Skip to main content
Top
Published in: Inflammation 1/2020

01-02-2020 | Escherichia Coli | Original Article

Initial Immune Response in Escherichia coli, Staphylococcus aureus, and Candida albicans Bacteremia

Authors: Vaios Spyropoulos, Athanasios Chalkias, Georgia Georgiou, Apostolos Papalois, Evangelia Kouskouni, Stavroula Baka, Theodoros Xanthos

Published in: Inflammation | Issue 1/2020

Login to get access

Abstract

Sepsis remains a leading cause of mortality worldwide and is characterized by sustained inflammatory responses, reflected as changes in the expression profile of cytokines with time. The aim of the present study was to investigate the dynamic changes in complete blood count, serum chemistry, procalcitonin (PCT), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in Escherichia coli, Staphylococcus aureus, and Candida albicans bacteremia. Study subjects were 32 healthy male Landrace-Large White pigs, aged 10–15 weeks and of average weight 19 ± 2 kg. Bacteremia was induced by continuous intravenous infusion of microbial suspensions during a period of 8 h. E. coli and S. aureus bacteremia were associated with a significant gradual decrease in white blood cells and platelets, respectively (p = 0.002 and p = 0.004), while candidemia was characterized by a significant gradual decrease in lymphocytes (p = 0.009). Serum PCT levels were either undetectable or very low, with no significant changes with time in all groups. E. coli bacteremia elicited a strong pro-inflammatory response, characterized by a significant increase in TNF-α expression from the onset of bacteremia (p = 0.042). C. albicans exhibited a different profile with an early, moderate increase in TNF-α followed by a subsequent marked increase in IL-6 levels (p = 0.03). The differential regulation of inflammatory and hematological responses depending on the pathogenic agent can reveal differences in the underlying inflammatory mechanisms, which may assist in the ongoing quest for the identification of a panel of circulating biomarkers during bacteremia.
Literature
1.
go back to reference Angus, D.C., W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 29: 1303–1310.PubMed Angus, D.C., W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 29: 1303–1310.PubMed
2.
go back to reference Harrison, D.A., C.A. Welch, and J.M. Eddleston. 2006. The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Critical Care 10: R42.PubMedPubMedCentral Harrison, D.A., C.A. Welch, and J.M. Eddleston. 2006. The epidemiology of severe sepsis in England, Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical database, the ICNARC Case Mix Programme Database. Critical Care 10: R42.PubMedPubMedCentral
3.
go back to reference Dombrovskiy, V.Y., A.A. Martin, J. Sunderram, and H.L. Paz. 2007. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Critical Care Medicine 35: 12440–11250. Dombrovskiy, V.Y., A.A. Martin, J. Sunderram, and H.L. Paz. 2007. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Critical Care Medicine 35: 12440–11250.
4.
go back to reference Kumar, G., N. Kumar, A. Taneja, T. Kaleekal, S. Tarima, E. McGinley, E. Jimenez, A. Mohan, R.A. Khan, J. Whittle, E. Jacobs, R. Nanchal, and Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. 2011. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest 140: 1223–1231.PubMed Kumar, G., N. Kumar, A. Taneja, T. Kaleekal, S. Tarima, E. McGinley, E. Jimenez, A. Mohan, R.A. Khan, J. Whittle, E. Jacobs, R. Nanchal, and Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. 2011. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest 140: 1223–1231.PubMed
5.
go back to reference Dellinger, R.P., M.M. Levy, A. Rhodes, D. Annane, H. Gerlach, S.M. Opal, J.E. Sevransky, C.L. Sprung, I.S. Douglas, R. Jaeschke, T.M. Osborn, M.E. Nunnally, S.R. Townsend, K. Reinhart, R.M. Kleinpell, D.C. Angus, C.S. Deutschman, F.R. Machado, G.D. Rubenfeld, S.A. Webb, R.J. Beale, J.L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine 41: 580–637.PubMed Dellinger, R.P., M.M. Levy, A. Rhodes, D. Annane, H. Gerlach, S.M. Opal, J.E. Sevransky, C.L. Sprung, I.S. Douglas, R. Jaeschke, T.M. Osborn, M.E. Nunnally, S.R. Townsend, K. Reinhart, R.M. Kleinpell, D.C. Angus, C.S. Deutschman, F.R. Machado, G.D. Rubenfeld, S.A. Webb, R.J. Beale, J.L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine 41: 580–637.PubMed
7.
go back to reference Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.PubMedPubMedCentral Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.PubMedPubMedCentral
8.
go back to reference van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMed van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMed
9.
go back to reference Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.PubMed Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.PubMed
10.
go back to reference Tracey, K.J., Y. Fong, D.G. Hesse, K.R. Manogue, A.T. Lee, G.C. Kuo, S.F. Lowry, and A. Cerami. 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664.PubMed Tracey, K.J., Y. Fong, D.G. Hesse, K.R. Manogue, A.T. Lee, G.C. Kuo, S.F. Lowry, and A. Cerami. 1987. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330: 662–664.PubMed
11.
go back to reference Fischer, E., M.A. Marano, K.J. Van Zee, C.S. Rock, A.S. Hawes, W.A. Thompson, L. DeForge, J.S. Kenney, D.G. Remick, and D.C. Bloedow. 1992. Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. The Journal of Clinical Investigation 89: 1551–1557.PubMedPubMedCentral Fischer, E., M.A. Marano, K.J. Van Zee, C.S. Rock, A.S. Hawes, W.A. Thompson, L. DeForge, J.S. Kenney, D.G. Remick, and D.C. Bloedow. 1992. Interleukin-1 receptor blockade improves survival and hemodynamic performance in Escherichia coli septic shock, but fails to alter host responses to sublethal endotoxemia. The Journal of Clinical Investigation 89: 1551–1557.PubMedPubMedCentral
12.
go back to reference Poli-de-Figueiredo, L.F., A.G. Garrido, N. Nakagawa, and P. Sannomiya. 2008. Experimental models of sepsis and their clinical relevance. Shock 30: 53–59.PubMed Poli-de-Figueiredo, L.F., A.G. Garrido, N. Nakagawa, and P. Sannomiya. 2008. Experimental models of sepsis and their clinical relevance. Shock 30: 53–59.PubMed
13.
go back to reference Kingsley, S.M., and B.V. Bhat. 2016. Differential paradigms in animal models of sepsis. Current Infectious Disease Reports 18: 26.PubMed Kingsley, S.M., and B.V. Bhat. 2016. Differential paradigms in animal models of sepsis. Current Infectious Disease Reports 18: 26.PubMed
14.
go back to reference Xanthos, T., P. Lelovas, I. Vlachos, N. Tsirikos-Karapanos, E. Kouskouni, D. Perrea, and I. Dontas. 2007. Cardiopulmonary arrest and resuscitation in Landrace/Large White swine: a research model. Laboratory Animals 41: 353–362.PubMed Xanthos, T., P. Lelovas, I. Vlachos, N. Tsirikos-Karapanos, E. Kouskouni, D. Perrea, and I. Dontas. 2007. Cardiopulmonary arrest and resuscitation in Landrace/Large White swine: a research model. Laboratory Animals 41: 353–362.PubMed
15.
go back to reference Swindle MM, Volger GA, Fulton LK, Marini RP, Popilskis S. 2002. Preanaesthesia, anesthesia, analgesia and euthanasia. In Laboratory Animal Medicine, 2nd ed, eds Fox JG, Anderson LC, Loew FM, Quimby FW, 955-1003. New York, USA: Academic Press. Swindle MM, Volger GA, Fulton LK, Marini RP, Popilskis S. 2002. Preanaesthesia, anesthesia, analgesia and euthanasia. In Laboratory Animal Medicine, 2nd ed, eds Fox JG, Anderson LC, Loew FM, Quimby FW, 955-1003. New York, USA: Academic Press.
16.
go back to reference Chalkias, A., V. Spyropoulos, A. Koutsovasilis, A. Papalois, E. Kouskouni, and T. Xanthos. 2015. Cardiopulmonary arrest and resuscitation in severe sepsis and septic shock: a research model. Shock 43: 285–291.PubMed Chalkias, A., V. Spyropoulos, A. Koutsovasilis, A. Papalois, E. Kouskouni, and T. Xanthos. 2015. Cardiopulmonary arrest and resuscitation in severe sepsis and septic shock: a research model. Shock 43: 285–291.PubMed
17.
go back to reference McFarland, J. 1907. Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA XLIX: 1176–1178. McFarland, J. 1907. Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA XLIX: 1176–1178.
18.
go back to reference Zannoni, A., M. Giunti, C. Bernardini, F. Gentilini, A. Zaniboni, M.L. Bacci, and M. Forni. 2012. Procalcitonin gene expression after LPS stimulation in the porcine animal model. Research in Veterinary Science 9: 921–927. Zannoni, A., M. Giunti, C. Bernardini, F. Gentilini, A. Zaniboni, M.L. Bacci, and M. Forni. 2012. Procalcitonin gene expression after LPS stimulation in the porcine animal model. Research in Veterinary Science 9: 921–927.
19.
go back to reference Becker, K.L., E.S. Nylén, J.C. White, B. Müller, and R.H. Snider Jr. 2004. Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection and sepsis: a journey from calcitonin back to its precursors. The Journal of Clinical Endocrinology and Metabolism 89: 1512–1525.PubMed Becker, K.L., E.S. Nylén, J.C. White, B. Müller, and R.H. Snider Jr. 2004. Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection and sepsis: a journey from calcitonin back to its precursors. The Journal of Clinical Endocrinology and Metabolism 89: 1512–1525.PubMed
20.
go back to reference Whang, K.T., S.D. Vath, K.L. Becker, R.H. Snider, E.S. Nylen, B. Muller, Q. Li, L. Tamarkin, and J.C. White. 2000. Procalcitonin and proinflammatory cytokine interactions in sepsis. Shock 14: 73–78.PubMed Whang, K.T., S.D. Vath, K.L. Becker, R.H. Snider, E.S. Nylen, B. Muller, Q. Li, L. Tamarkin, and J.C. White. 2000. Procalcitonin and proinflammatory cytokine interactions in sepsis. Shock 14: 73–78.PubMed
21.
go back to reference Bagby, G.J., K.J. Plessala, L.A. Wilson, J.J. Thompson, and S. Nelson. 1991. Divergent efficacy of antibody to tumor necrosis factor-alpha in intravascular and peritonitis models of sepsis. The Journal of Infectious Diseases 163: 83–88.PubMed Bagby, G.J., K.J. Plessala, L.A. Wilson, J.J. Thompson, and S. Nelson. 1991. Divergent efficacy of antibody to tumor necrosis factor-alpha in intravascular and peritonitis models of sepsis. The Journal of Infectious Diseases 163: 83–88.PubMed
22.
go back to reference Zanetti, G., D. Heumann, J. Gérain, J. Kohler, P. Abbet, C. Barras, R. Lucas, M.P. Glauser, and J.D. Baumgartner. 1992. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-alpha and to lipopolysaccharide. Journal of Immunology 148: 1890–1897. Zanetti, G., D. Heumann, J. Gérain, J. Kohler, P. Abbet, C. Barras, R. Lucas, M.P. Glauser, and J.D. Baumgartner. 1992. Cytokine production after intravenous or peritoneal gram-negative bacterial challenge in mice. Comparative protective efficacy of antibodies to tumor necrosis factor-alpha and to lipopolysaccharide. Journal of Immunology 148: 1890–1897.
23.
go back to reference Cross, A.S., S.M. Opal, J.C. Sadoff, and P. Gemski. 1993. Choice of bacteria in animal models of sepsis. Infection and Immunity 61: 2741–2747.PubMedPubMedCentral Cross, A.S., S.M. Opal, J.C. Sadoff, and P. Gemski. 1993. Choice of bacteria in animal models of sepsis. Infection and Immunity 61: 2741–2747.PubMedPubMedCentral
24.
go back to reference Feuerstein, G., J.M. Hallenbeck, B. Vanatta, R. Rabinovici, P.Y. Perera, and S.N. Vogel. 1990. Effect of gram-negative endotoxin on levels of serum corticosterone, TNF alpha, circulating blood cells, and the survival of rats. Circulatory Shock 30: 265–278.PubMed Feuerstein, G., J.M. Hallenbeck, B. Vanatta, R. Rabinovici, P.Y. Perera, and S.N. Vogel. 1990. Effect of gram-negative endotoxin on levels of serum corticosterone, TNF alpha, circulating blood cells, and the survival of rats. Circulatory Shock 30: 265–278.PubMed
25.
go back to reference Parker, S.J., P.F. Hill, D. Brown, C.E. Kenward, and P.E. Watkins. 2000. A porcine model of sepsis resulting from the combined insults of hemorrhage and peritonitis. Shock 13: 291–296.PubMed Parker, S.J., P.F. Hill, D. Brown, C.E. Kenward, and P.E. Watkins. 2000. A porcine model of sepsis resulting from the combined insults of hemorrhage and peritonitis. Shock 13: 291–296.PubMed
26.
go back to reference Soares, D.M., M.J. Figueiredo, J.M. Martins, R.R. Machado, C. Sorgi, L.H. Faciolli, J.C. Alves-Filho, F.Q. Cunha, and G.E. Souza. 2012. A crucial role for IL-6 in the CNS of rats during fever induced by the injection of live E. coli. Medical Microbiology and Immunology 201: 47–60.PubMed Soares, D.M., M.J. Figueiredo, J.M. Martins, R.R. Machado, C. Sorgi, L.H. Faciolli, J.C. Alves-Filho, F.Q. Cunha, and G.E. Souza. 2012. A crucial role for IL-6 in the CNS of rats during fever induced by the injection of live E. coli. Medical Microbiology and Immunology 201: 47–60.PubMed
27.
go back to reference Kato, T., M.H. Hussein, T. Suguira, S. Suzuki, S. Fukuda, T. Tanaka, I. Kato, and H. Togari. 2004. Development and characterization of a novel porcine model of neonatal sepsis. Shock 21: 329–335.PubMed Kato, T., M.H. Hussein, T. Suguira, S. Suzuki, S. Fukuda, T. Tanaka, I. Kato, and H. Togari. 2004. Development and characterization of a novel porcine model of neonatal sepsis. Shock 21: 329–335.PubMed
28.
go back to reference Yao, L., J.W. Berman, S.M. Factor, and F.D. Lowy. 1997. Correlation of histopathologic and bacteriologic changes with cytokine expression in an experimental murine model of bacteremic Staphylococcus aureus infection. Infection and Immunity 65: 3889–3895.PubMedPubMedCentral Yao, L., J.W. Berman, S.M. Factor, and F.D. Lowy. 1997. Correlation of histopathologic and bacteriologic changes with cytokine expression in an experimental murine model of bacteremic Staphylococcus aureus infection. Infection and Immunity 65: 3889–3895.PubMedPubMedCentral
29.
go back to reference Rozalska, B., and T. Wadström. 1993. Interferon-gamma, interleukin-1 and tumour necrosis factor-alpha synthesis during experimental murine staphylococcal infection. FEMS Immunology and Medical Microbiology 7: 145–152.PubMed Rozalska, B., and T. Wadström. 1993. Interferon-gamma, interleukin-1 and tumour necrosis factor-alpha synthesis during experimental murine staphylococcal infection. FEMS Immunology and Medical Microbiology 7: 145–152.PubMed
30.
go back to reference Wu, D., S. Zhou, S. Hu, and B. Liu. 2017. Inflammatory responses and histopathological changes in a mouse model of Staphylococcus aureus-induced bloodstream infections. Journal of Infection in Developing Countries 11: 294–305.PubMed Wu, D., S. Zhou, S. Hu, and B. Liu. 2017. Inflammatory responses and histopathological changes in a mouse model of Staphylococcus aureus-induced bloodstream infections. Journal of Infection in Developing Countries 11: 294–305.PubMed
31.
go back to reference Minejima, E., J. Bensman, R.C. She, W.J. Mack, M. Tuan Tran, P. Ny, M. Lou, J. Yamaki, P. Nieberg, J. Ho, and A. Wong-Beringer. 2016. A dysregulated balance of proinflammatory and anti-inflammatory host cytokine response early during therapy predicts persistence and mortality in Staphylococcus aureus bacteremia. Critical Care Medicine 44: 671–679.PubMedPubMedCentral Minejima, E., J. Bensman, R.C. She, W.J. Mack, M. Tuan Tran, P. Ny, M. Lou, J. Yamaki, P. Nieberg, J. Ho, and A. Wong-Beringer. 2016. A dysregulated balance of proinflammatory and anti-inflammatory host cytokine response early during therapy predicts persistence and mortality in Staphylococcus aureus bacteremia. Critical Care Medicine 44: 671–679.PubMedPubMedCentral
32.
go back to reference Brieland, J., D. Essig, C. Jackson, D. Frank, D. Loebenberg, F. Menzel, B. Arnold, B. DiDomenico, and R. Hare. 2001. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infection and Immunity 69: 5046–5055.PubMedPubMedCentral Brieland, J., D. Essig, C. Jackson, D. Frank, D. Loebenberg, F. Menzel, B. Arnold, B. DiDomenico, and R. Hare. 2001. Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infection and Immunity 69: 5046–5055.PubMedPubMedCentral
33.
go back to reference Louie, A., A.L. Baltch, R.P. Smith, M.A. Franke, W.J. Ritz, J.K. Singh, and M.A. Gordon. 1994. Tumor necrosis factor alpha has a protective role in a murine model of systemic candidiasis. Infection and Immunity 62: 2761–2772.PubMedPubMedCentral Louie, A., A.L. Baltch, R.P. Smith, M.A. Franke, W.J. Ritz, J.K. Singh, and M.A. Gordon. 1994. Tumor necrosis factor alpha has a protective role in a murine model of systemic candidiasis. Infection and Immunity 62: 2761–2772.PubMedPubMedCentral
34.
go back to reference Kalkanci, A., S. Kuştimur, O. Timlioğlu, and C. Uluoğlu. 2002. The role of tumour necrosis factor-alpha (TNF-alpha) and platelet-activating factor (PAF) interaction on murine candidosis. Mycoses 45: 79–83.PubMed Kalkanci, A., S. Kuştimur, O. Timlioğlu, and C. Uluoğlu. 2002. The role of tumour necrosis factor-alpha (TNF-alpha) and platelet-activating factor (PAF) interaction on murine candidosis. Mycoses 45: 79–83.PubMed
35.
go back to reference Netea, M.G., W.L. Blok, B.J. Kullberg, M. Bemelmans, M.T. Vogels, W.A. Buurman, and J.W. van der Meer. 1995. Pharmacologic inhibitors of tumor necrosis factor production exert differential effects in lethal endotoxemia and in infection with live microorganisms in mice. The Journal of Infectious Diseases 171: 393–399.PubMed Netea, M.G., W.L. Blok, B.J. Kullberg, M. Bemelmans, M.T. Vogels, W.A. Buurman, and J.W. van der Meer. 1995. Pharmacologic inhibitors of tumor necrosis factor production exert differential effects in lethal endotoxemia and in infection with live microorganisms in mice. The Journal of Infectious Diseases 171: 393–399.PubMed
36.
go back to reference Borghetti, P., R. Saleri, E. Mocchegiani, A. Corradi, and P. Martelli. 2009. Infection, immunity and the neuroendocrine response. Veterinary Immunology and Immunopathology 130: 141–162.PubMed Borghetti, P., R. Saleri, E. Mocchegiani, A. Corradi, and P. Martelli. 2009. Infection, immunity and the neuroendocrine response. Veterinary Immunology and Immunopathology 130: 141–162.PubMed
37.
go back to reference Dalrymple, S.A., R. Slattery, D.M. Aud, M. Krishna, L.A. Lucian, and R. Murray. 1996. Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infection and Immunity 64: 3231–3235.PubMedPubMedCentral Dalrymple, S.A., R. Slattery, D.M. Aud, M. Krishna, L.A. Lucian, and R. Murray. 1996. Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infection and Immunity 64: 3231–3235.PubMedPubMedCentral
38.
go back to reference Tambuyzer, T., T. De Waele, K. Chiers, D. Berckmans, B.M. Goddeeris, and J.M. Aerts. 2014. Interleukin-6 dynamics as a basis for an early-warning monitor for sepsis and inflammation in individual pigs. Research in Veterinary Science 96: 460–463.PubMed Tambuyzer, T., T. De Waele, K. Chiers, D. Berckmans, B.M. Goddeeris, and J.M. Aerts. 2014. Interleukin-6 dynamics as a basis for an early-warning monitor for sepsis and inflammation in individual pigs. Research in Veterinary Science 96: 460–463.PubMed
39.
go back to reference Duan, J., Y. Xie, J. Yang, Y. Luo, Y. Guo, and C. Wang. 2016. Variation of circulating inflammatory mediators in Staphylococcus aureus and Escherichia coli bloodstream infection. Medical Science Monitor 22: 161–171.PubMedPubMedCentral Duan, J., Y. Xie, J. Yang, Y. Luo, Y. Guo, and C. Wang. 2016. Variation of circulating inflammatory mediators in Staphylococcus aureus and Escherichia coli bloodstream infection. Medical Science Monitor 22: 161–171.PubMedPubMedCentral
40.
go back to reference Fossum, C., E. Wattrang, L. Fuxler, K.T. Jensen, and P. Wallgren. 1998. Evaluation of various cytokines (IL-6, IFN-alpha, IFN-gamma, TNF-alpha) as markers for acute bacterial infection in swine--a possible role for serum interleukin-6. Veterinary Immunology and Immunopathology 64: 161–172.PubMed Fossum, C., E. Wattrang, L. Fuxler, K.T. Jensen, and P. Wallgren. 1998. Evaluation of various cytokines (IL-6, IFN-alpha, IFN-gamma, TNF-alpha) as markers for acute bacterial infection in swine--a possible role for serum interleukin-6. Veterinary Immunology and Immunopathology 64: 161–172.PubMed
41.
go back to reference Calandra, T., J. Gerain, D. Heumann, J.D. Baumgartner, and M.P. Glauser. 1991. High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. The American Journal of Medicine 91: 23–29.PubMed Calandra, T., J. Gerain, D. Heumann, J.D. Baumgartner, and M.P. Glauser. 1991. High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. The American Journal of Medicine 91: 23–29.PubMed
42.
go back to reference Martin, C., C. Boisson, M. Haccoun, L. Thomachot, and J.L. Mege. 1997. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Critical Care Medicine 25: 1813–1819.PubMed Martin, C., C. Boisson, M. Haccoun, L. Thomachot, and J.L. Mege. 1997. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Critical Care Medicine 25: 1813–1819.PubMed
43.
go back to reference Nielsen, O.L., T. Iburg, B. Aalbaek, P.S. Leifsson, J.S. Agerholm, P. Heegaard, M. Boye, S. Simon, K.B. Jensen, S. Christensen, K. Melsen, A.K. Bak, E.R. Backman, M.H. Jørgensen, D.K. Groegler, A.L. Jensen, M. Kjelgaard-Hansen, and H.E. Jensen. 2009. A pig model of acute Staphylococcus aureus induced pyemia. Acta Veterinaria Scandinavica 51: 14.PubMedPubMedCentral Nielsen, O.L., T. Iburg, B. Aalbaek, P.S. Leifsson, J.S. Agerholm, P. Heegaard, M. Boye, S. Simon, K.B. Jensen, S. Christensen, K. Melsen, A.K. Bak, E.R. Backman, M.H. Jørgensen, D.K. Groegler, A.L. Jensen, M. Kjelgaard-Hansen, and H.E. Jensen. 2009. A pig model of acute Staphylococcus aureus induced pyemia. Acta Veterinaria Scandinavica 51: 14.PubMedPubMedCentral
44.
go back to reference Santos, R.C., R.N. Moresco, M.A. Peña Rico, A.R. Susperregui, J.L. Rosa, R. Bartrons, F. Ventura, D.N. Mário, S.H. Alves, E. Tatsch, H. Kober, R.O. de Mello, P. Scherer, H.B. Dias, and J.R. de Oliveira. 2012. Fructose-1,6-bisphosphate reduces the mortality in Candida albicans bloodstream infection and prevents the septic-induced platelet decrease. Inflammation 35 (4): 1256–1261.PubMed Santos, R.C., R.N. Moresco, M.A. Peña Rico, A.R. Susperregui, J.L. Rosa, R. Bartrons, F. Ventura, D.N. Mário, S.H. Alves, E. Tatsch, H. Kober, R.O. de Mello, P. Scherer, H.B. Dias, and J.R. de Oliveira. 2012. Fructose-1,6-bisphosphate reduces the mortality in Candida albicans bloodstream infection and prevents the septic-induced platelet decrease. Inflammation 35 (4): 1256–1261.PubMed
45.
go back to reference Oguz, S.S., E. Sipahi, and U. Dilmen. 2011. C-reactive protein and interleukin-6 responses for differentiating fungal and bacterial aetiology in late-onset neonatal sepsis. Mycoses 54: 212–216.PubMed Oguz, S.S., E. Sipahi, and U. Dilmen. 2011. C-reactive protein and interleukin-6 responses for differentiating fungal and bacterial aetiology in late-onset neonatal sepsis. Mycoses 54: 212–216.PubMed
46.
go back to reference Sriskandan, S., and J. Cohen. 1999. Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. Infectious Disease Clinics of North America 13: 397–412.PubMed Sriskandan, S., and J. Cohen. 1999. Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. Infectious Disease Clinics of North America 13: 397–412.PubMed
47.
go back to reference Rockel, C., and T. Hartung. 2012. Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Frontiers in Pharmacology 3: 56.PubMedPubMedCentral Rockel, C., and T. Hartung. 2012. Systematic review of membrane components of gram-positive bacteria responsible as pyrogens for inducing human monocyte/macrophage cytokine release. Frontiers in Pharmacology 3: 56.PubMedPubMedCentral
48.
go back to reference Grandel, U., and F. Grimminger. 2003. Endothelial responses to bacterial toxins in sepsis. Critical Reviews in Immunology 23: 267–299.PubMed Grandel, U., and F. Grimminger. 2003. Endothelial responses to bacterial toxins in sepsis. Critical Reviews in Immunology 23: 267–299.PubMed
Metadata
Title
Initial Immune Response in Escherichia coli, Staphylococcus aureus, and Candida albicans Bacteremia
Authors
Vaios Spyropoulos
Athanasios Chalkias
Georgia Georgiou
Apostolos Papalois
Evangelia Kouskouni
Stavroula Baka
Theodoros Xanthos
Publication date
01-02-2020
Publisher
Springer US
Published in
Inflammation / Issue 1/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01108-9

Other articles of this Issue 1/2020

Inflammation 1/2020 Go to the issue