Skip to main content
Top
Published in: Inflammation 5/2019

01-10-2019 | Ulcerative Colitis | Original Article

Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice

Authors: Ya-Lan Dong, Xue-Yun Duan, Yu-Jin Liu, Heng Fan, Meng Xu, Qian-Yun Chen, Zhen Nan, Hui Wu, Shuang-Jiao Deng

Published in: Inflammation | Issue 5/2019

Login to get access

Abstract

Autotaxin-lysophosphatidic acid (ATX-LPA) axis is closely associated with several inflammation-related diseases. In the colonic mucosa of patients with chronic ulcerative colitis (UC), the expression of ATX and the percentage of Th17 cells are found to increase. However, it is unclear whether ATX-LPA axis affects the differentiation of Th17 cells in chronic UC. To investigate whether ATX-LPA axis contributes to Th17 cell differentiation, a mouse model of chronic UC was established by drinking water with DSS at intervals. ATX inhibitor was used as an intervention. The disease active index (DAI), colonic weight to length ratio, colon length, colon histopathology, and MAdCAM-1 were observed. Additionally, the expression of ATX, LPA receptor, CD34, IL-17A, IL-21, IL-6, ROR-γt, STAT3 in colonic tissue, and the percentage of Th17 cells in spleens and mesenteric lymph nodes (MLNs) were measured using different methods. ATX blockade was able to relieve symptoms and inflammatory response of DSS-induced chronic colitis. The DAI and colonic weight to length ratio were apparently decreased, while the colon length was increased. The pathological damage and colitis severity were lighter in the inhibitor group than that in the DSS group. Inhibiting ATX reduced the expression of ATX, LPA receptor, and CD34 and also decreased the percentages of Th17 cells in spleens and MLNs and the expressions of IL-17A and IL-21, as well as the factors in Th17 cell signaling pathway including IL-6, ROR-γt, and STAT3 in colonic tissue. ATX-LPA axis blockade could alleviate inflammation by suppressing Th17 cell differentiation in chronic UC.
Literature
1.
go back to reference Ungaro, R., S. Mehandru, P.B. Allen, L. Peyrin-Biroulet, and J.F. Colombel. 2017. Ulcerative colitis. Lancet 389: 1756–1770.CrossRefPubMed Ungaro, R., S. Mehandru, P.B. Allen, L. Peyrin-Biroulet, and J.F. Colombel. 2017. Ulcerative colitis. Lancet 389: 1756–1770.CrossRefPubMed
2.
go back to reference Ng, S.C., H.Y. Shi, N. Hamidi, F.E. Underwood, W. Tang, E.I. Benchimol, R. Panaccione, S. Ghosh, J.C.Y. Wu, F.K.L. Chan, J.J.Y. Sung, and G.G. Kaplan. 2018. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769–2778.CrossRef Ng, S.C., H.Y. Shi, N. Hamidi, F.E. Underwood, W. Tang, E.I. Benchimol, R. Panaccione, S. Ghosh, J.C.Y. Wu, F.K.L. Chan, J.J.Y. Sung, and G.G. Kaplan. 2018. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769–2778.CrossRef
3.
go back to reference Bopanna, S., A.N. Ananthakrishnan, S. Kedia, V. Yajnik, and V. Ahuja. 2017. Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology 2: 269–276.CrossRef Bopanna, S., A.N. Ananthakrishnan, S. Kedia, V. Yajnik, and V. Ahuja. 2017. Risk of colorectal cancer in Asian patients with ulcerative colitis: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology 2: 269–276.CrossRef
4.
go back to reference Cleynen, I., G. Boucher, L. Jostins, L.P. Schumm, S. Zeissig, T. Ahmad, V. Andersen, J.M. Andrews, V. Annese, S. Brand, S.R. Brant, J.H. Cho, M.J. Daly, M. Dubinsky, R.H. Duerr, L.R. Ferguson, A. Franke, R.B. Gearry, P. Goyette, H. Hakonarson, J. Halfvarson, J.R. Hov, H. Huang, N.A. Kennedy, L. Kupcinskas, I.C. Lawrance, J.C. Lee, J. Satsangi, S. Schreiber, E. Théâtre, A. van der Meulen-de Jong, R.K. Weersma, D.C. Wilson, International Inflammatory Bowel Disease Genetics Consortium, M. Parkes, S. Vermeire, J.D. Rioux, J. Mansfield, M.S. Silverberg, G. Radford-Smith, D. McGovern, J.C. Barrett, and C.W. Lees. 2016. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387: 156–167.CrossRefPubMedPubMedCentral Cleynen, I., G. Boucher, L. Jostins, L.P. Schumm, S. Zeissig, T. Ahmad, V. Andersen, J.M. Andrews, V. Annese, S. Brand, S.R. Brant, J.H. Cho, M.J. Daly, M. Dubinsky, R.H. Duerr, L.R. Ferguson, A. Franke, R.B. Gearry, P. Goyette, H. Hakonarson, J. Halfvarson, J.R. Hov, H. Huang, N.A. Kennedy, L. Kupcinskas, I.C. Lawrance, J.C. Lee, J. Satsangi, S. Schreiber, E. Théâtre, A. van der Meulen-de Jong, R.K. Weersma, D.C. Wilson, International Inflammatory Bowel Disease Genetics Consortium, M. Parkes, S. Vermeire, J.D. Rioux, J. Mansfield, M.S. Silverberg, G. Radford-Smith, D. McGovern, J.C. Barrett, and C.W. Lees. 2016. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387: 156–167.CrossRefPubMedPubMedCentral
5.
go back to reference Hibi, T., and H. Ogata. 2006. Novel pathophysiological concepts of inflammatory bowel disease. Journal of Gastroenterology 41: 10–16.CrossRefPubMed Hibi, T., and H. Ogata. 2006. Novel pathophysiological concepts of inflammatory bowel disease. Journal of Gastroenterology 41: 10–16.CrossRefPubMed
6.
go back to reference Xu, M., D. Zuo, X. Liu, H. Fan, Q. Chen, S. Deng, Z. Shou, Q. Tang, J. Yang, Z. Nan, H. Wu, Y. Dong, and Y. Liu. 2017. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochemical and Biophysical Research Communications 488: 6–14.CrossRefPubMed Xu, M., D. Zuo, X. Liu, H. Fan, Q. Chen, S. Deng, Z. Shou, Q. Tang, J. Yang, Z. Nan, H. Wu, Y. Dong, and Y. Liu. 2017. MiR-155 contributes to Th17 cells differentiation in dextran sulfate sodium (DSS)-induced colitis mice via Jarid2. Biochemical and Biophysical Research Communications 488: 6–14.CrossRefPubMed
7.
go back to reference Fujino, S., A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70.CrossRefPubMedPubMedCentral Fujino, S., A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65–70.CrossRefPubMedPubMedCentral
8.
go back to reference Harrington, L.E., P.R. Mangan, and C.T. Weaver. 2006. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Current Opinion in Immunology 18: 349–356.CrossRefPubMed Harrington, L.E., P.R. Mangan, and C.T. Weaver. 2006. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Current Opinion in Immunology 18: 349–356.CrossRefPubMed
9.
go back to reference Kobayashi, T., S. Okamoto, T. Hisamatsu, N. Kamada, H. Chinen, R. Saito, M.T. Kitazume, A. Nakazawa, A. Sugita, K. Koganei, K. Isobe, and T. Hibi. 2008. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 57: 1682–1689.CrossRefPubMed Kobayashi, T., S. Okamoto, T. Hisamatsu, N. Kamada, H. Chinen, R. Saito, M.T. Kitazume, A. Nakazawa, A. Sugita, K. Koganei, K. Isobe, and T. Hibi. 2008. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut 57: 1682–1689.CrossRefPubMed
10.
go back to reference Hirota, K., M. Hashimoto, Y. Ito, M. Matsuura, H. Ito, M. Tanaka, H. Watanabe, G. Kondoh, A. Tanaka, K. Yasuda, M. Kopf, A.J. Potocnik, B. Stockinger, N. Sakaguchi, and S. Sakaguchi. 2018. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity 48: 1220–1232.e5.CrossRefPubMedPubMedCentral Hirota, K., M. Hashimoto, Y. Ito, M. Matsuura, H. Ito, M. Tanaka, H. Watanabe, G. Kondoh, A. Tanaka, K. Yasuda, M. Kopf, A.J. Potocnik, B. Stockinger, N. Sakaguchi, and S. Sakaguchi. 2018. Autoimmune Th17 cells induced synovial stromal and innate lymphoid cell secretion of the cytokine GM-CSF to initiate and augment autoimmune arthritis. Immunity 48: 1220–1232.e5.CrossRefPubMedPubMedCentral
11.
go back to reference Machino-Ohtsuka, T., K. Tajiri, T. Kimura, S. Sakai, A. Sato, T. Yoshida, et al. 2014. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. Journal of the American Heart Association 3: e001052.CrossRefPubMedPubMedCentral Machino-Ohtsuka, T., K. Tajiri, T. Kimura, S. Sakai, A. Sato, T. Yoshida, et al. 2014. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. Journal of the American Heart Association 3: e001052.CrossRefPubMedPubMedCentral
12.
go back to reference Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRefPubMed Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological Research 76: 1–8.CrossRefPubMed
13.
go back to reference Withers, D.R., M.R. Hepworth, X. Wang, E.C. Mackley, E.E. Halford, E.E. Dutton, C.L. Marriott, V. Brucklacher-Waldert, M. Veldhoen, J. Kelsen, R.N. Baldassano, and G.F. Sonnenberg. 2016. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine 22: 319–323.CrossRefPubMedPubMedCentral Withers, D.R., M.R. Hepworth, X. Wang, E.C. Mackley, E.E. Halford, E.E. Dutton, C.L. Marriott, V. Brucklacher-Waldert, M. Veldhoen, J. Kelsen, R.N. Baldassano, and G.F. Sonnenberg. 2016. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine 22: 319–323.CrossRefPubMedPubMedCentral
14.
go back to reference Guo, D., Y. Chen, S. Wang, L. Yu, Y. Shen, H. Zhong, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 2017. Guo, D., Y. Chen, S. Wang, L. Yu, Y. Shen, H. Zhong, et al. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 2017.
15.
go back to reference Li, X., A.R. Cannon, A.M. Hammer, N.L. Morris, and M.A. Choudhry. 2017. IL-23 restoration of Th17 effector function is independent of IL-6 and TGF-beta in a mouse model of alcohol and burn injury. Journal of Leukocyte Biology 102: 915–923.CrossRefPubMedPubMedCentral Li, X., A.R. Cannon, A.M. Hammer, N.L. Morris, and M.A. Choudhry. 2017. IL-23 restoration of Th17 effector function is independent of IL-6 and TGF-beta in a mouse model of alcohol and burn injury. Journal of Leukocyte Biology 102: 915–923.CrossRefPubMedPubMedCentral
16.
go back to reference Ghoreschi, K., A. Laurence, X.P. Yang, C.M. Tato, M.J. McGeachy, J.E. Konkel, et al. 2010. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467: 967–971.CrossRefPubMedPubMedCentral Ghoreschi, K., A. Laurence, X.P. Yang, C.M. Tato, M.J. McGeachy, J.E. Konkel, et al. 2010. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467: 967–971.CrossRefPubMedPubMedCentral
17.
go back to reference Kano, K., N. Arima, M. Ohgami, and J. Aoki. 2008. LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Current Medicinal Chemistry 15: 2122–2131.CrossRefPubMed Kano, K., N. Arima, M. Ohgami, and J. Aoki. 2008. LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Current Medicinal Chemistry 15: 2122–2131.CrossRefPubMed
18.
go back to reference Umezu-Goto, M., Y. Kishi, A. Taira, K. Hama, N. Dohmae, K. Takio, T. Yamori, G.B. Mills, K. Inoue, J. Aoki, and H. Arai. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. The Journal of Cell Biology 158: 227–233.CrossRefPubMedPubMedCentral Umezu-Goto, M., Y. Kishi, A. Taira, K. Hama, N. Dohmae, K. Takio, T. Yamori, G.B. Mills, K. Inoue, J. Aoki, and H. Arai. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. The Journal of Cell Biology 158: 227–233.CrossRefPubMedPubMedCentral
19.
go back to reference Gardell, S.E., A.E. Dubin, and J. Chun. 2006. Emerging medicinal roles for lysophospholipid signaling. Trends in Molecular Medicine 12: 65–75.CrossRefPubMed Gardell, S.E., A.E. Dubin, and J. Chun. 2006. Emerging medicinal roles for lysophospholipid signaling. Trends in Molecular Medicine 12: 65–75.CrossRefPubMed
20.
go back to reference Chu, X., X. Wei, S. Lu, and P. He. 2015. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. International Journal of Clinical and Experimental Medicine 8: 17117–17122.PubMedPubMedCentral Chu, X., X. Wei, S. Lu, and P. He. 2015. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. International Journal of Clinical and Experimental Medicine 8: 17117–17122.PubMedPubMedCentral
21.
go back to reference Zhang, Y., Y.C. Chen, M.F. Krummel, and S.D. Rosen. 2012. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. Journal of Immunology 189: 3914–3924.CrossRef Zhang, Y., Y.C. Chen, M.F. Krummel, and S.D. Rosen. 2012. Autotaxin through lysophosphatidic acid stimulates polarization, motility, and transendothelial migration of naive T cells. Journal of Immunology 189: 3914–3924.CrossRef
22.
go back to reference Mills, G.B., and W.H. Moolenaar. 2003. The emerging role of lysophosphatidic acid in cancer. Nature Reviews. Cancer 3: 582–591.CrossRefPubMed Mills, G.B., and W.H. Moolenaar. 2003. The emerging role of lysophosphatidic acid in cancer. Nature Reviews. Cancer 3: 582–591.CrossRefPubMed
23.
go back to reference Tager, A.M. 2012. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. American Journal of Respiratory Cell and Molecular Biology 47: 563–565.CrossRefPubMedPubMedCentral Tager, A.M. 2012. Autotaxin emerges as a therapeutic target for idiopathic pulmonary fibrosis: limiting fibrosis by limiting lysophosphatidic acid synthesis. American Journal of Respiratory Cell and Molecular Biology 47: 563–565.CrossRefPubMedPubMedCentral
24.
go back to reference Watanabe, N., H. Ikeda, K. Nakamura, R. Ohkawa, Y. Kume, J. Aoki, K. Hama, S. Okudaira, M. Tanaka, T. Tomiya, M. Yanase, K. Tejima, T. Nishikawa, M. Arai, H. Arai, M. Omata, K. Fujiwara, and Y. Yatomi. 2007. Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. Journal of Clinical Gastroenterology 41: 616–623.CrossRefPubMed Watanabe, N., H. Ikeda, K. Nakamura, R. Ohkawa, Y. Kume, J. Aoki, K. Hama, S. Okudaira, M. Tanaka, T. Tomiya, M. Yanase, K. Tejima, T. Nishikawa, M. Arai, H. Arai, M. Omata, K. Fujiwara, and Y. Yatomi. 2007. Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C. Journal of Clinical Gastroenterology 41: 616–623.CrossRefPubMed
25.
go back to reference Hozumi, H., R. Hokari, C. Kurihara, K. Narimatsu, H. Sato, S. Sato, T. Ueda, M. Higashiyama, Y. Okada, C. Watanabe, S. Komoto, K. Tomita, A. Kawaguchi, S. Nagao, and S. Miura. 2013. Involvement of autotaxin/lysophospholipase D expression in intestinal vessels in aggravation of intestinal damage through lymphocyte migration. Laboratory Investigation 93: 508–519.CrossRefPubMed Hozumi, H., R. Hokari, C. Kurihara, K. Narimatsu, H. Sato, S. Sato, T. Ueda, M. Higashiyama, Y. Okada, C. Watanabe, S. Komoto, K. Tomita, A. Kawaguchi, S. Nagao, and S. Miura. 2013. Involvement of autotaxin/lysophospholipase D expression in intestinal vessels in aggravation of intestinal damage through lymphocyte migration. Laboratory Investigation 93: 508–519.CrossRefPubMed
26.
go back to reference Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRefPubMed Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl, and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols 12: 1295–1309.CrossRefPubMed
27.
go back to reference Yang, J., X.X. Liu, H. Fan, Q. Tang, Z.X. Shou, D.M. Zuo, Z. Zou, M. Xu, Q.Y. Chen, Y. Peng, S.J. Deng, and Y.J. Liu. 2015. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One 10: e0140551.CrossRefPubMedPubMedCentral Yang, J., X.X. Liu, H. Fan, Q. Tang, Z.X. Shou, D.M. Zuo, Z. Zou, M. Xu, Q.Y. Chen, Y. Peng, S.J. Deng, and Y.J. Liu. 2015. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One 10: e0140551.CrossRefPubMedPubMedCentral
28.
go back to reference Saunders, L.P., A. Ouellette, R. Bandle, W.C. Chang, H. Zhou, R.N. Misra, E.M. de la Cruz, and D.T. Braddock. 2008. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Molecular Cancer Therapeutics 7: 3352–3362.CrossRefPubMedPubMedCentral Saunders, L.P., A. Ouellette, R. Bandle, W.C. Chang, H. Zhou, R.N. Misra, E.M. de la Cruz, and D.T. Braddock. 2008. Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion. Molecular Cancer Therapeutics 7: 3352–3362.CrossRefPubMedPubMedCentral
29.
go back to reference Totsuka, T., T. Kanai, Y. Nemoto, S. Makita, R. Okamoto, K. Tsuchiya, and M. Watanabe. 2007. IL-7 is essential for the development and the persistence of chronic colitis. Journal of Immunology 178: 4737–4748.CrossRef Totsuka, T., T. Kanai, Y. Nemoto, S. Makita, R. Okamoto, K. Tsuchiya, and M. Watanabe. 2007. IL-7 is essential for the development and the persistence of chronic colitis. Journal of Immunology 178: 4737–4748.CrossRef
30.
go back to reference Zhang, L., Y. Zhang, W. Zhong, C. Di, X. Lin, and Z. Xia. 2014. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. The Journal of Biological Chemistry 289: 26847–26858.CrossRefPubMedPubMedCentral Zhang, L., Y. Zhang, W. Zhong, C. Di, X. Lin, and Z. Xia. 2014. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. The Journal of Biological Chemistry 289: 26847–26858.CrossRefPubMedPubMedCentral
31.
go back to reference Vermeire, S., W.J. Sandborn, S. Danese, X. Hebuterne, B.A. Salzberg, M. Klopocka, et al. 2017. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 390: 135–144.CrossRefPubMed Vermeire, S., W.J. Sandborn, S. Danese, X. Hebuterne, B.A. Salzberg, M. Klopocka, et al. 2017. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 390: 135–144.CrossRefPubMed
32.
go back to reference Fujimori, H., S. Miura, S. Koseki, R. Hokari, S. Komoto, Y. Hara, S. Hachimura, S. Kaminogawa, and H. Ishii. 2002. Intravital observation of adhesion of lamina propria lymphocytes to microvessels of small intestine in mice. Gastroenterology 122: 734–744.CrossRefPubMed Fujimori, H., S. Miura, S. Koseki, R. Hokari, S. Komoto, Y. Hara, S. Hachimura, S. Kaminogawa, and H. Ishii. 2002. Intravital observation of adhesion of lamina propria lymphocytes to microvessels of small intestine in mice. Gastroenterology 122: 734–744.CrossRefPubMed
33.
go back to reference Knowlden, S., and S.N. Georas. 2014. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. Journal of Immunology 192: 851–857.CrossRef Knowlden, S., and S.N. Georas. 2014. The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. Journal of Immunology 192: 851–857.CrossRef
34.
go back to reference Wei, L., A. Laurence, K.M. Elias, and J.J. O'Shea. 2007. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. The Journal of Biological Chemistry 282: 34605–34610.CrossRefPubMed Wei, L., A. Laurence, K.M. Elias, and J.J. O'Shea. 2007. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. The Journal of Biological Chemistry 282: 34605–34610.CrossRefPubMed
35.
go back to reference Peloquin, J.M., G. Goel, E.J. Villablanca, and R.J. Xavier. 2016. Mechanisms of pediatric inflammatory bowel disease. Annual Review of Immunology 34: 31–64.CrossRefPubMed Peloquin, J.M., G. Goel, E.J. Villablanca, and R.J. Xavier. 2016. Mechanisms of pediatric inflammatory bowel disease. Annual Review of Immunology 34: 31–64.CrossRefPubMed
36.
go back to reference Low, D., D.D. Nguyen, and E. Mizoguchi. 2013. Animal models of ulcerative colitis and their application in drug research. Drug Design, Development and Therapy 7: 1341–1357.PubMedPubMedCentral Low, D., D.D. Nguyen, and E. Mizoguchi. 2013. Animal models of ulcerative colitis and their application in drug research. Drug Design, Development and Therapy 7: 1341–1357.PubMedPubMedCentral
37.
go back to reference Chen, Q., X. Duan, H. Fan, M. Xu, Q. Tang, L. Zhang, Z. Shou, X. Liu, D. Zuo, J. Yang, S. Deng, Y. Dong, H. Wu, Y. Liu, and Z. Nan. 2017. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology 53: 149–157.CrossRefPubMed Chen, Q., X. Duan, H. Fan, M. Xu, Q. Tang, L. Zhang, Z. Shou, X. Liu, D. Zuo, J. Yang, S. Deng, Y. Dong, H. Wu, Y. Liu, and Z. Nan. 2017. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. International Immunopharmacology 53: 149–157.CrossRefPubMed
38.
go back to reference Liu, Y., Y. Dong, X. Zhu, H. Fan, M. Xu, Q. Chen, Z. Nan, H. Wu, S. Deng, X. Liu, D. Zuo, and J. Yang. 2018. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. International Immunopharmacology 64: 401–410.CrossRefPubMed Liu, Y., Y. Dong, X. Zhu, H. Fan, M. Xu, Q. Chen, Z. Nan, H. Wu, S. Deng, X. Liu, D. Zuo, and J. Yang. 2018. MiR-155 inhibition ameliorates 2, 4, 6-Trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis in rat via influencing the differentiation of Th17 cells by Jarid2. International Immunopharmacology 64: 401–410.CrossRefPubMed
39.
go back to reference Xu, A., K.K.M. Ahsanul, F. Chen, Z. Zhong, H.C. Chen, and Y. Song. 2016. Overexpression of autotaxin is associated with human renal cell carcinoma and bladder carcinoma and their progression. Medical Oncology 33: 131.CrossRefPubMed Xu, A., K.K.M. Ahsanul, F. Chen, Z. Zhong, H.C. Chen, and Y. Song. 2016. Overexpression of autotaxin is associated with human renal cell carcinoma and bladder carcinoma and their progression. Medical Oncology 33: 131.CrossRefPubMed
40.
go back to reference Castelino, F.V., G. Bain, V.A. Pace, K.E. Black, L. George, C.K. Probst, L. Goulet, R. Lafyatis, and A.M. Tager. 2016. An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis & Rhematology 68: 2964–2974.CrossRef Castelino, F.V., G. Bain, V.A. Pace, K.E. Black, L. George, C.K. Probst, L. Goulet, R. Lafyatis, and A.M. Tager. 2016. An autotaxin/lysophosphatidic acid/interleukin-6 amplification loop drives scleroderma fibrosis. Arthritis & Rhematology 68: 2964–2974.CrossRef
41.
go back to reference Orosa, B., S. Garcia, and C. Conde. 2015. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. European Journal of Pharmacology 765: 228–233.CrossRefPubMed Orosa, B., S. Garcia, and C. Conde. 2015. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. European Journal of Pharmacology 765: 228–233.CrossRefPubMed
42.
go back to reference Lee, S.J., and C.C. Yun. 2010. Colorectal cancer cells - proliferation, survival and invasion by lysophosphatidic acid. The International Journal of Biochemistry & Cell Biology 42: 1907–1910.CrossRef Lee, S.J., and C.C. Yun. 2010. Colorectal cancer cells - proliferation, survival and invasion by lysophosphatidic acid. The International Journal of Biochemistry & Cell Biology 42: 1907–1910.CrossRef
43.
go back to reference Lee, S.C., Y. Fujiwara, J. Liu, J. Yue, Y. Shimizu, D.D. Norman, Y. Wang, R. Tsukahara, E. Szabo, R. Patil, S. Banerjee, D.D. Miller, L. Balazs, M.C. Ghosh, C.M. Waters, T. Oravecz, and G.J. Tigyi. 2015. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Molecular Cancer Research 13: 174–185.CrossRefPubMed Lee, S.C., Y. Fujiwara, J. Liu, J. Yue, Y. Shimizu, D.D. Norman, Y. Wang, R. Tsukahara, E. Szabo, R. Patil, S. Banerjee, D.D. Miller, L. Balazs, M.C. Ghosh, C.M. Waters, T. Oravecz, and G.J. Tigyi. 2015. Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Molecular Cancer Research 13: 174–185.CrossRefPubMed
44.
go back to reference Savaskan, N.E., L. Rocha, M.R. Kotter, A. Baer, G. Lubec, L.A. van Meeteren, Y. Kishi, J. Aoki, W.H. Moolenaar, R. Nitsch, and A.U. Bräuer. 2007. Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cellular and Molecular Life Sciences 64: 230–243.CrossRefPubMed Savaskan, N.E., L. Rocha, M.R. Kotter, A. Baer, G. Lubec, L.A. van Meeteren, Y. Kishi, J. Aoki, W.H. Moolenaar, R. Nitsch, and A.U. Bräuer. 2007. Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cellular and Molecular Life Sciences 64: 230–243.CrossRefPubMed
45.
go back to reference Tager, A.M., P. LaCamera, B.S. Shea, G.S. Campanella, M. Selman, Z. Zhao, V. Polosukhin, J. Wain, B.A. Karimi-Shah, N.D. Kim, W.K. Hart, A. Pardo, T.S. Blackwell, Y. Xu, J. Chun, and A.D. Luster. 2008. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Medicine 14: 45–54.CrossRefPubMed Tager, A.M., P. LaCamera, B.S. Shea, G.S. Campanella, M. Selman, Z. Zhao, V. Polosukhin, J. Wain, B.A. Karimi-Shah, N.D. Kim, W.K. Hart, A. Pardo, T.S. Blackwell, Y. Xu, J. Chun, and A.D. Luster. 2008. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nature Medicine 14: 45–54.CrossRefPubMed
46.
go back to reference Saunders, J.A., L.C. Rogers, C. Klomsiri, L.B. Poole, and L.W. Daniel. 2010. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radical Biology & Medicine 49: 2058–2067.CrossRef Saunders, J.A., L.C. Rogers, C. Klomsiri, L.B. Poole, and L.W. Daniel. 2010. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radical Biology & Medicine 49: 2058–2067.CrossRef
47.
go back to reference Saatian, B., Y. Zhao, D. He, S.N. Georas, T. Watkins, E.W. Spannhake, and V. Natarajan. 2006. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. The Biochemical Journal 393: 657–668.CrossRefPubMedPubMedCentral Saatian, B., Y. Zhao, D. He, S.N. Georas, T. Watkins, E.W. Spannhake, and V. Natarajan. 2006. Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. The Biochemical Journal 393: 657–668.CrossRefPubMedPubMedCentral
48.
go back to reference Chou, C.H., L.H. Wei, M.L. Kuo, Y.J. Huang, K.P. Lai, C.A. Chen, and C.Y. Hsieh. 2005. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis 26: 45–52.CrossRefPubMed Chou, C.H., L.H. Wei, M.L. Kuo, Y.J. Huang, K.P. Lai, C.A. Chen, and C.Y. Hsieh. 2005. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-kappaB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis 26: 45–52.CrossRefPubMed
49.
go back to reference Wu, X., and H. Wang. 2013. The important role of lysophosphatidic acid (LPA) induced interleukin-6 and -8 syntheses by human osteoblasts in skeletal biology. Bone 55: 268.CrossRefPubMed Wu, X., and H. Wang. 2013. The important role of lysophosphatidic acid (LPA) induced interleukin-6 and -8 syntheses by human osteoblasts in skeletal biology. Bone 55: 268.CrossRefPubMed
50.
go back to reference Hwang, Y.S., S.K. Lee, K.K. Park, and W.Y. Chung. 2012. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncology 48: 40–48.CrossRefPubMed Hwang, Y.S., S.K. Lee, K.K. Park, and W.Y. Chung. 2012. Secretion of IL-6 and IL-8 from lysophosphatidic acid-stimulated oral squamous cell carcinoma promotes osteoclastogenesis and bone resorption. Oral Oncology 48: 40–48.CrossRefPubMed
51.
go back to reference Kime, C., M. Sakaki-Yumoto, L. Goodrich, Y. Hayashi, S. Sami, R. Derynck, M. Asahi, B. Panning, S. Yamanaka, and K. Tomoda. 2016. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences of the United States of America 113: 12478–12483.CrossRefPubMedPubMedCentral Kime, C., M. Sakaki-Yumoto, L. Goodrich, Y. Hayashi, S. Sami, R. Derynck, M. Asahi, B. Panning, S. Yamanaka, and K. Tomoda. 2016. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program. Proceedings of the National Academy of Sciences of the United States of America 113: 12478–12483.CrossRefPubMedPubMedCentral
52.
go back to reference Seo, J.H., K.J. Jeong, W.J. Oh, H.J. Sul, J.S. Sohn, Y.K. Kim, D.Y. Cho, J.K. Kang, C.G. Park, and H.Y. Lee. 2010. Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Letters 288: 50–56.CrossRefPubMed Seo, J.H., K.J. Jeong, W.J. Oh, H.J. Sul, J.S. Sohn, Y.K. Kim, D.Y. Cho, J.K. Kang, C.G. Park, and H.Y. Lee. 2010. Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: their inhibition by curcumin. Cancer Letters 288: 50–56.CrossRefPubMed
53.
go back to reference Yang, X.O., A.D. Panopoulos, R. Nurieva, S.H. Chang, D. Wang, S.S. Watowich, and C. Dong. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. The Journal of Biological Chemistry 282: 9358–9363.CrossRefPubMed Yang, X.O., A.D. Panopoulos, R. Nurieva, S.H. Chang, D. Wang, S.S. Watowich, and C. Dong. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. The Journal of Biological Chemistry 282: 9358–9363.CrossRefPubMed
54.
go back to reference Yang, Y., R.C. Winger, P.W. Lee, P.K. Nuro-Gyina, A. Minc, M. Larson, Y. Liu, W. Pei, E. Rieser, M.K. Racke, and A.E. Lovett-Racke. 2015. Impact of suppressing retinoic acid-related orphan receptor gamma t (ROR)gamma t in ameliorating central nervous system autoimmunity. Clinical and Experimental Immunology 179: 108–118.CrossRefPubMed Yang, Y., R.C. Winger, P.W. Lee, P.K. Nuro-Gyina, A. Minc, M. Larson, Y. Liu, W. Pei, E. Rieser, M.K. Racke, and A.E. Lovett-Racke. 2015. Impact of suppressing retinoic acid-related orphan receptor gamma t (ROR)gamma t in ameliorating central nervous system autoimmunity. Clinical and Experimental Immunology 179: 108–118.CrossRefPubMed
55.
go back to reference Tokumura, A. 2002. Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluids. Biochimica et Biophysica Acta 1582: 18–25.CrossRefPubMed Tokumura, A. 2002. Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluids. Biochimica et Biophysica Acta 1582: 18–25.CrossRefPubMed
Metadata
Title
Autotaxin-Lysophosphatidic Acid Axis Blockade Improves Inflammation by Regulating Th17 Cell Differentiation in DSS-Induced Chronic Colitis Mice
Authors
Ya-Lan Dong
Xue-Yun Duan
Yu-Jin Liu
Heng Fan
Meng Xu
Qian-Yun Chen
Zhen Nan
Hui Wu
Shuang-Jiao Deng
Publication date
01-10-2019
Publisher
Springer US
Published in
Inflammation / Issue 5/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01015-z

Other articles of this Issue 5/2019

Inflammation 5/2019 Go to the issue