Skip to main content
Log in

Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy has emerged as a key regulator of the inflammatory response. To examine the role of autophagy in the development of organ dysfunction during endotoxemia, wild-type and autophagy-deficient (Atg4b-null) mice were challenged with lipopolysaccharide. Animals lacking Atg4b showed increased mortality after endotoxemia. Among the different organs studied, only the lungs showed significant differences between genotypes, with increased damage in mutant animals. Autophagy was activated in lungs from wild-type, LPS-treated mice. Similarly, human bronchial cells show an increased autophagy when exposed to serum from septic patients. We found an increased inflammatory response (increased neutrophilic infiltration, higher levels of Il6, Il12p40, and Cxcl2) in the lungs from knockout mice and identified perinuclear sequestration of the anti-inflammatory transcription factor ATF3 as the putative mechanism responsible for the differences between genotypes. Finally, induction of autophagy by starvation before LPS exposure resulted in a dampened pulmonary response to LPS in wild-type, but not knockout, mice. Similar results were found in human bronchial cells exposed to LPS. Our results demonstrate the central role of autophagy in the regulation of the lung response to endotoxemia and sepsis and its potential modulation by nutrition.

Key messages

  • Endotoxemia and sepsis trigger autophagy in lung tissue.

  • Defective autophagy increases mortality and lung inflammation after endotoxemia.

  • Impairment of autophagy results is perinuclear ATF3 sequestration.

  • Starvation ameliorates lung injury by an autophagy-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gustot T (2011) Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care 17:153–159

    Article  PubMed  Google Scholar 

  2. Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, Haenel JB, Abraham E (1996) Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24:1285–1292

    Article  CAS  PubMed  Google Scholar 

  3. Gonzalez-Lopez A, Aguirre A, Lopez-Alonso I, Amado L, Astudillo A, Fernandez-Garcia MS, Suarez MF, Batalla-Solis E, Colado E, Albaiceta GM (2012) MMP-8 deficiency increases TLR/RAGE ligands S100A8 and S100A9 and exacerbates lung inflammation during endotoxemia. PLoS ONE 7:e39940

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454

    Article  CAS  PubMed  Google Scholar 

  7. Haspel JA, Choi AM (2011) Autophagy: a core cellular process with emerging links to pulmonary disease. Am J Respir Crit Care Med 184:1237–1246

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lopez-Alonso I, Aguirre A, Gonzalez-Lopez A, Fernandez AF, Amado-Rodriguez L, Astudillo A, Batalla-Solis E, Albaiceta GM (2013) Impairment of autophagy decreases ventilator-induced lung injury by blockade of the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 304:L844–L852

    Article  CAS  PubMed  Google Scholar 

  9. Singer M (2008) Cellular dysfunction in sepsis. Clin Chest Med 29:655–660, viii-ix

    Article  PubMed  Google Scholar 

  10. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Marino G, Fernandez AF, Cabrera S, Lundberg YW, Cabanillas R, Rodriguez F, Salvador-Montoliu N, Vega JA, Germana A, Fueyo A et al (2010) Autophagy is essential for mouse sense of balance. J Clin Invest 120:2331–2344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cabrera S, Fernandez AF, Marino G, Aguirre A, Suarez MF, Espanol Y, Vega JA, Laura R, Fueyo A, Fernandez-Garcia MS et al (2013) ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis. Autophagy 9:1188–1200

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Lopez A, Astudillo A, Garcia-Prieto E, Fernandez-Garcia MS, Lopez-Vazquez A, Batalla-Solis E, Taboada F, Fueyo A, Albaiceta GM (2011) Inflammation and matrix remodeling during repair of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 301:L500–L509

    Article  CAS  PubMed  Google Scholar 

  14. Albaiceta GM, Gutierrez-Fernandez A, Parra D, Astudillo A, Garcia-Prieto E, Taboada F, Fueyo A (2008) Lack of matrix metalloproteinase-9 worsens ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 294:L535–L543

    Article  CAS  PubMed  Google Scholar 

  15. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44:725–738

    Article  CAS  PubMed  Google Scholar 

  16. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P et al (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 182:1377–1386

    Article  CAS  PubMed  Google Scholar 

  18. Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Criollo A, Chereau F, Malik SA, Niso-Santano M, Marino G, Galluzzi L, Maiuri MC, Baud V, Kroemer G (2012) Autophagy is required for the activation of NFkappaB. Cell Cycle 11:194–199

    Article  CAS  PubMed  Google Scholar 

  20. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163

    Article  CAS  PubMed  Google Scholar 

  22. Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584:2635–2645

    Article  CAS  PubMed  Google Scholar 

  23. Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, Pettoello-Mantovani M, Guido S, Ciacci C, Cimmino M et al (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180:7697–7705

    Article  CAS  PubMed  Google Scholar 

  24. Moscat J, Diaz-Meco MT (2009) To aggregate or not to aggregate? A new role for p62. EMBO Rep 10:804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Akram A, Han B, Masoom H, Peng C, Lam E, Litvack ML, Bai X, Shan Y, Hai T, Batt J et al (2010) Activating transcription factor 3 confers protection against ventilator-induced lung injury. Am J Respir Crit Care Med 182:489–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gilchrist M, Henderson WR Jr, Clark AE, Simmons RM, Ye X, Smith KD, Aderem A (2008) Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J Exp Med 205:2349–2357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F, Carneiro LA, Yang C, Emili A, Philpott DJ, Girardin SE (2012) Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11:563–575

    Article  CAS  PubMed  Google Scholar 

  28. Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BR (2007) Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179:3622–3630

    Article  CAS  PubMed  Google Scholar 

  29. Yan C, Boyd DD (2006) ATF3 regulates the stability of p53: a link to cancer. Cell Cycle 5:926–929

    Article  CAS  PubMed  Google Scholar 

  30. Krakauer T, Buckley M, Issaq HJ, Fox SD (2010) Rapamycin protects mice from staphylococcal enterotoxin B-induced toxic shock and blocks cytokine release in vitro and in vivo. Antimicrob Agents Chemother 54:1125–1131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tsuchiya T, Higami Y, Komatsu T, Tanaka K, Honda S, Yamaza H, Chiba T, Ayabe H, Shimokawa I (2005) Acute stress response in calorie-restricted rats to lipopolysaccharide-induced inflammation. Mech Ageing Dev 126:568–579

    Article  CAS  PubMed  Google Scholar 

  32. Oarada M, Miki T, Kohno S, Sakai K, Nikawa T, Yoneyama M, Gonoi T (2013) Refeeding with a standard diet after a 48-h fast elicits an inflammatory response in the mouse liver. J Nutr Biochem 24:1314–1323

    Article  CAS  PubMed  Google Scholar 

  33. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, Martinet W, Timmermans JP, D’Hoore A, Wouters PJ et al (2011) Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab 96:E633–E645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carlos López-Otin for his support during the development of the study and Ana Gutierrez-Fernandez for her help with the immunofluorescence studies. They also thank Marta S. Pitiot, Carmen Muñiz and Vanessa García for their help with histological studies. This work was supported by grants from Instituto de Salud Carlos III (FIS-PI 10/606, FEDER funds, INT 12/007 to GMA), Universidad de Oviedo (UNOV 09-pf to AGL), Fundación Universidad de Oviedo (to AA), Asociación Española contra el Cancer (AECC predoctoral grant to ILA), and Fundación para el fomento en Asturias de la investigación científica aplicada y la tecnología (FICYT-COF 11–40 to EBS). Instituto Universitario de Oncología del Principado de Asturias (IUOPA) is supported by Obra Social-Cajastur.

Disclosure

The authors declare no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo M. Albaiceta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguirre, A., López-Alonso, I., González-López, A. et al. Defective autophagy impairs ATF3 activity and worsens lung injury during endotoxemia. J Mol Med 92, 665–676 (2014). https://doi.org/10.1007/s00109-014-1132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1132-7

Keywords

Navigation