsonism & Related Disorders 9 (5): 243–246.CrossRef
29.
go back to reference Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.PubMedCrossRef Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.PubMedCrossRef
30.
go back to reference Sinkus, M.L., S. Graw, R. Freedman, R.G. Ross, H.A. Lester, and S. Leonard. 2015. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96 (Pt B): 274–288.PubMedPubMedCentralCrossRef Sinkus, M.L., S. Graw, R. Freedman, R.G. Ross, H.A. Lester, and S. Leonard. 2015. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96 (Pt B): 274–288.PubMedPubMedCentralCrossRef
31.
go back to reference John, D., I. Shelukhina, Y. Yanagawa, J. Deuchars, and Z. Henderson. 2015. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Research 1601: 15–30.PubMedPubMedCentralCrossRef John, D., I. Shelukhina, Y. Yanagawa, J. Deuchars, and Z. Henderson. 2015. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Research 1601: 15–30.PubMedPubMedCentralCrossRef
32.
go back to reference Moretti, M., M. Zoli, A.A. George, R.J. Lukas, F. Pistillo, U. Maskos, P. Whiteaker, and C. Gotti. 2014. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Molecular Pharmacology 86 (3): 306–317.PubMedPubMedCentralCrossRef Moretti, M., M. Zoli, A.A. George, R.J. Lukas, F. Pistillo, U. Maskos, P. Whiteaker, and C. Gotti. 2014. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Molecular Pharmacology 86 (3): 306–317.PubMedPubMedCentralCrossRef
33.
go back to reference Qi, X.L., and Z.Z. Guan. 2008. Neuroprotective effects of alpha7 neuronal acetylcholine receptor and its roles in the pathogenesis of Alzheimer’s disease. Zhong hua Bing Li Xue Za Zhi 37 (1): 51–55. Qi, X.L., and Z.Z. Guan. 2008. Neuroprotective effects of alpha7 neuronal acetylcholine receptor and its roles in the pathogenesis of Alzheimer’s disease. Zhong hua Bing Li Xue Za Zhi 37 (1): 51–55.
34.
go back to reference Gotti, C., and F. Clementi. 2004. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology 74 (6): 363–396.PubMedCrossRef Gotti, C., and F. Clementi. 2004. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology 74 (6): 363–396.PubMedCrossRef
35.
go back to reference Chen, L.Y., Z.G. Liu, Y.H. Li, Y.Z. Feng, and J.R. Wang. 2008. Expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7) in peripheral blood CD(4)(+) T lymphocytes from asthmatic children. Zhong hua Jie He He Hu Xi Za Zhi 31 (11): 803–805. Chen, L.Y., Z.G. Liu, Y.H. Li, Y.Z. Feng, and J.R. Wang. 2008. Expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7) in peripheral blood CD(4)(+) T lymphocytes from asthmatic children. Zhong hua Jie He He Hu Xi Za Zhi 31 (11): 803–805.
36.
go back to reference Blanchet, M.R., E. Israël-Assayag, P. Daleau, M.J. Beaulieu, and Y. Cormier. 2006. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (4): L757–L763.PubMedCrossRef Blanchet, M.R., E. Israël-Assayag, P. Daleau, M.J. Beaulieu, and Y. Cormier. 2006. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (4): L757–L763.PubMedCrossRef
37.
go back to reference Villiger, Y., I. Szanto, S. Jaconi, C. Blanchet, B. Buisson, K.H. Krause, D. Bertrand, and J.A. Romand. 2002. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology 126 (1–2): 86–98.PubMedCrossRef Villiger, Y., I. Szanto, S. Jaconi, C. Blanchet, B. Buisson, K.H. Krause, D. Bertrand, and J.A. Romand. 2002. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology 126 (1–2): 86–98.PubMedCrossRef
38.
go back to reference Sugano, N., K. Shimada, K. Ito, and S. Murai. 1998. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochemical and Biophysical Research Communications 252 (1): 25–28.PubMedCrossRef Sugano, N., K. Shimada, K. Ito, and S. Murai. 1998. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochemical and Biophysical Research Communications 252 (1): 25–28.PubMedCrossRef
39.
go back to reference Rioux, N., and A. Castonguay. 2000. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21 (9): 1745–1751.PubMedCrossRef Rioux, N., and A. Castonguay. 2000. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21 (9): 1745–1751.PubMedCrossRef
40.
go back to reference Wang, H., H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E.J. Miller, K.J. Tracey, and L. Ulloa. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10 (11): 1216–1221.PubMedCrossRef Wang, H., H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E.J. Miller, K.J. Tracey, and L. Ulloa. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10 (11): 1216–1221.PubMedCrossRef
41.
go back to reference Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201 (7): 1113–11123.PubMedPubMedCentralCrossRef Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201 (7): 1113–11123.PubMedPubMedCentralCrossRef
42.
go back to reference Tanaka, M., M.E. Fuentes, K. Yamaguchi, M.H. Durnin, S.A. Dalrymple, K.L. Hardy, and D.V. Goeddel. 1999. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10 (4): 421–429.PubMedCrossRef Tanaka, M., M.E. Fuentes, K. Yamaguchi, M.H. Durnin, S.A. Dalrymple, K.L. Hardy, and D.V. Goeddel. 1999. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10 (4): 421–429.PubMedCrossRef
43.
go back to reference van Maanen, M.A., M.C. Lebre, T. van der Poll, G.J. LaRosa, D. Elbaum, M.J. Vervoordeldonk, and P.P. Tak. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis and Rheumatism 60 (1): 114–122.PubMedCrossRef van Maanen, M.A., M.C. Lebre, T. van der Poll, G.J. LaRosa, D. Elbaum, M.J. Vervoordeldonk, and P.P. Tak. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis and Rheumatism 60 (1): 114–122.PubMedCrossRef
44.
go back to reference Navarro, E., I. Buendia, E. Parada, R. Leon, P. Jansen-Duerr, H. Pircher, J. Egea, and M.G. Lopez. 2015. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochemical Pharmacology 97 (4): 473–481.PubMedCrossRef Navarro, E., I. Buendia, E. Parada, R. Leon, P. Jansen-Duerr, H. Pircher, J. Egea, and M.G. Lopez. 2015. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochemical Pharmacology 97 (4): 473–481.PubMedCrossRef
45.
go back to reference Patel, H., J. McIntire, S. Ryan, A. Dunah, and R. Loring. 2017. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. Journal of Neuroinflammation 14 (1): 192.PubMedPubMedCentralCrossRef Patel, H., J. McIntire, S. Ryan, A. Dunah, and R. Loring. 2017. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. Journal of Neuroinflammation 14 (1): 192.PubMedPubMedCentralCrossRef
46.
go back to reference Rojo, A.I., G. McBean, M. Cindric, J. Egea, M.G. López, P. Rada, N. Zarkovic, and A. Cuadrado. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & Redox Signaling 21 (12): 1766–1801.CrossRef Rojo, A.I., G. McBean, M. Cindric, J. Egea, M.G. López, P. Rada, N. Zarkovic, and A. Cuadrado. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & Redox Signaling 21 (12): 1766–1801.CrossRef
47.
go back to reference de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, H.R. Berthoud, S. Uematsu, S. Akira, R.M. van den Wijngaard, and G.E. Boeckxstaens. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6 (8): 844–851.PubMedCrossRef de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, H.R. Berthoud, S. Uematsu, S. Akira, R.M. van den Wijngaard, and G.E. Boeckxstaens. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6 (8): 844–851.PubMedCrossRef
48.
go back to reference Maldifassi, M.C., G. Atienza, F. Arnalich, E. López-Collazo, J.L. Cedillo, C. Martín-Sánchez, A. Bordas, J. Renart, and C. Montiel. 2014. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 9 (9): e108397.PubMedPubMedCentralCrossRef Maldifassi, M.C., G. Atienza, F. Arnalich, E. López-Collazo, J.L. Cedillo, C. Martín-Sánchez, A. Bordas, J. Renart, and C. Montiel. 2014. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 9 (9): e108397.PubMedPubMedCentralCrossRef
49.
go back to reference Park, S.Y., Y.H. Baik, J.H. Cho, S. Kim, K.S. Lee, and J.S. Han. 2008. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine 44 (1): 126–134.PubMedCrossRef Park, S.Y., Y.H. Baik, J.H. Cho, S. Kim, K.S. Lee, and J.S. Han. 2008. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine 44 (1): 126–134.PubMedCrossRef
50.
go back to reference Sun, Y., Q. Li, H. Gui, D.P. Xu, Y.L. Yang, D.F. Su, and X. Liu. 2013. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Research 23 (11): 1270–1283.PubMedPubMedCentralCrossRef Sun, Y., Q. Li, H. Gui, D.P. Xu, Y.L. Yang, D.F. Su, and X. Liu. 2013. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Research 23 (11): 1270–1283.PubMedPubMedCentralCrossRef
51.
go back to reference Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397 (6721): 710–713.PubMedCrossRef Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397 (6721): 710–713.PubMedCrossRef
52.
go back to reference Jenkins, B.J., D. Grail, T. Nheu, M. Najdovska, B. Wang, P. Waring, M. Inglese, R.M. McLoughlin, S.A. Jones, N. Topley, H. Baumann, L.M. Judd, A.S. Giraud, A. Boussioutas, H.J. Zhu, and M. Ernst. 2005. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nature Medicine 11 (8): 845–852.PubMedCrossRef Jenkins, B.J., D. Grail, T. Nheu, M. Najdovska, B. Wang, P. Waring, M. Inglese, R.M. McLoughlin, S.A. Jones, N. Topley, H. Baumann, L.M. Judd, A.S. Giraud, A. Boussioutas, H.J. Zhu, and M. Ernst. 2005. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nature Medicine 11 (8): 845–852.PubMedCrossRef
53.
go back to reference Yu, Z., W. Zhang, and B.C. Kone. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. The Biochemical Journal 367 (Pt 1): 97–105.PubMedPubMedCentralCrossRef Yu, Z., W. Zhang, and B.C. Kone. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. The Biochemical Journal 367 (Pt 1): 97–105.PubMedPubMedCentralCrossRef
54.
go back to reference Yu, Z., and B.C. Kone. 2004. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. Journals of the American Society of Nephrology 15 (3): 585–591.CrossRef Yu, Z., and B.C. Kone. 2004. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. Journals of the American Society of Nephrology 15 (3): 585–591.CrossRef
55.
go back to reference Hoentjen, F., R.B. Sartor, M. Ozaki, and C. Jobin. 2005. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105 (2): 689–696.PubMedCrossRef Hoentjen, F., R.B. Sartor, M. Ozaki, and C. Jobin. 2005. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105 (2): 689–696.PubMedCrossRef
56.
go back to reference Arredondo, J., A.I. Chernyavsky, D.L. Jolkovsky, K.E. Pinkerton, and S.A. Grando. 2006. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. The FASEB Journal 20 (12): 2093–2101.PubMedCrossRef Arredondo, J., A.I. Chernyavsky, D.L. Jolkovsky, K.E. Pinkerton, and S.A. Grando. 2006. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. The FASEB Journal 20 (12): 2093–2101.PubMedCrossRef
57.
go back to reference Hamano, R., H.K. Takahashi, H. Iwagaki, T. Yoshino, M. Nishibori, and N. Tanaka. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26 (4): 358–364.PubMedCrossRef Hamano, R., H.K. Takahashi, H. Iwagaki, T. Yoshino, M. Nishibori, and N. Tanaka. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26 (4): 358–364.PubMedCrossRef
58.
go back to reference Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7 (7): 833–839.PubMedCrossRef Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7 (7): 833–839.PubMedCrossRef
59.
go back to reference Takahashi, H.K., H. Iwagaki, R. Hamano, T. Yoshino, N. Tanaka, and M. Nishibori. 2006. alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and -12 production in monocytes. Journal of Pharmacological Sciences 102 (1): 143–146.PubMedCrossRef Takahashi, H.K., H. Iwagaki, R. Hamano, T. Yoshino, N. Tanaka, and M. Nishibori. 2006. alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and -12 production in monocytes. Journal of Pharmacological Sciences 102 (1): 143–146.PubMedCrossRef
60.
go back to reference Zabrodskiĭ, P.F. 1987. Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response. Farmakologiia i Toksikologiia 50 (1): 57–60.PubMed Zabrodskiĭ, P.F. 1987. Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response. Farmakologiia i Toksikologiia 50 (1): 57–60.PubMed
61.
go back to reference Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and Experimental Rheumatology 25 (5 Suppl 46): S4–S11.PubMed Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and Experimental Rheumatology 25 (5 Suppl 46): S4–S11.PubMed
62.
go back to reference Mellado, M., L. Martínez-Muñoz, G. Cascio, P. Lucas, J.L. Pablos, and J.M. Rodríguez-Frade. 2015. T Cell Migration in Rheumatoid Arthritis. Frontiers in Immunology 6: 384.PubMedPubMedCentralCrossRef Mellado, M., L. Martínez-Muñoz, G. Cascio, P. Lucas, J.L. Pablos, and J.M. Rodríguez-Frade. 2015. T Cell Migration in Rheumatoid Arthritis. Frontiers in Immunology 6: 384.PubMedPubMedCentralCrossRef
63.
go back to reference Schwaneck, E.C., R. Renner, L. Junker, H.P. Tony, S. Kleinert, M. Gernert, M. Schmalzing, and O. Gadeholt. 2020. T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scandinavian Journal of Rheumatology 49 (1): 8–12.PubMedCrossRef Schwaneck, E.C., R. Renner, L. Junker, H.P. Tony, S. Kleinert, M. Gernert, M. Schmalzing, and O. Gadeholt. 2020. T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scandinavian Journal of Rheumatology 49 (1): 8–12.PubMedCrossRef
64.
go back to reference Nizri, E., Y. Hamra-Amitay, C. Sicsic, I. Lavon, and T. Brenner. 2006. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50 (5): 540–547.PubMedCrossRef Nizri, E., Y. Hamra-Amitay, C. Sicsic, I. Lavon, and T. Brenner. 2006. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50 (5): 540–547.PubMedCrossRef
65.
go back to reference Nizri, E., M. Irony-Tur-Sinai, N. Faranesh, I. Lavon, E. Lavi, M. Weinstock, and T. Brenner. 2008. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. Journal of Neuroimmunology 203 (1): 12–22.PubMedCrossRef Nizri, E., M. Irony-Tur-Sinai, N. Faranesh, I. Lavon, E. Lavi, M. Weinstock, and T. Brenner. 2008. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. Journal of Neuroimmunology 203 (1): 12–22.PubMedCrossRef
66.
go back to reference Nizri, E., M. Irony-Tur-Sinai, O. Lory, A. Orr-Urtreger, E. Lavi, and T. Brenner. 2009. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. Journal of Immunology 183 (10): 6681–6688.CrossRef Nizri, E., M. Irony-Tur-Sinai, O. Lory, A. Orr-Urtreger, E. Lavi, and T. Brenner. 2009. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. Journal of Immunology 183 (10): 6681–6688.CrossRef
67.
go back to reference Nizri, E., M. Irony-Tur-Sinai, I. Lavon, H. Meshulam, G. Amitai, and T. Brenner. 2007. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity. International Immunopharmacology 7 (9): 1129–1139.PubMedCrossRef Nizri, E., M. Irony-Tur-Sinai, I. Lavon, H. Meshulam, G. Amitai, and T. Brenner. 2007. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity. International Immunopharmacology 7 (9): 1129–1139.PubMedCrossRef
68.
go back to reference Tjiu, J.W., P.J. Lin, W.H. Wu, Y.P. Cheng, H.C. Chiu, H.Y. Thong, B.L. Chiang, W.S. Yang, and S.H. Jee. 2011. SLURP1 mutation-impaired T-cell activation in a family with mal de Meleda. The British Journal of Dermatology 164 (1): 47–53.PubMedCrossRef Tjiu, J.W., P.J. Lin, W.H. Wu, Y.P. Cheng, H.C. Chiu, H.Y. Thong, B.L. Chiang, W.S. Yang, and S.H. Jee. 2011. SLURP1 mutation-impaired T-cell activation in a family with mal de Meleda. The British Journal of Dermatology 164 (1): 47–53.PubMedCrossRef
69.
go back to reference Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. Journal of Clinical Immunology 31 (4): 596–605.PubMedCrossRef Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. Journal of Clinical Immunology 31 (4): 596–605.PubMedCrossRef
70.
go back to reference Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72 (2): 146–153.PubMedCrossRef Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72 (2): 146–153.PubMedCrossRef
71.
go back to reference Astry, B., S.H. Venkatesha, and K.D. Moudgil. 2015. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 74 (1): 54–61.PubMedPubMedCentralCrossRef Astry, B., S.H. Venkatesha, and K.D. Moudgil. 2015. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 74 (1): 54–61.PubMedPubMedCentralCrossRef
72.
go back to reference Galitovskiy, V., J. Qian, A.I. Chernyavsky, S. Marchenko, V. Gindi, R.A. Edwards, and S.A. Grando. 2011. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. Journal of Immunology 187 (5): 2677–2687.CrossRef Galitovskiy, V., J. Qian, A.I. Chernyavsky, S. Marchenko, V. Gindi, R.A. Edwards, and S.A. Grando. 2011. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. Journal of Immunology 187 (5): 2677–2687.CrossRef
73.
go back to reference Gowayed, M.A., K. Rothe, M. Rossol, A.S. Attia, U. Wagner, C. Baerwald, H.S. El-Abhar, and R. Refaat. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochemical Pharmacology 170: 113665.PubMedCrossRef Gowayed, M.A., K. Rothe, M. Rossol, A.S. Attia, U. Wagner, C. Baerwald, H.S. El-Abhar, and R. Refaat. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochemical Pharmacology 170: 113665.PubMedCrossRef
74.
go back to reference Munyaka, P., M.F. Rabbi, V.A. Pavlov, K.J. Tracey, E. Khafipour, and J.E. Ghia. 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 9 (10): e109272.PubMedPubMedCentralCrossRef Munyaka, P., M.F. Rabbi, V.A. Pavlov, K.J. Tracey, E. Khafipour, and J.E. Ghia. 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 9 (10): e109272.PubMedPubMedCentralCrossRef
75.
go back to reference Ren, C., X.H. Li, S.B. Wang, L.X. Wang, N. Dong, Y. Wu, and Y.M. Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14 (7): 748–759.PubMedPubMedCentralCrossRef Ren, C., X.H. Li, S.B. Wang, L.X. Wang, N. Dong, Y. Wu, and Y.M. Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14 (7): 748–759.PubMedPubMedCentralCrossRef
76.
go back to reference Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental and Therapeutic Medicine 8 (2): 557–562.PubMedPubMedCentralCrossRef Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental and Therapeutic Medicine 8 (2): 557–562.PubMedPubMedCentralCrossRef
78.
go back to reference Kambayashi, T., and T.M. Laufer. 2014. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews. Immunology 14 (11): 719–730.PubMedCrossRef Kambayashi, T., and T.M. Laufer. 2014. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews. Immunology 14 (11): 719–730.PubMedCrossRef
79.
go back to reference Fields, M.L., and J. Erikson. 2003. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Current Opinion in Immunology 15 (6): 709–717.PubMedCrossRef Fields, M.L., and J. Erikson. 2003. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Current Opinion in Immunology 15 (6): 709–717.PubMedCrossRef
80.
go back to reference Hasan, M., G. Lopez-Herrera, K.E. Blomberg, J.M. Lindvall, A. Berglöf, C.I. Smith, and L. Vargas. 2008. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123 (2): 239–249.PubMedPubMedCentral Hasan, M., G. Lopez-Herrera, K.E. Blomberg, J.M. Lindvall, A. Berglöf, C.I. Smith, and L. Vargas. 2008. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123 (2): 239–249.PubMedPubMedCentral
81.
go back to reference Kawashima, K., and T. Fujii. 2004. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience 9: 2063–2085.PubMedCrossRef Kawashima, K., and T. Fujii. 2004. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience 9: 2063–2085.PubMedCrossRef
82.
go back to reference Kimura, R., N. Ushiyama, T. Fujii, and K. Kawashima. 2003. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sciences 72 (18–19): 2155–2158.PubMedCrossRef Kimura, R., N. Ushiyama, T. Fujii, and K. Kawashima. 2003. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sciences 72 (18–19): 2155–2158.PubMedCrossRef
83.
go back to reference Skok, M., R. Grailhe, F. Agenes, and J.P. Changeux. 2006. The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology 171 (1–2): 86–98.PubMedCrossRef Skok, M., R. Grailhe, F. Agenes, and J.P. Changeux. 2006. The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology 171 (1–2): 86–98.PubMedCrossRef
84.
go back to reference Nizri, E., and T. Brenner. 2013. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 45 (1): 73–85.PubMedCrossRef Nizri, E., and T. Brenner. 2013. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 45 (1): 73–85.PubMedCrossRef
85.
go back to reference Skok, M.V., E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, and R. Grailhe. 2003. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Molecular Pharmacology 64 (4): 885–889.PubMedCrossRef Skok, M.V., E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, and R. Grailhe. 2003. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Molecular Pharmacology 64 (4): 885–889.PubMedCrossRef
86.
go back to reference Koval, L.M., O. Yu Lykhmus, D.M. Omelchenko, S.V. Komisarenko, and M.V. Skok. 2009. The role of alpha7 nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh (1999) 81 (4): 5–11. Koval, L.M., O. Yu Lykhmus, D.M. Omelchenko, S.V. Komisarenko, and M.V. Skok. 2009. The role of alpha7 nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh (1999) 81 (4): 5–11.
87.
go back to reference Quezada, S.A., L.Z. Jarvinen, E.F. Lind, and R.J. Noelle. 2004. CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology 22: 307–328.PubMedCrossRef Quezada, S.A., L.Z. Jarvinen, E.F. Lind, and R.J. Noelle. 2004. CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology 22: 307–328.PubMedCrossRef
88.
go back to reference Hecker, A., Z. Mikulski, K.S. Lips, U. Pfeil, A. Zakrzewicz, S. Wilker, P. Hartmann, W. Padberg, I. Wessler, W. Kummer, and V. Grau. 2009. Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology 86 (1): 13–22.PubMedCrossRef Hecker, A., Z. Mikulski, K.S. Lips, U. Pfeil, A. Zakrzewicz, S. Wilker, P. Hartmann, W. Padberg, I. Wessler, W. Kummer, and V. Grau. 2009. Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology 86 (1): 13–22.PubMedCrossRef
89.
go back to reference Skok, M., R. Grailhe, and J.P. Changeux. 2005. Nicotinic receptors regulate B lymphocyte activation and immune response. European Journal of Pharmacology 517 (3): 246–251.PubMedCrossRef Skok, M., R. Grailhe, and J.P. Changeux. 2005. Nicotinic receptors regulate B lymphocyte activation and immune response. European Journal of Pharmacology 517 (3): 246–251.PubMedCrossRef
90.
go back to reference Fujii, Y.X., H. Fujigaya, Y. Moriwaki, H. Misawa, T. Kasahara, S.A. Grando, and K. Kawashima. 2007. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Journal of Neuroimmunology 189 (1–2): 69–74.PubMedCrossRef Fujii, Y.X., H. Fujigaya, Y. Moriwaki, H. Misawa, T. Kasahara, S.A. Grando, and K. Kawashima. 2007. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Journal of Neuroimmunology 189 (1–2): 69–74.PubMedCrossRef
91.
go back to reference Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.PubMedCrossRef Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.PubMedCrossRef
92.
go back to reference Ouchi, N., S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh. 2003. Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology 14 (6): 561–566.PubMedCrossRef Ouchi, N., S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh. 2003. Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology 14 (6): 561–566.PubMedCrossRef
93.
go back to reference Tobias, P., and L.K. Curtiss. 2005. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. Journal of Lipid Research 46 (3): 404–411.PubMedCrossRef Tobias, P., and L.K. Curtiss. 2005. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. Journal of Lipid Research 46 (3): 404–411.PubMedCrossRef
94.
go back to reference Zhang, L., and C.C. Wang. 2014. Inflammatory response of macrophages in infection. Hepatobiliary & Pancreatic Diseases International 13 (2): 138–152.CrossRef Zhang, L., and C.C. Wang. 2014. Inflammatory response of macrophages in infection. Hepatobiliary & Pancreatic Diseases International 13 (2): 138–152.CrossRef
95.
go back to reference Kong, X., and J. Gao. 2017. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Journal of Cellular and Molecular Medicine 21 (5): 941–954.PubMedCrossRef Kong, X., and J. Gao. 2017. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Journal of Cellular and Molecular Medicine 21 (5): 941–954.PubMedCrossRef
96.
go back to reference Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research and Therapy 14 (2): R74.PubMedCrossRef Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research and Therapy 14 (2): R74.PubMedCrossRef
97.
go back to reference Lv, Y., S. Hu, J. Lu, N. Dong, Q. Liu, M. Du, and H. Zhang. 2014. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators of Inflammation 2014: 873728.PubMedPubMedCentralCrossRef Lv, Y., S. Hu, J. Lu, N. Dong, Q. Liu, M. Du, and H. Zhang. 2014. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators of Inflammation 2014: 873728.PubMedPubMedCentralCrossRef
98.
go back to reference Chernyavsky, A.I., J. Arredondo, M. Skok, and S.A. Grando. 2010. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. International Immunopharmacology 10 (3): 308–315.PubMedCrossRef Chernyavsky, A.I., J. Arredondo, M. Skok, and S.A. Grando. 2010. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. International Immunopharmacology 10 (3): 308–315.PubMedCrossRef
99.
go back to reference Rosas-Ballina, M., R.S. Goldstein, M. Gallowitsch-Puerta, L. Yang, S.I. Valdés-Ferrer, N.B. Patel, S. Chavan, Y. Al-Abed, H. Yang, and K.J. Tracey. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine 15 (7–8): 195–202.PubMedPubMedCentralCrossRef Rosas-Ballina, M., R.S. Goldstein, M. Gallowitsch-Puerta, L. Yang, S.I. Valdés-Ferrer, N.B. Patel, S. Chavan, Y. Al-Abed, H. Yang, and K.J. Tracey. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine 15 (7–8): 195–202.PubMedPubMedCentralCrossRef
100.
go back to reference Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5 (4): 331–342.PubMedCrossRef Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5 (4): 331–342.PubMedCrossRef
101.
go back to reference Ulleryd, M.A., F. Mjörnstedt, D. Panagaki, L.J. Yang, K. Engevall, S. Gutiérrez, Y. Wang, L.M. Gan, H. Nilsson, E. Michaëlsson, and M.E. Johansson. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.PubMedCrossRef Ulleryd, M.A., F. Mjörnstedt, D. Panagaki, L.J. Yang, K. Engevall, S. Gutiérrez, Y. Wang, L.M. Gan, H. Nilsson, E. Michaëlsson, and M.E. Johansson. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.PubMedCrossRef
102.
go back to reference van der Zanden, E.P., S.A. Snoek, S.E. Heinsbroek, O.I. Stanisor, C. Verseijden, G.E. Boeckxstaens, M.P. Peppelenbosch, D.R. Greaves, S. Gordon, and W.J. De Jonge. 2009. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 (3): 1029–1039 e10394.PubMedCrossRef van der Zanden, E.P., S.A. Snoek, S.E. Heinsbroek, O.I. Stanisor, C. Verseijden, G.E. Boeckxstaens, M.P. Peppelenbosch, D.R. Greaves, S. Gordon, and W.J. De Jonge. 2009. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 (3): 1029–1039 e10394.PubMedCrossRef
103.
go back to reference Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Câmara, L.A. Wensing, V.F. Prado, I.F. Tibério, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.PubMedCrossRef Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Câmara, L.A. Wensing, V.F. Prado, I.F. Tibério, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.PubMedCrossRef
104.
go back to reference Wang, J., R. Li, Z. Peng, W. Zhou, B. Hu, X. Rao, X. Yang, and J. Li. 2019. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51 (3): 389–400.PubMedCrossRef Wang, J., R. Li, Z. Peng, W. Zhou, B. Hu, X. Rao, X. Yang, and J. Li. 2019. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51 (3): 389–400.PubMedCrossRef
105.
go back to reference Wilund, K.R., M. Rosenblat, H.R. Chung, N. Volkova, M. Kaplan, J.A. Woods, and M. Aviram. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochemical and Biophysical Research Communications 390 (1): 148–154.PubMedCrossRef Wilund, K.R., M. Rosenblat, H.R. Chung, N. Volkova, M. Kaplan, J.A. Woods, and M. Aviram. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochemical and Biophysical Research Communications 390 (1): 148–154.PubMedCrossRef
106.
go back to reference Inoue, T., C. Abe, T. Kohro, S. Tanaka, L. Huang, J. Yao, S. Zheng, H. Ye, R. Inagi, R.L. Stornetta, D.L. Rosin, M. Nangaku, Y. Wada, and M.D. Okusa. 2019. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International 95 (3): 563–576.PubMedPubMedCentralCrossRef Inoue, T., C. Abe, T. Kohro, S. Tanaka, L. Huang, J. Yao, S. Zheng, H. Ye, R. Inagi, R.L. Stornetta, D.L. Rosin, M. Nangaku, Y. Wada, and M.D. Okusa. 2019. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International 95 (3): 563–576.PubMedPubMedCentralCrossRef
107.
go back to reference Lin, W., T. Liu, B. Wang, and H. Bi. 2019. The role of ocular dendritic cells in uveitis. Immunology Letters 209: 4–10.PubMedCrossRef Lin, W., T. Liu, B. Wang, and H. Bi. 2019. The role of ocular dendritic cells in uveitis. Immunology Letters 209: 4–10.PubMedCrossRef
108.
go back to reference Chudnovskiy, A., G. Pasqual, and G.D. Victora. 2019. Studying interactions between dendritic cells and T cells in vivo. Current Opinion in Immunology 58: 24–30.PubMedPubMedCentralCrossRef Chudnovskiy, A., G. Pasqual, and G.D. Victora. 2019. Studying interactions between dendritic cells and T cells in vivo. Current Opinion in Immunology 58: 24–30.PubMedPubMedCentralCrossRef
109.
110.
go back to reference Aicher, A., C. Heeschen, M. Mohaupt, J.P. Cooke, A.M. Zeiher, and S. Dimmeler. 2003. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107 (4): 604–611.PubMedCrossRef Aicher, A., C. Heeschen, M. Mohaupt, J.P. Cooke, A.M. Zeiher, and S. Dimmeler. 2003. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107 (4): 604–611.PubMedCrossRef
111.
go back to reference Nouri-Shirazi, M., and E. Guinet. 2003. Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 109 (3): 365–373.PubMedPubMedCentralCrossRef Nouri-Shirazi, M., and E. Guinet. 2003. Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 109 (3): 365–373.PubMedPubMedCentralCrossRef
112.
go back to reference Guinet, E., K. Yoshida, and M. Nouri-Shirazi. 2004. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters 95 (1): 45–55.PubMedCrossRef Guinet, E., K. Yoshida, and M. Nouri-Shirazi. 2004. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters 95 (1): 45–55.PubMedCrossRef
113.
go back to reference Yanagita, M., K. Mori, R. Kobayashi, Y. Kojima, M. Kubota, K. Miki, S. Yamada, M. Kitamura, and S. Murakami. 2012. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. European Journal of Oral Sciences 120 (5): 408–414.PubMedCrossRef Yanagita, M., K. Mori, R. Kobayashi, Y. Kojima, M. Kubota, K. Miki, S. Yamada, M. Kitamura, and S. Murakami. 2012. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. European Journal of Oral Sciences 120 (5): 408–414.PubMedCrossRef
114.
go back to reference Gori, S., M. Vermeulen, F. Remes-Lenicov, C. Jancic, W. Scordo, A. Ceballos, N. Towstyka, Y. Bestach, C. Belli, and F. Sabbione. 2017. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72 (2): 221–231.PubMedCrossRef Gori, S., M. Vermeulen, F. Remes-Lenicov, C. Jancic, W. Scordo, A. Ceballos, N. Towstyka, Y. Bestach, C. Belli, and F. Sabbione. 2017. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72 (2): 221–231.PubMedCrossRef
115.
go back to reference Seyler, L.E., J. Fertig, O. Pomerleau, D. Hunt, and K. Parker. 1984. The effects of smoking on ACTH and cortisol secretion. Life Sciences 34 (1): 57–65.PubMedCrossRef Seyler, L.E., J. Fertig, O. Pomerleau, D. Hunt, and K. Parker. 1984. The effects of smoking on ACTH and cortisol secretion. Life Sciences 34 (1): 57–65.PubMedCrossRef
116.
go back to reference Michell-Robinson, M.A., H. Touil, L.M. Healy, D.R. Owen, B.A. Durafourt, A. Bar-Or, J.P. Antel, and C.S. Moore. 2015. Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5): 1138–1159.PubMedPubMedCentralCrossRef Michell-Robinson, M.A., H. Touil, L.M. Healy, D.R. Owen, B.A. Durafourt, A. Bar-Or, J.P. Antel, and C.S. Moore. 2015. Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5): 1138–1159.PubMedPubMedCentralCrossRef
117.
go back to reference Shytle, R.D., T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, and J. Tan. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry 89 (2): 337–343.PubMedCrossRef Shytle, R.D., T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, and J. Tan. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry 89 (2): 337–343.PubMedCrossRef
118.
go back to reference Tsuda, M. 2018. Modulation of pain and itch by spinal glia. Neuroscience Bulletin 34 (1): 178–185.PubMedCrossRef Tsuda, M. 2018. Modulation of pain and itch by spinal glia. Neuroscience Bulletin 34 (1): 178–185.PubMedCrossRef
119.
go back to reference Suzuki, T., I. Hide, A. Matsubara, C. Hama, K. Harada, K. Miyano, M. Andrä, H. Matsubayashi, N. Sakai, S. Kohsaka, K. Inoue, and Y. Nakata. 2006. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research 83 (8): 1461–1470.PubMedCrossRef Suzuki, T., I. Hide, A. Matsubara, C. Hama, K. Harada, K. Miyano, M. Andrä, H. Matsubayashi, N. Sakai, S. Kohsaka, K. Inoue, and Y. Nakata. 2006. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research 83 (8): 1461–1470.PubMedCrossRef
120.
go back to reference Polazzi, E., and B. Monti. 2010. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92 (3): 293–315.PubMedCrossRef Polazzi, E., and B. Monti. 2010. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92 (3): 293–315.PubMedCrossRef
121.
go back to reference Zhang, J., and S. Rivest. 2001. Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry 76 (3): 855–864.PubMedCrossRef Zhang, J., and S. Rivest. 2001. Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry 76 (3): 855–864.PubMedCrossRef
122.
go back to reference Egea, J., I. Buendia, E. Parada, E. Navarro, R. León, and M.G. Lopez. 2015. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology 97 (4): 463–472.PubMedCrossRef Egea, J., I. Buendia, E. Parada, E. Navarro, R. León, and M.G. Lopez. 2015. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology 97 (4): 463–472.PubMedCrossRef
123.
go back to reference Noda, M., and A.I. Kobayashi. 2017. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. The Journal of Physiological Sciences 67 (1): 235–245.PubMedCrossRef Noda, M., and A.I. Kobayashi. 2017. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. The Journal of Physiological Sciences 67 (1): 235–245.PubMedCrossRef
124.
go back to reference Morioka, N., S. Harano, M. Tokuhara, Y. Idenoshita, F.F. Zhang, K. Hisaoka-Nakashima, and Y. Nakata. 2015. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Research 1625: 111–120.PubMedCrossRef Morioka, N., S. Harano, M. Tokuhara, Y. Idenoshita, F.F. Zhang, K. Hisaoka-Nakashima, and Y. Nakata. 2015. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Research 1625: 111–120.PubMedCrossRef
125.
go back to reference Parada, E., J. Egea, I. Buendia, P. Negredo, A.C. Cunha, S. Cardoso, M.P. Soares, and M.G. López. 2013. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants and Redox Signaling 19 (11): 1135–1148.PubMedCrossRef Parada, E., J. Egea, I. Buendia, P. Negredo, A.C. Cunha, S. Cardoso, M.P. Soares, and M.G. López. 2013. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants and Redox Signaling 19 (11): 1135–1148.PubMedCrossRef
126.
go back to reference Toyohara, J., and K. Hashimoto. 2010. α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Medicinal Chemistry Journal 4: 37–56. Toyohara, J., and K. Hashimoto. 2010. α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Medicinal Chemistry Journal 4: 37–56.
127.
go back to reference Borovikova, L.V., S. Ivanova, D. Nardi, M. Zhang, H. Yang, M. Ombrellino, and K.J. Tracey. 2000. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience 85 (1–3): 141–147.PubMedCrossRef Borovikova, L.V., S. Ivanova, D. Nardi, M. Zhang, H. Yang, M. Ombrellino, and K.J. Tracey. 2000. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience 85 (1–3): 141–147.PubMedCrossRef
128.
go back to reference Faghih, R., M. Gopalakrishnan, and C.A. Briggs. 2008. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry 51 (4): 701–712.PubMedCrossRef Faghih, R., M. Gopalakrishnan, and C.A. Briggs. 2008. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry 51 (4): 701–712.PubMedCrossRef
129.
go back to reference Bouzat, C., M. Lasala, B.E. Nielsen, J. Corradi, and M.D.C. Esandi. 2018. Molecular function of α7 nicotinic receptors as drug targets. The Journal of Physiology 596 (10): 1847–1861.PubMedCrossRef Bouzat, C., M. Lasala, B.E. Nielsen, J. Corradi, and M.D.C. Esandi. 2018. Molecular function of α7 nicotinic receptors as drug targets. The Journal of Physiology 596 (10): 1847–1861.PubMedCrossRef
Metadata
Title
The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells
Authors
Yi-jin Wu
Li Wang
Chao-fan Ji
Shao-fei Gu
Qin Yin
Jian Zuo
Publication date
01-06-2021
Publisher
Springer US
Published in
Inflammation / Issue 3/2021
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01396-6

Other articles of this Issue 3/2021

Inflammation 3/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.