Skip to main content
Top
Published in: Inflammation 4/2019

Open Access 01-08-2019 | Kidney Injury | ORIGINAL ARTICLE

Fractalkine is Involved in Lipopolysaccharide-Induced Podocyte Injury through the Wnt/β-Catenin Pathway in an Acute Kidney Injury Mouse Model

Authors: Soulixay Senouthai, Junjie Wang, Dongdong Fu, Yanwu You

Published in: Inflammation | Issue 4/2019

Login to get access

Abstract

Injury to podocytes leads to proteinuria, a hallmark of most glomerular diseases as well as being associated with the progression of kidney disease. Activation of the Wnt/β-catenin pathway is associated with the pathogenesis of podocyte dysfunction and can play a role in renal injury. Furthermore, the expression of fractalkine (FKN) induced by lipopolysaccharides (LPS) is also one of crucial inflammation factors closely related to renal tissue damage. The aim of this study is to explore the mechanism of LPS-induced FKN expression leading to podocyte injury and contribute to acute kidney injury (AKI) through regulation of Wnt/β-catenin pathway. An AKI model was established for in vivo experiments and blood was collected for serum BUN and Cr measurement, and histopathological features of the kidneys were studied by PASM and IHC staining. For in vitro experiments, a mouse podocyte cell line was stimulated with different concentrations of LPS for 24 and 48 h after which podocyte viability and apoptosis of cells were evaluated. The expression of podocyte-specific markers, FKN and Wnt/β-catenin pathway mRNA and protein was detected in mice and cells by using qRT-PCR and western blotting. LPS induced the expression of FKN and activation of the Wnt/β-catenin pathway, leading to a decrease of podocyte-specific proteins which resulted in poor renal pathology and dysfunction in the AKI mouse model. Moreover, LPS treatment significantly decreased cell viability and induced podocyte apoptosis in a dose-dependent manner that causes changes in the expression of podocyte-specific proteins through activation of FKN and the Wnt/β-catenin pathway. Thus, the expression of FKN and Wnt/β-catenin pathway by LPS is closely associated with podocyte damage or loss and could therefore account for progressive AKI. Our findings indicate that LPS induce podocyte injury and contribute to the pathogenesis of AKI by upregulating the expression of FKN and Wnt/β-catenin pathway.
Literature
1.
go back to reference Rahman, M., F. Shad, and M.C. Smith. 2012. Acute kidney injury: a guide to diagnosis and management. American Family Physician 86: 631–639.PubMed Rahman, M., F. Shad, and M.C. Smith. 2012. Acute kidney injury: a guide to diagnosis and management. American Family Physician 86: 631–639.PubMed
2.
go back to reference Feng, Y.-G., B. Liang, J. Liu, M.-D. Jiang, H.-J. Liu, Y.-Q. Huang, and L. Xiao. 2016. Correlation study of podocyte injury and kidney function in patients with acute kidney injury. Journal of Acute Disease 5: 493–496.CrossRef Feng, Y.-G., B. Liang, J. Liu, M.-D. Jiang, H.-J. Liu, Y.-Q. Huang, and L. Xiao. 2016. Correlation study of podocyte injury and kidney function in patients with acute kidney injury. Journal of Acute Disease 5: 493–496.CrossRef
3.
go back to reference Greka, A., and P. Mundel. 2012. Cell biology and pathology of podocytes. Annual Review of Physiology 74: 299–323.CrossRefPubMed Greka, A., and P. Mundel. 2012. Cell biology and pathology of podocytes. Annual Review of Physiology 74: 299–323.CrossRefPubMed
4.
go back to reference Cybulsky, A.V., T. Takano, J. Papillon, T.M. Kitzler, and K. Bijian. 2011. Endoplasmic reticulum stress in glomerular epithelial cell injury. American Journal of Physiology. Renal Physiology 301: F496–F508.CrossRefPubMed Cybulsky, A.V., T. Takano, J. Papillon, T.M. Kitzler, and K. Bijian. 2011. Endoplasmic reticulum stress in glomerular epithelial cell injury. American Journal of Physiology. Renal Physiology 301: F496–F508.CrossRefPubMed
5.
go back to reference Susztak, K., A.C. Raff, M. Schiffer, and E.P. Bottinger. 2006. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55: 225–233.CrossRefPubMed Susztak, K., A.C. Raff, M. Schiffer, and E.P. Bottinger. 2006. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55: 225–233.CrossRefPubMed
6.
go back to reference Hartleben, B., N. Wanner, and T.B. Huber. 2014. Autophagy in glomerular health and disease. Seminars in Nephrology 34: 42–52.CrossRefPubMed Hartleben, B., N. Wanner, and T.B. Huber. 2014. Autophagy in glomerular health and disease. Seminars in Nephrology 34: 42–52.CrossRefPubMed
7.
go back to reference Wang, Y., F. Yu, D. Song, S.X. Wang, and M.H. Zhao. 2014. Podocyte involvement in lupus nephritis based on the 2003 ISN/RPS system: a large cohort study from a single centre. Rheumatology (Oxford) 53: 1235–1244.CrossRef Wang, Y., F. Yu, D. Song, S.X. Wang, and M.H. Zhao. 2014. Podocyte involvement in lupus nephritis based on the 2003 ISN/RPS system: a large cohort study from a single centre. Rheumatology (Oxford) 53: 1235–1244.CrossRef
8.
go back to reference Hanamura, K., A. Tojo, and T. Fujita. 2014. Urinary and glomerular podocytes in patients with chronic kidney diseases. Clinical and Experimental Nephrology 18: 95–103.CrossRefPubMed Hanamura, K., A. Tojo, and T. Fujita. 2014. Urinary and glomerular podocytes in patients with chronic kidney diseases. Clinical and Experimental Nephrology 18: 95–103.CrossRefPubMed
9.
go back to reference Boute, N., O. Gribouval, S. Roselli, F. Benessy, H. Lee, A. Fuchshuber, K. Dahan, M.C. Gubler, P. Niaudet, and C. Antignac. 2000. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genetics 24: 349–354.CrossRefPubMed Boute, N., O. Gribouval, S. Roselli, F. Benessy, H. Lee, A. Fuchshuber, K. Dahan, M.C. Gubler, P. Niaudet, and C. Antignac. 2000. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genetics 24: 349–354.CrossRefPubMed
10.
go back to reference Aaltonen, P., and H. Holthöfer. 2007. The nephrin-based slit diaphragm: new insight into the signalling platform identifies targets for therapy. Nephrology, Dialysis, Transplantation 22: 3408–3410.CrossRefPubMed Aaltonen, P., and H. Holthöfer. 2007. The nephrin-based slit diaphragm: new insight into the signalling platform identifies targets for therapy. Nephrology, Dialysis, Transplantation 22: 3408–3410.CrossRefPubMed
11.
go back to reference Grunkemeyer, J., C. Kwoh, T. Huber, and A. Shaw. 2005. CD2-associated protein (CD2AP) expression in podocytes rescues lethality of CD2AP deficiency. The Journal of Biological Chemistry 280: 29677–29681.CrossRefPubMed Grunkemeyer, J., C. Kwoh, T. Huber, and A. Shaw. 2005. CD2-associated protein (CD2AP) expression in podocytes rescues lethality of CD2AP deficiency. The Journal of Biological Chemistry 280: 29677–29681.CrossRefPubMed
12.
go back to reference Perysinaki, G.S., D.K. Moysiadis, G. Bertsias, I. Giannopoulou, K. Kyriacou, L. Nakopoulou, D.T. Boumpas, and E. Daphnis. 2011. Podocyte main slit diaphragm proteins, nephrin and podocin, are affected at early stages of lupus nephritis and correlate with disease histology. Lupus 20: 781–791.CrossRefPubMed Perysinaki, G.S., D.K. Moysiadis, G. Bertsias, I. Giannopoulou, K. Kyriacou, L. Nakopoulou, D.T. Boumpas, and E. Daphnis. 2011. Podocyte main slit diaphragm proteins, nephrin and podocin, are affected at early stages of lupus nephritis and correlate with disease histology. Lupus 20: 781–791.CrossRefPubMed
13.
go back to reference Rood, I.M., J.K. Deegens, and J.F. Wetzels. 2012. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrology, Dialysis, Transplantation 27: 882–890.CrossRefPubMed Rood, I.M., J.K. Deegens, and J.F. Wetzels. 2012. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrology, Dialysis, Transplantation 27: 882–890.CrossRefPubMed
14.
go back to reference Kato, T., Y. Mizuno-Horikawa, and S. Mizuno. 2011. Decreases in podocin, CD2-associated protein (CD2AP) and tensin2 may be involved in albuminuria during septic acute renal failure. The Journal of Veterinary Medical Science 73: 1579–1584.CrossRefPubMed Kato, T., Y. Mizuno-Horikawa, and S. Mizuno. 2011. Decreases in podocin, CD2-associated protein (CD2AP) and tensin2 may be involved in albuminuria during septic acute renal failure. The Journal of Veterinary Medical Science 73: 1579–1584.CrossRefPubMed
15.
go back to reference Huber, T.B., C. Kwoh, H. Wu, K. Asanuma, M. Godel, B. Hartleben, K.J. Blumer, J.H. Miner, P. Mundel, and A.S. Shaw. 2006. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. The Journal of Clinical Investigation 116: 1337–1345.CrossRefPubMedPubMedCentral Huber, T.B., C. Kwoh, H. Wu, K. Asanuma, M. Godel, B. Hartleben, K.J. Blumer, J.H. Miner, P. Mundel, and A.S. Shaw. 2006. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. The Journal of Clinical Investigation 116: 1337–1345.CrossRefPubMedPubMedCentral
16.
go back to reference Patrakka, J., and K. Tryggvason. 2009. New insights into the role of podocytes in proteinuria. Nature Reviews. Nephrology 5: 463–468.CrossRefPubMed Patrakka, J., and K. Tryggvason. 2009. New insights into the role of podocytes in proteinuria. Nature Reviews. Nephrology 5: 463–468.CrossRefPubMed
17.
go back to reference Funk, J., V. Ott, A. Herrmann, W. Rapp, S. Raab, W. Riboulet, A. Vandjour, E. Hainaut, A. Benardeau, T. Singer, and B. Jacobsen. 2016. Semiautomated quantitative image analysis of glomerular immunohistochemistry markers desmin, vimentin, podocin, synaptopodin and WT-1 in acute and chronic rat kidney disease models. Histochemistry and Cell Biology 145: 315–326.CrossRefPubMed Funk, J., V. Ott, A. Herrmann, W. Rapp, S. Raab, W. Riboulet, A. Vandjour, E. Hainaut, A. Benardeau, T. Singer, and B. Jacobsen. 2016. Semiautomated quantitative image analysis of glomerular immunohistochemistry markers desmin, vimentin, podocin, synaptopodin and WT-1 in acute and chronic rat kidney disease models. Histochemistry and Cell Biology 145: 315–326.CrossRefPubMed
18.
go back to reference Van Amersfoort, E.S., T.J. Van Berkel, and J. Kuiper. 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clinical Microbiology Reviews 16: 379–414.CrossRefPubMedPubMedCentral Van Amersfoort, E.S., T.J. Van Berkel, and J. Kuiper. 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clinical Microbiology Reviews 16: 379–414.CrossRefPubMedPubMedCentral
19.
go back to reference Ding, Q., Y. Wang, A.L. Zhang, T. Xu, D.D. Zhou, X.F. Li, J.F. Yang, L. Zhang, and X. Wang. 2018. ZEB2 Attenuates LPS-Induced Inflammation by the NF-kappaB Pathway in HK-2 Cells. Inflammation 41: 722–731.CrossRefPubMed Ding, Q., Y. Wang, A.L. Zhang, T. Xu, D.D. Zhou, X.F. Li, J.F. Yang, L. Zhang, and X. Wang. 2018. ZEB2 Attenuates LPS-Induced Inflammation by the NF-kappaB Pathway in HK-2 Cells. Inflammation 41: 722–731.CrossRefPubMed
20.
go back to reference Pawar, R., L. Castrezana-Lopez, R. Allam, O. Kulkarni, S. Segerer, E. Radomska, T. Meyer, C. Schwesinger, N. Akis, H. Gröne, and H. Anders. 2009. Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Toll-like receptor 2 at the glomerular filtration barrier. Immunology 128: e206–e221.CrossRefPubMedPubMedCentral Pawar, R., L. Castrezana-Lopez, R. Allam, O. Kulkarni, S. Segerer, E. Radomska, T. Meyer, C. Schwesinger, N. Akis, H. Gröne, and H. Anders. 2009. Bacterial lipopeptide triggers massive albuminuria in murine lupus nephritis by activating Toll-like receptor 2 at the glomerular filtration barrier. Immunology 128: e206–e221.CrossRefPubMedPubMedCentral
21.
go back to reference Liu, J., G. Li, W. Xie, L. Wang, R. Zhang, K. Huang, Q. Zhou, and D. Chen. 2017. Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway. Chinese Medical Journal 130: 1236–1243.CrossRefPubMedPubMedCentral Liu, J., G. Li, W. Xie, L. Wang, R. Zhang, K. Huang, Q. Zhou, and D. Chen. 2017. Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway. Chinese Medical Journal 130: 1236–1243.CrossRefPubMedPubMedCentral
22.
go back to reference Wang, W.M., H. Chen, F. Zhong, Y. Lu, L. Han, and N. Chen. 2011. Inhibitory effects of rosiglitazone on lipopolysaccharide-induced inflammation in a murine model and HK-2 cells. American Journal of Nephrology 34: 152–162.CrossRefPubMed Wang, W.M., H. Chen, F. Zhong, Y. Lu, L. Han, and N. Chen. 2011. Inhibitory effects of rosiglitazone on lipopolysaccharide-induced inflammation in a murine model and HK-2 cells. American Journal of Nephrology 34: 152–162.CrossRefPubMed
23.
go back to reference Zhang, H., and S.C. Sun. 2015. NF-kappaB in inflammation and renal diseases. Cell & Bioscience 5: 63.CrossRef Zhang, H., and S.C. Sun. 2015. NF-kappaB in inflammation and renal diseases. Cell & Bioscience 5: 63.CrossRef
24.
go back to reference Kim, D.H., Y.J. Jung, A.S. Lee, S. Lee, K.P. Kang, T.H. Lee, S.Y. Lee, K.Y. Jang, W.S. Moon, K.S. Choi, K.H. Yoon, M.J. Sung, S.K. Park, and W. Kim. 2009. COMP-angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney International 76: 1180–1191.CrossRefPubMed Kim, D.H., Y.J. Jung, A.S. Lee, S. Lee, K.P. Kang, T.H. Lee, S.Y. Lee, K.Y. Jang, W.S. Moon, K.S. Choi, K.H. Yoon, M.J. Sung, S.K. Park, and W. Kim. 2009. COMP-angiopoietin-1 decreases lipopolysaccharide-induced acute kidney injury. Kidney International 76: 1180–1191.CrossRefPubMed
25.
go back to reference Fu, H., Z. Hu, X. Di, Q. Zhang, R. Zhou, and H. Du. 2016. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-kappaB signaling pathway. European Journal of Pharmacology 791: 229–234.CrossRefPubMed Fu, H., Z. Hu, X. Di, Q. Zhang, R. Zhou, and H. Du. 2016. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-kappaB signaling pathway. European Journal of Pharmacology 791: 229–234.CrossRefPubMed
26.
go back to reference Imai, T., and N. Yasuda. 2016. Therapeutic intervention of inflammatory/immune diseases by inhibition of the fractalkine (CX3CL1)-CX3CR1 pathway. Inflamm Regen 36: 9.CrossRefPubMedPubMedCentral Imai, T., and N. Yasuda. 2016. Therapeutic intervention of inflammatory/immune diseases by inhibition of the fractalkine (CX3CL1)-CX3CR1 pathway. Inflamm Regen 36: 9.CrossRefPubMedPubMedCentral
27.
go back to reference Huang, L., P. Chen, L. Xu, Y. Zhou, Y. Zhang, and Y. Yuan. 2012. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation 35: 1023–1030.CrossRefPubMed Huang, L., P. Chen, L. Xu, Y. Zhou, Y. Zhang, and Y. Yuan. 2012. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation 35: 1023–1030.CrossRefPubMed
28.
go back to reference Nakatani, K., S. Yoshimoto, M. Iwano, O. Asai, K. Samejima, H. Sakan, M. Terada, H. Hasegawa, M. Nose, and Y. Saito. 2010. Fractalkine expression and CD16+ monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. American Journal of Physiology. Renal Physiology 299: F207–F216.CrossRefPubMed Nakatani, K., S. Yoshimoto, M. Iwano, O. Asai, K. Samejima, H. Sakan, M. Terada, H. Hasegawa, M. Nose, and Y. Saito. 2010. Fractalkine expression and CD16+ monocyte accumulation in glomerular lesions: association with their severity and diversity in lupus models. American Journal of Physiology. Renal Physiology 299: F207–F216.CrossRefPubMed
29.
go back to reference Cockwell, P., S.J. Chakravorty, J. Girdlestone, and C.O. Savage. 2002. Fractalkine expression in human renal inflammation. The Journal of Pathology 196: 85–90.CrossRefPubMed Cockwell, P., S.J. Chakravorty, J. Girdlestone, and C.O. Savage. 2002. Fractalkine expression in human renal inflammation. The Journal of Pathology 196: 85–90.CrossRefPubMed
30.
go back to reference Park, J., K. Song, and H. Ha. 2012. Lipopolysaccharide increases monocyte binding to mesangial cells through fractalkine and its receptor. Transplantation Proceedings 44: 1029–1031.CrossRefPubMed Park, J., K. Song, and H. Ha. 2012. Lipopolysaccharide increases monocyte binding to mesangial cells through fractalkine and its receptor. Transplantation Proceedings 44: 1029–1031.CrossRefPubMed
31.
go back to reference You, Y., Y. Qin, X. Lin, F. Yang, J. Li, S. Sooranna, and L. Pinhu. 2015. Methylprednisolone attenuates lipopolysaccharide-induced Fractalkine expression in kidney of Lupus-prone MRL/lpr mice through the NF-kappaB pathway. BMC Nephrology 16: 148.CrossRefPubMedPubMedCentral You, Y., Y. Qin, X. Lin, F. Yang, J. Li, S. Sooranna, and L. Pinhu. 2015. Methylprednisolone attenuates lipopolysaccharide-induced Fractalkine expression in kidney of Lupus-prone MRL/lpr mice through the NF-kappaB pathway. BMC Nephrology 16: 148.CrossRefPubMedPubMedCentral
32.
go back to reference Yang, X., X. Wang, F. Nie, T. Liu, X. Yu, H. Wang, Q. Li, R. Peng, Z. Mao, Q. Zhou, and G. Li. 2015. miR-135 family members mediate podocyte injury through the activation of Wnt/β-catenin signaling. International Journal of Molecular Medicine 36: 669–677.CrossRefPubMedPubMedCentral Yang, X., X. Wang, F. Nie, T. Liu, X. Yu, H. Wang, Q. Li, R. Peng, Z. Mao, Q. Zhou, and G. Li. 2015. miR-135 family members mediate podocyte injury through the activation of Wnt/β-catenin signaling. International Journal of Molecular Medicine 36: 669–677.CrossRefPubMedPubMedCentral
33.
go back to reference Tan, R.J., D. Zhou, L. Zhou, and Y. Liu. 2014. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011) 4: 84–90.CrossRef Tan, R.J., D. Zhou, L. Zhou, and Y. Liu. 2014. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl (2011) 4: 84–90.CrossRef
34.
go back to reference Dai, C., D.B. Stolz, L.P. Kiss, S.P. Monga, L.B. Holzman, and Y. Liu. 2009. Wnt/β-Catenin Signaling Promotes Podocyte Dysfunction and Albuminuria. Journal of the American Society of Nephrology 20: 1997–2008.CrossRefPubMedPubMedCentral Dai, C., D.B. Stolz, L.P. Kiss, S.P. Monga, L.B. Holzman, and Y. Liu. 2009. Wnt/β-Catenin Signaling Promotes Podocyte Dysfunction and Albuminuria. Journal of the American Society of Nephrology 20: 1997–2008.CrossRefPubMedPubMedCentral
35.
go back to reference Wang, S., S. Yang, X. Zhao, F. Chen, and J. Shi. 2017. Expression of the Wnt/β-catenin signal pathway in patients with acute renal injury. European Review for Medical and Pharmacological Sciences 21: 4661–4667.PubMed Wang, S., S. Yang, X. Zhao, F. Chen, and J. Shi. 2017. Expression of the Wnt/β-catenin signal pathway in patients with acute renal injury. European Review for Medical and Pharmacological Sciences 21: 4661–4667.PubMed
36.
go back to reference Cheng, L., Y. Zhao, D. Qi, W. Li, and D. Wang. 2018. Wnt/β-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochemical and Biophysical Research Communications 495: 1890–1895.CrossRefPubMed Cheng, L., Y. Zhao, D. Qi, W. Li, and D. Wang. 2018. Wnt/β-catenin pathway promotes acute lung injury induced by LPS through driving the Th17 response in mice. Biochemical and Biophysical Research Communications 495: 1890–1895.CrossRefPubMed
37.
go back to reference Jang, J., J.H. Ha, S.I. Chung, and Y. Yoon. 2014. Beta-catenin regulates NF-kappaB activity and inflammatory cytokine expression in bronchial epithelial cells treated with lipopolysaccharide. International Journal of Molecular Medicine 34: 632–638.CrossRefPubMed Jang, J., J.H. Ha, S.I. Chung, and Y. Yoon. 2014. Beta-catenin regulates NF-kappaB activity and inflammatory cytokine expression in bronchial epithelial cells treated with lipopolysaccharide. International Journal of Molecular Medicine 34: 632–638.CrossRefPubMed
38.
go back to reference Peng, Y., X. Zhang, Y. Wang, S. Li, J. Wang, and L. Liu. 2015. Overexpression of toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model. Renal Failure 37: 694–698.CrossRefPubMed Peng, Y., X. Zhang, Y. Wang, S. Li, J. Wang, and L. Liu. 2015. Overexpression of toll-like receptor 2 in glomerular endothelial cells and podocytes in septic acute kidney injury mouse model. Renal Failure 37: 694–698.CrossRefPubMed
39.
go back to reference Distler, A., L. Deloch, J. Huang, C. Dees, N. Lin, K. Palumbo-Zerr, C. Beyer, A. Weidemann, O. Distler, G. Schett, and J. Distler. 2013. Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Annals of the Rheumatic Diseases 72: 1575–1580.CrossRefPubMed Distler, A., L. Deloch, J. Huang, C. Dees, N. Lin, K. Palumbo-Zerr, C. Beyer, A. Weidemann, O. Distler, G. Schett, and J. Distler. 2013. Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Annals of the Rheumatic Diseases 72: 1575–1580.CrossRefPubMed
40.
go back to reference Soslow, R.A., A.J. Dannenberg, D. Rush, B.M. Woerner, K.N. Khan, J. Masferrer, and A.T. Koki. 2000. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89: 2637–2645.CrossRefPubMed Soslow, R.A., A.J. Dannenberg, D. Rush, B.M. Woerner, K.N. Khan, J. Masferrer, and A.T. Koki. 2000. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89: 2637–2645.CrossRefPubMed
41.
go back to reference Li, T., J. Mao, L. Huang, H. Fu, S. Chen, A. Liu, and Y. Liang. 2016. Huaiqihuang may protect from proteinuria by resisting MPC5 podocyte damage via targeting p-ERK/CHOP pathway. Bosnian Journal of Basic Medical Sciences 16: 193–200.PubMedPubMedCentral Li, T., J. Mao, L. Huang, H. Fu, S. Chen, A. Liu, and Y. Liang. 2016. Huaiqihuang may protect from proteinuria by resisting MPC5 podocyte damage via targeting p-ERK/CHOP pathway. Bosnian Journal of Basic Medical Sciences 16: 193–200.PubMedPubMedCentral
42.
go back to reference Wang, W., N. Li, X. Li, M. Tran, X. Han, and J. Chen. 2015. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Reports 13: 524–532.CrossRefPubMedPubMedCentral Wang, W., N. Li, X. Li, M. Tran, X. Han, and J. Chen. 2015. Tankyrase Inhibitors Target YAP by Stabilizing Angiomotin Family Proteins. Cell Reports 13: 524–532.CrossRefPubMedPubMedCentral
43.
go back to reference Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3: 1101–1108.CrossRefPubMed Schmittgen, T.D., and K.J. Livak. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols 3: 1101–1108.CrossRefPubMed
44.
go back to reference Mallipattu, S.K., and J.C. He. 2016. The podocyte as a direct target for treatment of glomerular disease? American Journal of Physiology. Renal Physiology 311: F46–F51.CrossRefPubMedPubMedCentral Mallipattu, S.K., and J.C. He. 2016. The podocyte as a direct target for treatment of glomerular disease? American Journal of Physiology. Renal Physiology 311: F46–F51.CrossRefPubMedPubMedCentral
45.
go back to reference Lemley, K.V. 2016. Glomerular pathology and the progression of chronic kidney disease. American Journal of Physiology. Renal Physiology 310: F1385–F1388.CrossRefPubMed Lemley, K.V. 2016. Glomerular pathology and the progression of chronic kidney disease. American Journal of Physiology. Renal Physiology 310: F1385–F1388.CrossRefPubMed
46.
go back to reference Reiser, J., Altintas, M.M.. 2016. Podocytes. F1000Res, 5. Reiser, J., Altintas, M.M.. 2016. Podocytes. F1000Res, 5.
47.
go back to reference Mundel, P., and S. Shankland. 2002. Podocyte biology and response to injury. Journal of the American Society of Nephrology 13: 3005–3015.CrossRefPubMed Mundel, P., and S. Shankland. 2002. Podocyte biology and response to injury. Journal of the American Society of Nephrology 13: 3005–3015.CrossRefPubMed
48.
go back to reference Tabassum, A., T. Rajeshwari, N. Soni, D.S. Raju, M. Yadav, A. Nayarisseri, and P. Jahan. 2014. Structural characterization and mutational assessment of podocin—a novel drug target to nephrotic syndrome - an in silico approach. Interdisciplinary Sciences 6: 32–39. Tabassum, A., T. Rajeshwari, N. Soni, D.S. Raju, M. Yadav, A. Nayarisseri, and P. Jahan. 2014. Structural characterization and mutational assessment of podocin—a novel drug target to nephrotic syndrome - an in silico approach. Interdisciplinary Sciences 6: 32–39.
49.
go back to reference Kato, T., S. Mizuno, and T. Nakamura. 2011. Preservations of nephrin and synaptopodin by recombinant hepatocyte growth factor in podocytes for the attenuations of foot process injury and albuminuria in nephritic mice. Nephrology (Carlton) 16: 310–318.CrossRef Kato, T., S. Mizuno, and T. Nakamura. 2011. Preservations of nephrin and synaptopodin by recombinant hepatocyte growth factor in podocytes for the attenuations of foot process injury and albuminuria in nephritic mice. Nephrology (Carlton) 16: 310–318.CrossRef
50.
go back to reference Srivastava, T., M. Sharma, K.H. Yew, R. Sharma, R.S. Duncan, M.A. Saleem, E.T. McCarthy, A. Kats, P.A. Cudmore, U.S. Alon, and C.J. Harrison. 2013. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal 7: 49–60.CrossRefPubMed Srivastava, T., M. Sharma, K.H. Yew, R. Sharma, R.S. Duncan, M.A. Saleem, E.T. McCarthy, A. Kats, P.A. Cudmore, U.S. Alon, and C.J. Harrison. 2013. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal 7: 49–60.CrossRefPubMed
51.
go back to reference Plotnikov, E.Y., Brezgunova, A.A., Pevzner, I.B., Zorova, L.D., Manskikh, V.N., Popkov, V.A., Silachev, D.N., Zorov, D.B.. 2018. Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants (Basel), 7. Plotnikov, E.Y., Brezgunova, A.A., Pevzner, I.B., Zorova, L.D., Manskikh, V.N., Popkov, V.A., Silachev, D.N., Zorov, D.B.. 2018. Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants (Basel), 7.
52.
go back to reference Jones, B.A., M. Beamer, and S. Ahmed. 2010. Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Molecular Interventions 10: 263–270.CrossRefPubMedPubMedCentral Jones, B.A., M. Beamer, and S. Ahmed. 2010. Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Molecular Interventions 10: 263–270.CrossRefPubMedPubMedCentral
53.
go back to reference Durkan, A.M., R.T. Alexander, G.Y. Liu, M. Rui, G. Femia, and L.A. Robinson. 2007. Expression and targeting of CX3CL1 (fractalkine) in renal tubular epithelial cells. Journal of the American Society of Nephrology 18: 74–83.CrossRefPubMed Durkan, A.M., R.T. Alexander, G.Y. Liu, M. Rui, G. Femia, and L.A. Robinson. 2007. Expression and targeting of CX3CL1 (fractalkine) in renal tubular epithelial cells. Journal of the American Society of Nephrology 18: 74–83.CrossRefPubMed
54.
go back to reference Zhuang, Q., K. Cheng, and Y. Ming. 2017. CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe? Current Gene Therapy 17: 442–452.CrossRefPubMedPubMedCentral Zhuang, Q., K. Cheng, and Y. Ming. 2017. CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe? Current Gene Therapy 17: 442–452.CrossRefPubMedPubMedCentral
55.
go back to reference Sung, M.J., W. Kim, S.Y. Ahn, C.H. Cho, G.Y. Koh, S.O. Moon, D.H. Kim, S. Lee, K.P. Kang, K.Y. Jang, and S.K. Park. 2005. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circulation Research 97: 880–890.CrossRefPubMed Sung, M.J., W. Kim, S.Y. Ahn, C.H. Cho, G.Y. Koh, S.O. Moon, D.H. Kim, S. Lee, K.P. Kang, K.Y. Jang, and S.K. Park. 2005. Protective effect of alpha-lipoic acid in lipopolysaccharide-induced endothelial fractalkine expression. Circulation Research 97: 880–890.CrossRefPubMed
56.
go back to reference Sun, Y., F. Wang, X. Sun, X. Wang, L. Zhang, and Y. Li. 2017. CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/beta-catenin signaling. Biomedicine & Pharmacotherapy 96: 1317–1323.CrossRef Sun, Y., F. Wang, X. Sun, X. Wang, L. Zhang, and Y. Li. 2017. CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/beta-catenin signaling. Biomedicine & Pharmacotherapy 96: 1317–1323.CrossRef
57.
go back to reference Gong, G., L. Hu, F. Qin, L. Yin, X. Yi, L. Yuan, and W. Wu. 2016. Spinal WNT pathway contributes to remifentanil induced hyperalgesia through regulating fractalkine and CX3CR1 in rats. Neuroscience Letters 633: 21–27.CrossRefPubMed Gong, G., L. Hu, F. Qin, L. Yin, X. Yi, L. Yuan, and W. Wu. 2016. Spinal WNT pathway contributes to remifentanil induced hyperalgesia through regulating fractalkine and CX3CR1 in rats. Neuroscience Letters 633: 21–27.CrossRefPubMed
58.
go back to reference Li, F.Q., D.K. Zeng, C.L. Jia, P. Zhou, L. Yin, B. Zhang, F. Liu, and Q. Zhu. 2015. The effects of sodium tanshinone IIa sulfonate pretreatment on high glucose-induced expression of fractalkine and apoptosis in human umbilical vein endothelial cells. International Journal of Clinical and Experimental Medicine 8: 5279–5286.PubMedPubMedCentral Li, F.Q., D.K. Zeng, C.L. Jia, P. Zhou, L. Yin, B. Zhang, F. Liu, and Q. Zhu. 2015. The effects of sodium tanshinone IIa sulfonate pretreatment on high glucose-induced expression of fractalkine and apoptosis in human umbilical vein endothelial cells. International Journal of Clinical and Experimental Medicine 8: 5279–5286.PubMedPubMedCentral
59.
go back to reference Jang, J., Y. Jung, Y. Kim, E.-h. Jho, and Y. Yoon. 2017. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Scientific Reports 7: 41612.CrossRefPubMedPubMedCentral Jang, J., Y. Jung, Y. Kim, E.-h. Jho, and Y. Yoon. 2017. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Scientific Reports 7: 41612.CrossRefPubMedPubMedCentral
Metadata
Title
Fractalkine is Involved in Lipopolysaccharide-Induced Podocyte Injury through the Wnt/β-Catenin Pathway in an Acute Kidney Injury Mouse Model
Authors
Soulixay Senouthai
Junjie Wang
Dongdong Fu
Yanwu You
Publication date
01-08-2019
Publisher
Springer US
Published in
Inflammation / Issue 4/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00988-1

Other articles of this Issue 4/2019

Inflammation 4/2019 Go to the issue