Skip to main content
Top
Published in: Inflammation 1/2019

01-02-2019 | REVIEW

Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis

Authors: Peng Qiu, Yang Liu, Jin Zhang

Published in: Inflammation | Issue 1/2019

Login to get access

Abstract

Sepsis is a systemic inflammatory response syndrome caused by infection. The core mechanism underlying sepsis is immune dysfunction, with macrophages, as important cells of the innate immune system, playing an essential role. Autophagy has been shown to be closely related to inflammation and immunity, and autophagy enhancement in sepsis can play a protective role by negatively regulating abnormal macrophage activation, modulating macrophage polarization phenotype, reducing activation of the inflammasome and release of inflammatory factors, and affecting macrophage apoptosis. However, excessive autophagy may also lead to autophagic death of macrophages, which further aggravates the inflammatory response. The mechanisms underlying these functions are relatively complex and remain unclear, but may be related to a variety of signaling pathways such as NF-κB, mTOR, and PI3K/AKT. The administration of drugs to assist in the regulation of macrophage autophagy has become a novel treatment for sepsis. The present review focuses on the role and the potential mechanisms of macrophage autophagy in sepsis.
Literature
1.
go back to reference Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The Third International Consensus Definitions for sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.CrossRefPubMedPubMedCentral
2.
go back to reference Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274 (1): 330–353.CrossRefPubMedPubMedCentral Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274 (1): 330–353.CrossRefPubMedPubMedCentral
3.
go back to reference Kovach, M.A., and T.J. Standiford. 2012. The function of neutrophils in sepsis. Current Opinion in Infectious Diseases 25 (3): 321–327.CrossRefPubMed Kovach, M.A., and T.J. Standiford. 2012. The function of neutrophils in sepsis. Current Opinion in Infectious Diseases 25 (3): 321–327.CrossRefPubMed
4.
go back to reference Pastille, E., et al. 2010. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. Journal of Immunology 186 (2): 977–986.CrossRef Pastille, E., et al. 2010. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis. Journal of Immunology 186 (2): 977–986.CrossRef
6.
go back to reference Luan, Y.-Y., N. Dong, M. Xie, X.Z. Xiao, and Y.M. Yao. 2014. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon & Cytokine Research 34 (1): 2–15.CrossRef Luan, Y.-Y., N. Dong, M. Xie, X.Z. Xiao, and Y.M. Yao. 2014. The significance and regulatory mechanisms of innate immune cells in the development of sepsis. Journal of Interferon & Cytokine Research 34 (1): 2–15.CrossRef
7.
go back to reference Giamarellos-Bourboulis, E.J. 2014. Natural killer cells in sepsis: Detrimental role for final outcome. Critical Care Medicine 42 (6): 1579–1580.CrossRefPubMed Giamarellos-Bourboulis, E.J. 2014. Natural killer cells in sepsis: Detrimental role for final outcome. Critical Care Medicine 42 (6): 1579–1580.CrossRefPubMed
10.
go back to reference Lauvau, G., P.’. Loke, and T.M. Hohl. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology 27 (6): 397–409.CrossRefPubMed Lauvau, G., P.’. Loke, and T.M. Hohl. 2015. Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology 27 (6): 397–409.CrossRefPubMed
11.
go back to reference Hamidzadeh, K., S.M. Christensen, E. Dalby, P. Chandrasekaran, and D.M. Mosser. 2017. Macrophages and the recovery from acute and chronic inflammation. Annual Review of Physiology 79: 567–592.CrossRefPubMed Hamidzadeh, K., S.M. Christensen, E. Dalby, P. Chandrasekaran, and D.M. Mosser. 2017. Macrophages and the recovery from acute and chronic inflammation. Annual Review of Physiology 79: 567–592.CrossRefPubMed
12.
go back to reference Winkler, M.S., A. Rissiek, M. Priefler, E. Schwedhelm, L. Robbe, A. Bauer, C. Zahrte, C. Zoellner, S. Kluge, and A. Nierhaus. 2017. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS One 12 (8): e0182427.CrossRefPubMedPubMedCentral Winkler, M.S., A. Rissiek, M. Priefler, E. Schwedhelm, L. Robbe, A. Bauer, C. Zahrte, C. Zoellner, S. Kluge, and A. Nierhaus. 2017. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: a diagnostic tool for immunosuppression? PLoS One 12 (8): e0182427.CrossRefPubMedPubMedCentral
13.
go back to reference Wang, T.S., and J.C. Deng. 2008. Molecular and cellular aspects of sepsis-induced immunosuppression. Journal of Molecular Medicine 86 (5): 495–506.CrossRefPubMed Wang, T.S., and J.C. Deng. 2008. Molecular and cellular aspects of sepsis-induced immunosuppression. Journal of Molecular Medicine 86 (5): 495–506.CrossRefPubMed
14.
go back to reference Lee, C.R., and D.C. Zeldin. 2015. Resolvin infectious inflammation by targeting the host response. The New England Journal of Medicine 373: 2183–2185.CrossRefPubMedPubMedCentral Lee, C.R., and D.C. Zeldin. 2015. Resolvin infectious inflammation by targeting the host response. The New England Journal of Medicine 373: 2183–2185.CrossRefPubMedPubMedCentral
15.
go back to reference Kumar, V. 2018. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.CrossRefPubMed Kumar, V. 2018. Targeting macrophage immunometabolism: dawn in the darkness of sepsis. International Immunopharmacology 58: 173–185.CrossRefPubMed
17.
go back to reference Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138 (1): 28–36.CrossRefPubMed Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138 (1): 28–36.CrossRefPubMed
18.
19.
go back to reference Deretic, V., T. Kimura, G. Timmins, P. Moseley, S. Chauhan, and M. Mandell. 2015. Immunologic manifestations of autophagy. The Journal of Clinical Investigation 125 (1): 75–84.CrossRefPubMedPubMedCentral Deretic, V., T. Kimura, G. Timmins, P. Moseley, S. Chauhan, and M. Mandell. 2015. Immunologic manifestations of autophagy. The Journal of Clinical Investigation 125 (1): 75–84.CrossRefPubMedPubMedCentral
20.
go back to reference Bonilla, D.L., A. Bhattacharya, Y. Sha, Y. Xu, Q. Xiang, A. Kan, C. Jagannath, M. Komatsu, and N.T. Eissa. 2013. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (3): 537–547.CrossRefPubMedPubMedCentral Bonilla, D.L., A. Bhattacharya, Y. Sha, Y. Xu, Q. Xiang, A. Kan, C. Jagannath, M. Komatsu, and N.T. Eissa. 2013. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39 (3): 537–547.CrossRefPubMedPubMedCentral
21.
go back to reference Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S.I. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12 (3): 213–223.CrossRefPubMed Komatsu, M., H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y.S. Sou, I. Ueno, A. Sakamoto, K.I. Tong, M. Kim, Y. Nishito, S.I. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka, and M. Yamamoto. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature Cell Biology 12 (3): 213–223.CrossRefPubMed
22.
go back to reference Cadwell, K., J.Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C. Kishi, W. Kc, J.A. Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T.S. Stappenbeck, and H.W. Virgin IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (7219): 259–263.CrossRefPubMedPubMedCentral Cadwell, K., J.Y. Liu, S.L. Brown, H. Miyoshi, J. Loh, J.K. Lennerz, C. Kishi, W. Kc, J.A. Carrero, S. Hunt, C.D. Stone, E.M. Brunt, R.J. Xavier, B.P. Sleckman, E. Li, N. Mizushima, T.S. Stappenbeck, and H.W. Virgin IV. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456 (7219): 259–263.CrossRefPubMedPubMedCentral
25.
go back to reference Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (7219): 264–268.CrossRefPubMed Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456 (7219): 264–268.CrossRefPubMed
26.
go back to reference Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin, and B. Levine. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed Qu, X., Z. Zou, Q. Sun, K. Luby-Phelps, P. Cheng, R.N. Hogan, C. Gilpin, and B. Levine. 2007. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128 (5): 931–946.CrossRefPubMed
27.
go back to reference Chargui, A., and M.V. El May. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122 (11): 1047–1058.PubMed Chargui, A., and M.V. El May. 2014. Autophagy mediates neutrophil responses to bacterial infection. APMIS 122 (11): 1047–1058.PubMed
28.
go back to reference Schultze, J.L., and S.V. Schmidt. 2015. Molecular features of macrophage activation. Seminars in Immunology 27 (6): 416–423.CrossRefPubMed Schultze, J.L., and S.V. Schmidt. 2015. Molecular features of macrophage activation. Seminars in Immunology 27 (6): 416–423.CrossRefPubMed
29.
go back to reference Hotchkiss, R.S., C.M. Coopersmith, J.E. McDunn, and T.A. Ferguson. 2009. The sepsis seesaw: tilting toward immunosuppression. Nature Medicine 15 (5): 496–497.CrossRefPubMedPubMedCentral Hotchkiss, R.S., C.M. Coopersmith, J.E. McDunn, and T.A. Ferguson. 2009. The sepsis seesaw: tilting toward immunosuppression. Nature Medicine 15 (5): 496–497.CrossRefPubMedPubMedCentral
30.
go back to reference Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230.CrossRefPubMed Nakahira, K., J.A. Haspel, V.A.K. Rathinam, S.J. Lee, T. Dolinay, H.C. Lam, J.A. Englert, M. Rabinovitch, M. Cernadas, H.P. Kim, K.A. Fitzgerald, S.W. Ryter, and A.M.K. Choi. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology 12 (3): 222–230.CrossRefPubMed
31.
go back to reference Lin, C.W., S. Lo, C. Hsu, C.H. Hsieh, Y.F. Chang, B.S. Hou, Y.H. Kao, C.C. Lin, M.L. Yu, S.S. Yuan, and Y.C. Hsieh. 2014. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 9 (7): e102066.CrossRefPubMedPubMedCentral Lin, C.W., S. Lo, C. Hsu, C.H. Hsieh, Y.F. Chang, B.S. Hou, Y.H. Kao, C.C. Lin, M.L. Yu, S.S. Yuan, and Y.C. Hsieh. 2014. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 9 (7): e102066.CrossRefPubMedPubMedCentral
32.
go back to reference Mansilla Pareja, M.E., and M.I. Colombo. 2013. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in Cellular and Infection Microbiology 3:54. Mansilla Pareja, M.E., and M.I. Colombo. 2013. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Frontiers in Cellular and Infection Microbiology 3:54.
33.
go back to reference Maurer, K., T. Reyes-Robles, F. Alonzo III, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17 (4): 429–440.CrossRef Maurer, K., T. Reyes-Robles, F. Alonzo III, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17 (4): 429–440.CrossRef
35.
go back to reference Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.CrossRefPubMed Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: the dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.CrossRefPubMed
36.
go back to reference Aguirre, A., I. López-Alonso, A. González-López, L. Amado-Rodríguez, E. Batalla-Solís, A. Astudillo, J. Blázquez-Prieto, A.F. Fernández, J.A. Galván, C.C. dos Santos, and G.M. Albaiceta. 2014. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. Journal of Molecular Medicine (Berlin, Germany) 92 (6): 665–676.CrossRef Aguirre, A., I. López-Alonso, A. González-López, L. Amado-Rodríguez, E. Batalla-Solís, A. Astudillo, J. Blázquez-Prieto, A.F. Fernández, J.A. Galván, C.C. dos Santos, and G.M. Albaiceta. 2014. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. Journal of Molecular Medicine (Berlin, Germany) 92 (6): 665–676.CrossRef
37.
go back to reference Lin, C.W., S. Lo, D.S. Perng, D.B.C. Wu, P.H. Lee, Y.F. Chang, P.L. Kuo, M.L. Yu, S.S.F. Yuan, and Y.C. Hsieh. 2014. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41 (3): 241–249.CrossRefPubMed Lin, C.W., S. Lo, D.S. Perng, D.B.C. Wu, P.H. Lee, Y.F. Chang, P.L. Kuo, M.L. Yu, S.S.F. Yuan, and Y.C. Hsieh. 2014. Complete activation of autophagic process attenuates liver injury and improves survival in septic mice. Shock 41 (3): 241–249.CrossRefPubMed
38.
go back to reference Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253 (6): 1190–1200.CrossRefPubMed Hsieh, C.H., P.Y. Pai, H.W. Hsueh, S.S. Yuan, and Y.C. Hsieh. 2011. Complete induction of autophagy is essential for cardioprotection in sepsis. Annals of Surgery 253 (6): 1190–1200.CrossRefPubMed
39.
go back to reference Unuma, K., T. Aki, T. Funakoshi, K. Hashimoto, and K. Uemura. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 11 (9): 1520–1536.CrossRefPubMedPubMedCentral Unuma, K., T. Aki, T. Funakoshi, K. Hashimoto, and K. Uemura. 2015. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy 11 (9): 1520–1536.CrossRefPubMedPubMedCentral
41.
go back to reference Waltz, P., E.H. Carchman, A.C. Young, J. Rao, M.R. Rosengart, D. Kaczorowski, and B.S. Zuckerbraun. 2011. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7 (3): 315–320.CrossRefPubMed Waltz, P., E.H. Carchman, A.C. Young, J. Rao, M.R. Rosengart, D. Kaczorowski, and B.S. Zuckerbraun. 2011. Lipopolysaccaride induces autophagic signaling in macrophages via a TLR4, heme oxygenase-1 dependent pathway. Autophagy 7 (3): 315–320.CrossRefPubMed
42.
go back to reference Carchman, E.H., J. Rao, P.A. Loughran, M.R. Rosengart, and B.S. Zuckerbraun. 2011. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53 (6): 2053–2062.CrossRefPubMed Carchman, E.H., J. Rao, P.A. Loughran, M.R. Rosengart, and B.S. Zuckerbraun. 2011. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53 (6): 2053–2062.CrossRefPubMed
43.
go back to reference Tang, Z., L. Ni, S. Javidiparsijani, F. Hu, L. A Gatto, R. Cooney, and G. Wang. 2013. Enhanced liver autophagic activity improves survival of septic mice lacking surfactant proteins A and D. The Tohoku Journal of Experimental Medicine 231 (2): 127–138.CrossRefPubMedPubMedCentral Tang, Z., L. Ni, S. Javidiparsijani, F. Hu, L. A Gatto, R. Cooney, and G. Wang. 2013. Enhanced liver autophagic activity improves survival of septic mice lacking surfactant proteins A and D. The Tohoku Journal of Experimental Medicine 231 (2): 127–138.CrossRefPubMedPubMedCentral
44.
go back to reference Mei, S., M. Livingston, J. Hao, L. li, C. Mei, and Z. Dong. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports 6: 22171.CrossRefPubMedPubMedCentral Mei, S., M. Livingston, J. Hao, L. li, C. Mei, and Z. Dong. 2016. Autophagy is activated to protect against endotoxic acute kidney injury. Scientific Reports 6: 22171.CrossRefPubMedPubMedCentral
45.
go back to reference Howell, G.M., H. Gomez, R.D. Collage, P. Loughran, X. Zhang, D.A. Escobar, T.R. Billiar, B.S. Zuckerbraun, and M.R. Rosengart. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 8 (7): e69520.CrossRefPubMedPubMedCentral Howell, G.M., H. Gomez, R.D. Collage, P. Loughran, X. Zhang, D.A. Escobar, T.R. Billiar, B.S. Zuckerbraun, and M.R. Rosengart. 2013. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice. PLoS One 8 (7): e69520.CrossRefPubMedPubMedCentral
47.
go back to reference Su, Y., Y. Qu, F.Y. Zhao, H.F. Li, D.Z. Mu, and X.H. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12 (1): 116.CrossRefPubMedPubMedCentral Su, Y., Y. Qu, F.Y. Zhao, H.F. Li, D.Z. Mu, and X.H. Li. 2015. Regulation of autophagy by the nuclear factor κB signaling pathway in the hippocampus of rats with sepsis. Journal of Neuroinflammation 12 (1): 116.CrossRefPubMedPubMedCentral
48.
go back to reference Colell, A., J.E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129 (5): 983–997.CrossRefPubMed Colell, A., J.E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N.J. Waterhouse, C.W. Li, B. Mari, P. Barbry, D.D. Newmeyer, H.M. Beere, and D.R. Green. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129 (5): 983–997.CrossRefPubMed
49.
go back to reference Takaoka, Y., et al. 2014. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Scientific Reports 4: 5204.CrossRefPubMedPubMedCentral Takaoka, Y., et al. 2014. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) prevents lipopolysaccharide (LPS)-induced, sepsis-related severe acute lung injury in mice. Scientific Reports 4: 5204.CrossRefPubMedPubMedCentral
50.
go back to reference Lo, S., S.S.F. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257 (2): 352–363.CrossRefPubMed Lo, S., S.S.F. Yuan, C. Hsu, Y.J. Cheng, Y.F. Chang, H.W. Hsueh, P.H. Lee, and Y.C. Hsieh. 2013. Lc3 over-expression improves survival and attenuates lung injury through increasing autophagosomal clearance in septic mice. Annals of Surgery 257 (2): 352–363.CrossRefPubMed
51.
go back to reference Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.CrossRefPubMedPubMedCentral Tanaka, A., Y. Jin, S.J. Lee, M. Zhang, H.P. Kim, D.B. Stolz, S.W. Ryter, and A.M.K. Choi. 2012. Hyperoxia-induced LC3B interacts with the Fas apoptotic pathway in epithelial cell death. American Journal of Respiratory Cell and Molecular Biology 46 (4): 507–514.CrossRefPubMedPubMedCentral
52.
go back to reference Lee, S.J., S.W. Ryter, J.F. Xu, K. Nakahira, H.P. Kim, A.M.K. Choi, and Y.S. Kim. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. American Journal of Respiratory Cell and Molecular Biology 45 (4): 867–873.CrossRefPubMedPubMedCentral Lee, S.J., S.W. Ryter, J.F. Xu, K. Nakahira, H.P. Kim, A.M.K. Choi, and Y.S. Kim. 2011. Carbon monoxide activates autophagy via mitochondrial reactive oxygen species formation. American Journal of Respiratory Cell and Molecular Biology 45 (4): 867–873.CrossRefPubMedPubMedCentral
53.
54.
go back to reference Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4 (2): 244–252.CrossRefPubMedPubMedCentral Chen, H.R., Y.C. Chuang, C.H. Chao, and T.M. Yeh. 2015. Macrophage migration inhibitory factor induces vascular leakage via autophagy. Biology Open 4 (2): 244–252.CrossRefPubMedPubMedCentral
55.
go back to reference Lorne, E., et al. 2009. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 41 (2): 237–245.CrossRefPubMedPubMedCentral Lorne, E., et al. 2009. Participation of mammalian target of rapamycin complex 1 in toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. American Journal of Respiratory Cell and Molecular Biology 41 (2): 237–245.CrossRefPubMedPubMedCentral
56.
go back to reference Gong, L., R.J. Devenish, and M. Prescott. 2012. Autophagy as a macrophage response to bacterial infection. IUBMB Life 64 (9): 740–747.CrossRefPubMed Gong, L., R.J. Devenish, and M. Prescott. 2012. Autophagy as a macrophage response to bacterial infection. IUBMB Life 64 (9): 740–747.CrossRefPubMed
57.
go back to reference Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27 (1): 135–144.CrossRefPubMedPubMedCentral Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska, and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27 (1): 135–144.CrossRefPubMedPubMedCentral
58.
go back to reference Xu, Y., et al. 2014. Signaling pathway of autophagy associated with innate immunity. Autophagy 4 (1): 110–112.CrossRef Xu, Y., et al. 2014. Signaling pathway of autophagy associated with innate immunity. Autophagy 4 (1): 110–112.CrossRef
59.
go back to reference Fujita, K.-I., and S.M. Srinivasula. 2014. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7 (5): 552–554.CrossRef Fujita, K.-I., and S.M. Srinivasula. 2014. TLR4-mediated autophagy in macrophages is a p62-dependent type of selective autophagy of aggresome-like induced structures (ALIS). Autophagy 7 (5): 552–554.CrossRef
60.
go back to reference Harris, J., M. Hartman, C. Roche, S.G. Zeng, A. O'Shea, F.A. Sharp, E.M. Lambe, E.M. Creagh, D.T. Golenbock, J. Tschopp, H. Kornfeld, K.A. Fitzgerald, and E.C. Lavelle. 2011. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of Biological Chemistry 286 (11): 9587–9597.CrossRefPubMedPubMedCentral Harris, J., M. Hartman, C. Roche, S.G. Zeng, A. O'Shea, F.A. Sharp, E.M. Lambe, E.M. Creagh, D.T. Golenbock, J. Tschopp, H. Kornfeld, K.A. Fitzgerald, and E.C. Lavelle. 2011. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. The Journal of Biological Chemistry 286 (11): 9587–9597.CrossRefPubMedPubMedCentral
61.
go back to reference Ko, J., et al. 2017. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 8: 40817–40831.PubMedPubMedCentral Ko, J., et al. 2017. Rapamycin regulates macrophage activation by inhibiting NLRP3 inflammasome-p38 MAPK-NFκB pathways in autophagy- and p62-dependent manners. Oncotarget 8: 40817–40831.PubMedPubMedCentral
62.
63.
go back to reference Chuang, Y.C., W.H. Su, H.Y. Lei, Y.S. Lin, H.S. Liu, C.P. Chang, and T.M. Yeh. 2012. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 7 (5): e37613.CrossRefPubMedPubMedCentral Chuang, Y.C., W.H. Su, H.Y. Lei, Y.S. Lin, H.S. Liu, C.P. Chang, and T.M. Yeh. 2012. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation. PLoS One 7 (5): e37613.CrossRefPubMedPubMedCentral
64.
go back to reference Zhang, Y., M.J. Morgan, K. Chen, S. Choksi, and Z.G. Liu. 2012. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119 (12): 2895–2905.CrossRefPubMedPubMedCentral Zhang, Y., M.J. Morgan, K. Chen, S. Choksi, and Z.G. Liu. 2012. Induction of autophagy is essential for monocyte-macrophage differentiation. Blood 119 (12): 2895–2905.CrossRefPubMedPubMedCentral
66.
go back to reference Boulakirba, S., et al. 2018. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports 8 (1):256. Boulakirba, S., et al. 2018. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential. Scientific Reports 8 (1):256.
67.
go back to reference Jacquel, A., S. Obba, L. Boyer, M. Dufies, G. Robert, P. Gounon, E. Lemichez, F. Luciano, E. Solary, and P. Auberger. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119 (19): 4527–4531.CrossRefPubMed Jacquel, A., S. Obba, L. Boyer, M. Dufies, G. Robert, P. Gounon, E. Lemichez, F. Luciano, E. Solary, and P. Auberger. 2012. Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions. Blood 119 (19): 4527–4531.CrossRefPubMed
68.
go back to reference Jacquel, A., et al. 2014. Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8 (7): 1141–1143.CrossRef Jacquel, A., et al. 2014. Proper macrophagic differentiation requires both autophagy and caspase activation. Autophagy 8 (7): 1141–1143.CrossRef
70.
go back to reference Colosetti, P., et al. 2014. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5 (8): 1092–1098.CrossRef Colosetti, P., et al. 2014. Autophagy is an important event for megakaryocytic differentiation of the chronic myelogenous leukemia K562 cell line. Autophagy 5 (8): 1092–1098.CrossRef
71.
go back to reference Mortensen, M., D.J.P. Ferguson, M. Edelmann, B. Kessler, K.J. Morten, M. Komatsu, and A.K. Simon. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences of the United States of America 107 (2): 832–837.CrossRefPubMed Mortensen, M., D.J.P. Ferguson, M. Edelmann, B. Kessler, K.J. Morten, M. Komatsu, and A.K. Simon. 2010. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proceedings of the National Academy of Sciences of the United States of America 107 (2): 832–837.CrossRefPubMed
72.
go back to reference da Silva, B.J., et al. 2014. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages. BMC Cell Biology 15: 37–48.CrossRefPubMedPubMedCentral da Silva, B.J., et al. 2014. Physalis angulata induces in vitro differentiation of murine bone marrow cells into macrophages. BMC Cell Biology 15: 37–48.CrossRefPubMedPubMedCentral
73.
go back to reference Sun, K.T., et al. 2015. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73: 145–153.CrossRefPubMed Sun, K.T., et al. 2015. MicroRNA-20a regulates autophagy related protein-ATG16L1 in hypoxia-induced osteoclast differentiation. Bone 73: 145–153.CrossRefPubMed
74.
go back to reference Singh, A., and E. Sen. 2017. Reciprocal role of SIRT6 and hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Experimental Cell Research 360 (2): 365–374.CrossRefPubMed Singh, A., and E. Sen. 2017. Reciprocal role of SIRT6 and hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Experimental Cell Research 360 (2): 365–374.CrossRefPubMed
75.
go back to reference Chen, P., M. Cescon, and P. Bonaldo. 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10 (2): 192–200.CrossRefPubMed Chen, P., M. Cescon, and P. Bonaldo. 2014. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy 10 (2): 192–200.CrossRefPubMed
76.
go back to reference Droin, N., et al. 2010. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115: 78–88.CrossRefPubMed Droin, N., et al. 2010. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood 115: 78–88.CrossRefPubMed
77.
go back to reference Obba, S., Z. Hizir, L. Boyer, D. Selimoglu-Buet, A. Pfeifer, G. Michel, M.A. Hamouda, D. Gonçalvès, M. Cerezo, S. Marchetti, S. Rocchi, N. Droin, T. Cluzeau, G. Robert, F. Luciano, B. Robaye, M. Foretz, B. Viollet, L. Legros, E. Solary, P. Auberger, and A. Jacquel. 2015. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11 (7): 1114–1129.CrossRefPubMedPubMedCentral Obba, S., Z. Hizir, L. Boyer, D. Selimoglu-Buet, A. Pfeifer, G. Michel, M.A. Hamouda, D. Gonçalvès, M. Cerezo, S. Marchetti, S. Rocchi, N. Droin, T. Cluzeau, G. Robert, F. Luciano, B. Robaye, M. Foretz, B. Viollet, L. Legros, E. Solary, P. Auberger, and A. Jacquel. 2015. The PRKAA1/AMPKα1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML. Autophagy 11 (7): 1114–1129.CrossRefPubMedPubMedCentral
78.
go back to reference Tarique, A.A., et al. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 1–45.CrossRef Tarique, A.A., et al. 2015. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. American Journal of Respiratory Cell and Molecular Biology 53: 1–45.CrossRef
79.
go back to reference Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 (5): 593–604.CrossRefPubMed Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32 (5): 593–604.CrossRefPubMed
81.
go back to reference Yang, M., J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang, and J. du. 2014. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer 13: 43.CrossRefPubMedPubMedCentral Yang, M., J. Liu, J. Shao, Y. Qin, Q. Ji, X. Zhang, and J. du. 2014. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer 13: 43.CrossRefPubMedPubMedCentral
82.
go back to reference Gauthier, A., and M. Ho. 2013. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatology Research 43 (2): 147–154.CrossRefPubMed Gauthier, A., and M. Ho. 2013. Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update. Hepatology Research 43 (2): 147–154.CrossRefPubMed
83.
go back to reference Chang, C.P., Y.C. Su, P.H. Lee, and H.Y. Lei. 2013. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9 (4): 619–621.CrossRefPubMedPubMedCentral Chang, C.P., Y.C. Su, P.H. Lee, and H.Y. Lei. 2013. Targeting NFKB by autophagy to polarize hepatoma-associated macrophage differentiation. Autophagy 9 (4): 619–621.CrossRefPubMedPubMedCentral
84.
go back to reference Chang, C.P., Y.C. Su, C.W. Hu, and H.Y. Lei. 2013. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation 20 (3): 515–523.CrossRefPubMed Chang, C.P., Y.C. Su, C.W. Hu, and H.Y. Lei. 2013. TLR2-dependent selective autophagy regulates NF-kappaB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation 20 (3): 515–523.CrossRefPubMed
85.
86.
go back to reference Chen, W., T. Ma, X.N. Shen, X.F. Xia, G.D. Xu, X.L. Bai, and T.B. Liang. 2012. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Research 72 (6): 1363–1372.CrossRefPubMed Chen, W., T. Ma, X.N. Shen, X.F. Xia, G.D. Xu, X.L. Bai, and T.B. Liang. 2012. Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Research 72 (6): 1363–1372.CrossRefPubMed
87.
go back to reference Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology 198 (3): 1006–1014.CrossRef Vergadi, E., E. Ieronymaki, K. Lyroni, K. Vaporidi, and C. Tsatsanis. 2017. Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology 198 (3): 1006–1014.CrossRef
88.
go back to reference Hu, R., Z.F. Chen, J. Yan, Q.F. Li, Y. Huang, H. Xu, X. Zhang, and H. Jiang. 2014. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death & Disease 5: e1330.CrossRef Hu, R., Z.F. Chen, J. Yan, Q.F. Li, Y. Huang, H. Xu, X. Zhang, and H. Jiang. 2014. Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death & Disease 5: e1330.CrossRef
89.
go back to reference Descloux, C., V. Ginet, P.G.H. Clarke, J. Puyal, and A.C. Truttmann. 2015. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. International Journal of Developmental Neuroscience 45: 75–85.CrossRefPubMed Descloux, C., V. Ginet, P.G.H. Clarke, J. Puyal, and A.C. Truttmann. 2015. Neuronal death after perinatal cerebral hypoxia-ischemia: focus on autophagy-mediated cell death. International Journal of Developmental Neuroscience 45: 75–85.CrossRefPubMed
90.
go back to reference Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36 (6): 2403–2417.CrossRefPubMed Li, S., L. Guo, P. Qian, Y. Zhao, A. Liu, F. Ji, L. Chen, X. Wu, and G. Qian. 2015. Lipopolysaccharide induces autophagic cell death through the PERK-dependent branch of the unfolded protein response in human alveolar epithelial A549 cells. Cellular Physiology and Biochemistry 36 (6): 2403–2417.CrossRefPubMed
91.
go back to reference Zhang, Y., Y. Liu, and J. Zhang. 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. The Journal of Surgical Research 198 (1): 41–49.CrossRefPubMed Zhang, Y., Y. Liu, and J. Zhang. 2015. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction. The Journal of Surgical Research 198 (1): 41–49.CrossRefPubMed
92.
go back to reference Zhang, L., et al. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed Zhang, L., et al. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed
93.
go back to reference Pattingre, S., A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.CrossRefPubMed Pattingre, S., A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer, M.D. Schneider, and B. Levine. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939.CrossRefPubMed
94.
go back to reference Mariño, G., M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15 (2): 81–94.CrossRefPubMedPubMedCentral Mariño, G., M. Niso-Santano, E.H. Baehrecke, and G. Kroemer. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nature Reviews Molecular Cell Biology 15 (2): 81–94.CrossRefPubMedPubMedCentral
95.
go back to reference Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8 (10): 1124–1132.CrossRefPubMed Yousefi, S., R. Perozzo, I. Schmid, A. Ziemiecki, T. Schaffner, L. Scapozza, T. Brunner, and H.U. Simon. 2006. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biology 8 (10): 1124–1132.CrossRefPubMed
96.
go back to reference Rubinstein, Assaf D., Miriam Eisenstein, Yaara Ber, Shani Bialik, and Adi Kimchi. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Molecular Cell 44 (5): 698–709.CrossRefPubMed Rubinstein, Assaf D., Miriam Eisenstein, Yaara Ber, Shani Bialik, and Adi Kimchi. 2011. The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Molecular Cell 44 (5): 698–709.CrossRefPubMed
97.
go back to reference Byrne, B.G., et al. 2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4 (1): e00620–e00612.CrossRefPubMedPubMedCentral Byrne, B.G., et al. 2013. Inflammasome components coordinate autophagy and pyroptosis as macrophage responses to infection. MBio 4 (1): e00620–e00612.CrossRefPubMedPubMedCentral
98.
go back to reference Fimia, G.M., et al. 2012. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7 (7):e41831. Fimia, G.M., et al. 2012. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One 7 (7):e41831.
99.
go back to reference Periyasamy-Thandavan, S., M. Jiang, Q. Wei, R. Smith, X.M. Yin, and Z. Dong. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney International 74 (5): 631–640.CrossRefPubMed Periyasamy-Thandavan, S., M. Jiang, Q. Wei, R. Smith, X.M. Yin, and Z. Dong. 2008. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney International 74 (5): 631–640.CrossRefPubMed
100.
go back to reference Yang, C., V. Kaushal, S.V. Shah, and G.P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology. Renal Physiology 294 (4): F777–F787.CrossRefPubMed Yang, C., V. Kaushal, S.V. Shah, and G.P. Kaushal. 2008. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. American Journal of Physiology. Renal Physiology 294 (4): F777–F787.CrossRefPubMed
101.
go back to reference Kaushal, G.P., V. Kaushal, C. Herzog, and C. Yang. 2008. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4: 710–712.CrossRefPubMed Kaushal, G.P., V. Kaushal, C. Herzog, and C. Yang. 2008. Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy 4: 710–712.CrossRefPubMed
102.
go back to reference Herzog, C., C. Yang, A. Holmes, and G.P. Kaushal. 2012. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology. Renal Physiology 303 (8): F1239–F1250.CrossRefPubMedPubMedCentral Herzog, C., C. Yang, A. Holmes, and G.P. Kaushal. 2012. zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. American Journal of Physiology. Renal Physiology 303 (8): F1239–F1250.CrossRefPubMedPubMedCentral
103.
go back to reference Stranks, A.J., A.L. Hansen, I. Panse, M. Mortensen, D.J.P. Ferguson, D.J. Puleston, K. Shenderov, A.S. Watson, M. Veldhoen, K. Phadwal, V. Cerundolo, and A.K. Simon. 2015. Autophagy controls acquisition of aging features in macrophages. Journal of Innate Immunity 7 (4): 375–391.CrossRefPubMedPubMedCentral Stranks, A.J., A.L. Hansen, I. Panse, M. Mortensen, D.J.P. Ferguson, D.J. Puleston, K. Shenderov, A.S. Watson, M. Veldhoen, K. Phadwal, V. Cerundolo, and A.K. Simon. 2015. Autophagy controls acquisition of aging features in macrophages. Journal of Innate Immunity 7 (4): 375–391.CrossRefPubMedPubMedCentral
104.
go back to reference Matsuzawa, T., E. Fujiwara, and Y. Washi. 2014. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 141 (1): 61–69.CrossRefPubMed Matsuzawa, T., E. Fujiwara, and Y. Washi. 2014. Autophagy activation by interferon-gamma via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 141 (1): 61–69.CrossRefPubMed
105.
go back to reference Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N.T. Eissa, K.J. Tracey, A.E. Sama, and H. Wang. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9): 1152–1163.CrossRefPubMedPubMedCentral Li, W., S. Zhu, J. Li, A. Assa, A. Jundoria, J. Xu, S. Fan, N.T. Eissa, K.J. Tracey, A.E. Sama, and H. Wang. 2011. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochemical Pharmacology 81 (9): 1152–1163.CrossRefPubMedPubMedCentral
106.
go back to reference Xia, H., L. Chen, H. Liu, Z. Sun, W. Yang, Y. Yang, S. Cui, S. Li, Y. Wang, L. Song, A.F. Abdelgawad, Y. Shang, and S. Yao. 2017. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Scientific Reports 7 (1): 99.CrossRefPubMedPubMedCentral Xia, H., L. Chen, H. Liu, Z. Sun, W. Yang, Y. Yang, S. Cui, S. Li, Y. Wang, L. Song, A.F. Abdelgawad, Y. Shang, and S. Yao. 2017. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype. Scientific Reports 7 (1): 99.CrossRefPubMedPubMedCentral
107.
go back to reference Williams-Bey, Y., C. Boularan, A. Vural, N.N. Huang, I.Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9 (6): e97957.CrossRefPubMedPubMedCentral Williams-Bey, Y., C. Boularan, A. Vural, N.N. Huang, I.Y. Hwang, C. Shan-Shi, and J.H. Kehrl. 2014. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9 (6): e97957.CrossRefPubMedPubMedCentral
108.
go back to reference Abdulnour, R.E., et al. 2014. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proceedings of the National Academy of Sciences of the United States of America 111 (46): 16526–16531.CrossRefPubMedPubMedCentral Abdulnour, R.E., et al. 2014. Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proceedings of the National Academy of Sciences of the United States of America 111 (46): 16526–16531.CrossRefPubMedPubMedCentral
109.
go back to reference Lin, J., et al. 2017. Maresin-1 activates autophagy in macrophages via ALX/NF-κB pathway. Journal of Wenzhou Medical University 47: 474–479. Lin, J., et al. 2017. Maresin-1 activates autophagy in macrophages via ALX/NF-κB pathway. Journal of Wenzhou Medical University 47: 474–479.
110.
go back to reference Li, X.J., et al. 2014. Effect of moxibustion on autophagy of macrophages in mice. Hubei Journal of TCM 36: 19–20.CrossRef Li, X.J., et al. 2014. Effect of moxibustion on autophagy of macrophages in mice. Hubei Journal of TCM 36: 19–20.CrossRef
111.
go back to reference Yu, H.H., et al. 2016. Effects of Huang-Lian-Jie-Du-Decotion containing serum on expressions of autophagy related gene in macrophages. Chinese Journal of Immunology 32: 1150–1164. Yu, H.H., et al. 2016. Effects of Huang-Lian-Jie-Du-Decotion containing serum on expressions of autophagy related gene in macrophages. Chinese Journal of Immunology 32: 1150–1164.
Metadata
Title
Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis
Authors
Peng Qiu
Yang Liu
Jin Zhang
Publication date
01-02-2019
Publisher
Springer US
Published in
Inflammation / Issue 1/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0890-8

Other articles of this Issue 1/2019

Inflammation 1/2019 Go to the issue