Skip to main content
Top
Published in: Inflammation 1/2019

01-02-2019 | ORIGINAL ARTICLE

Pharmacological Evaluation of TAK-828F, a Novel Orally Available RORγt Inverse Agonist, on Murine Colitis Model

Authors: Keiko Igaki, Yoshiki Nakamura, Yusaku Komoike, Keiko Uga, Akira Shibata, Yoshimasa Ishimura, Masashi Yamasaki, Yasuhiro Tsukimi, Noboru Tsuchimori

Published in: Inflammation | Issue 1/2019

Login to get access

Abstract

IL-17-producing Th17 cells and IFN-γ and IL-17 double-producing Th1/17 cells have been identified as the pathogenic cells in inflammatory bowel disease (IBD). Retinoic acid-related orphan receptor γt (RORγt) is a master regulator for the differentiation and activation of Th17 and Th1/17 cells. We discovered a novel orally available TAK-828F, a strong and selective RORγt inverse agonist. To assess the potential of RORγt blockade in the therapy for IBD, the efficacy of TAK-828F in activated T cell transfer mouse colitis model was investigated. This model was highly sensitive to the prophylactic treatment of anti-TNF-α monoclonal antibody but partially susceptible to sulfasalazine, tacrolimus, and prednisolone. Oral administration of TAK-828F, at doses of 1 and 3 mg/kg, b.i.d, strongly protected the progression of colitis. TAK-828F decreased the population of Th17 and Th1/17 cells in a dose-dependent manner in the mesenteric lymph node. Moreover, expression of mRNA that are characteristic of the Th17 signature, such as IL-17A and IL-17F in the colon, were inhibited by TAK-828F, while the expression of IL-10, an anti-inflammatory cytokine, was increased. In the therapeutic treatment, TAK-828F lessened disease severity compared to the vehicle control mice. Interestingly, gene expression of zonula occludens-1 (ZO-1) and mucin 2 (Muc2), which play an important role in barrier function of the intestinal mucosa, was recovered by TAK-828F. These results indicate that blocking RORγt has promising pharmacological profile in the colitis model. RORγt blockade may provide a novel therapeutic paradigm for treatment of IBD with unique mechanism by which improves imbalance of the immune system.
Literature
1.
go back to reference Allen, A., D.A. Hutton, and J.P. Pearson. 1998. The MUC2 gene product: a human intestinal mucin. The International Journal of Biochemistry & Cell Biology 30 (7): 797–801.CrossRef Allen, A., D.A. Hutton, and J.P. Pearson. 1998. The MUC2 gene product: a human intestinal mucin. The International Journal of Biochemistry & Cell Biology 30 (7): 797–801.CrossRef
2.
go back to reference Fauber, B.P., O. Rene, Y. Deng, J. DeVoss, C. Eidenschenk, C. Everett, A. Ganguli, et al. 2015. Discovery of 1-{4-[3-fluoro-4-((3s,6r)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)- phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORgamma) inverse agonist. Journal of Medicinal Chemistry 58 (13): 5308–5322. https://doi.org/10.1021/acs.jmedchem.5b00597.CrossRefPubMed Fauber, B.P., O. Rene, Y. Deng, J. DeVoss, C. Eidenschenk, C. Everett, A. Ganguli, et al. 2015. Discovery of 1-{4-[3-fluoro-4-((3s,6r)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)- phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORgamma) inverse agonist. Journal of Medicinal Chemistry 58 (13): 5308–5322. https://​doi.​org/​10.​1021/​acs.​jmedchem.​5b00597.CrossRefPubMed
3.
go back to reference Feagan, Brian G., William J. Sandborn, Geert D'Haens, Julián Panés, Arthur Kaser, Marc Ferrante, Edouard Louis, Denis Franchimont, Olivier Dewit, Ursula Seidler, Kyung-Jo Kim, Markus F. Neurath, Stefan Schreiber, Paul Scholl, Chandrasena Pamulapati, Bojan Lalovic, Sudha Visvanathan, Steven J. Padula, Ivona Herichova, Adina Soaita, David B. Hall, and Wulf O. Böcher. 2017. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. The Lancet 389 (10080): 1699–1709. https://doi.org/10.1016/s0140-6736(17)30570-6.CrossRef Feagan, Brian G., William J. Sandborn, Geert D'Haens, Julián Panés, Arthur Kaser, Marc Ferrante, Edouard Louis, Denis Franchimont, Olivier Dewit, Ursula Seidler, Kyung-Jo Kim, Markus F. Neurath, Stefan Schreiber, Paul Scholl, Chandrasena Pamulapati, Bojan Lalovic, Sudha Visvanathan, Steven J. Padula, Ivona Herichova, Adina Soaita, David B. Hall, and Wulf O. Böcher. 2017. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. The Lancet 389 (10080): 1699–1709. https://​doi.​org/​10.​1016/​s0140-6736(17)30570-6.CrossRef
4.
go back to reference Fuss, I.J., M. Neurath, M. Boirivant, J.S. Klein, C. de la Motte, S.A. Strong, C. Fiocchi, and W. Strober. 1996. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. Journal of Immunology 157 (3): 1261–1270. Fuss, I.J., M. Neurath, M. Boirivant, J.S. Klein, C. de la Motte, S.A. Strong, C. Fiocchi, and W. Strober. 1996. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. Journal of Immunology 157 (3): 1261–1270.
7.
go back to reference Globig, A.M., N. Hennecke, B. Martin, M. Seidl, G. Ruf, P. Hasselblatt, R. Thimme, and B. Bengsch. 2014. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflammatory Bowel Diseases 20 (12): 2321–2329. https://doi.org/10.1097/MIB.0000000000000210.CrossRefPubMed Globig, A.M., N. Hennecke, B. Martin, M. Seidl, G. Ruf, P. Hasselblatt, R. Thimme, and B. Bengsch. 2014. Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflammatory Bowel Diseases 20 (12): 2321–2329. https://​doi.​org/​10.​1097/​MIB.​0000000000000210​.CrossRefPubMed
9.
20.
go back to reference Kono, M., A. Ochida, T. Oda, T. Imada, Y. Banno, N. Taya, S. Masada, T. Kawamoto, K. Yonemori, Y. Nara, Y. Fukase, T. Yukawa, H. Tokuhara, R. Skene, B.C. Sang, I.D. Hoffman, G.P. Snell, K. Uga, A. Shibata, K. Igaki, Y. Nakamura, H. Nakagawa, N. Tsuchimori, M. Yamasaki, J. Shirai, and S. Yamamoto. 2018. Discovery of [cis-3-({(5 R)-5-[(7-Fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5 H)-yl}carbonyl)cyclobutyl] acetic Acid (TAK-828F) as a Potent, Selective, and Orally Available Novel Retinoic Acid Receptor-Related Orphan Receptor gammat Inverse Agonist. Journal of Medicinal Chemistry 61 (7): 2973–2988. https://doi.org/10.1021/acs.jmedchem.8b00061.CrossRefPubMed Kono, M., A. Ochida, T. Oda, T. Imada, Y. Banno, N. Taya, S. Masada, T. Kawamoto, K. Yonemori, Y. Nara, Y. Fukase, T. Yukawa, H. Tokuhara, R. Skene, B.C. Sang, I.D. Hoffman, G.P. Snell, K. Uga, A. Shibata, K. Igaki, Y. Nakamura, H. Nakagawa, N. Tsuchimori, M. Yamasaki, J. Shirai, and S. Yamamoto. 2018. Discovery of [cis-3-({(5 R)-5-[(7-Fluoro-1,1-dimethyl-2,3-dihydro-1 H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5 H)-yl}carbonyl)cyclobutyl] acetic Acid (TAK-828F) as a Potent, Selective, and Orally Available Novel Retinoic Acid Receptor-Related Orphan Receptor gammat Inverse Agonist. Journal of Medicinal Chemistry 61 (7): 2973–2988. https://​doi.​org/​10.​1021/​acs.​jmedchem.​8b00061.CrossRefPubMed
23.
go back to reference Leppkes, M., C. Becker, I.I. Ivanov, S. Hirth, S. Wirtz, C. Neufert, S. Pouly, A.J. Murphy, D.M. Valenzuela, G.D. Yancopoulos, B. Becher, D.R. Littman, and M.F. Neurath. 2009. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136 (1): 257–267. https://doi.org/10.1053/j.gastro.2008.10.018.CrossRefPubMed Leppkes, M., C. Becker, I.I. Ivanov, S. Hirth, S. Wirtz, C. Neufert, S. Pouly, A.J. Murphy, D.M. Valenzuela, G.D. Yancopoulos, B. Becher, D.R. Littman, and M.F. Neurath. 2009. RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136 (1): 257–267. https://​doi.​org/​10.​1053/​j.​gastro.​2008.​10.​018.CrossRefPubMed
27.
go back to reference Muir, R., M. Osbourn, A.V. Dubois, E. Doran, D.M. Small, A. Monahan, C.M. O'Kane, et al. 2016. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine 193 (4): 407–416. https://doi.org/10.1164/rccm.201410-1782OC.CrossRefPubMed Muir, R., M. Osbourn, A.V. Dubois, E. Doran, D.M. Small, A. Monahan, C.M. O'Kane, et al. 2016. Innate Lymphoid Cells Are the Predominant Source of IL-17A during the Early Pathogenesis of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine 193 (4): 407–416. https://​doi.​org/​10.​1164/​rccm.​201410-1782OC.CrossRefPubMed
28.
go back to reference Nakagawa, H., Koyama, R., Kamada, Y., Ochida, A., Kono, M., Shirai, J., Yamamoto, S et al. 2018. Biochemical properties of. TAK-828F, a potent and selective RORγt inverse agonist. Pharmacology. (in press). Nakagawa, H., Koyama, R., Kamada, Y., Ochida, A., Kono, M., Shirai, J., Yamamoto, S et al. 2018. Biochemical properties of. TAK-828F, a potent and selective RORγt inverse agonist. Pharmacology. (in press).
29.
go back to reference Parronchi, P., P. Romagnani, F. Annunziato, S. Sampognaro, A. Becchio, L. Giannarini, E. Maggi, C. Pupilli, F. Tonelli, and S. Romagnani. 1997. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. The American Journal of Pathology 150 (3): 823–832.PubMedPubMedCentral Parronchi, P., P. Romagnani, F. Annunziato, S. Sampognaro, A. Becchio, L. Giannarini, E. Maggi, C. Pupilli, F. Tonelli, and S. Romagnani. 1997. Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. The American Journal of Pathology 150 (3): 823–832.PubMedPubMedCentral
31.
35.
go back to reference Skepner, J., R. Ramesh, M. Trocha, D. Schmidt, E. Baloglu, M. Lobera, T. Carlson, J. Hill, L.A. Orband-Miller, A. Barnes, M. Boudjelal, M. Sundrud, S. Ghosh, and J. Yang. 2014. Pharmacologic inhibition of RORgammat regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. Journal of Immunology 192 (6): 2564–2575. https://doi.org/10.4049/jimmunol.1302190.CrossRef Skepner, J., R. Ramesh, M. Trocha, D. Schmidt, E. Baloglu, M. Lobera, T. Carlson, J. Hill, L.A. Orband-Miller, A. Barnes, M. Boudjelal, M. Sundrud, S. Ghosh, and J. Yang. 2014. Pharmacologic inhibition of RORgammat regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. Journal of Immunology 192 (6): 2564–2575. https://​doi.​org/​10.​4049/​jimmunol.​1302190.CrossRef
36.
37.
go back to reference Withers, D.R., M.R. Hepworth, X. Wang, E.C. Mackley, E.E. Halford, E.E. Dutton, C.L. Marriott, V. Brucklacher-Waldert, M. Veldhoen, J. Kelsen, R.N. Baldassano, and G.F. Sonnenberg. 2016. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine 22 (3): 319–323. https://doi.org/10.1038/nm.4046.CrossRefPubMedPubMedCentral Withers, D.R., M.R. Hepworth, X. Wang, E.C. Mackley, E.E. Halford, E.E. Dutton, C.L. Marriott, V. Brucklacher-Waldert, M. Veldhoen, J. Kelsen, R.N. Baldassano, and G.F. Sonnenberg. 2016. Transient inhibition of ROR-gammat therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine 22 (3): 319–323. https://​doi.​org/​10.​1038/​nm.​4046.CrossRefPubMedPubMedCentral
38.
go back to reference Xiao, S., N. Yosef, J. Yang, Y. Wang, L. Zhou, C. Zhu, C. Wu, E. Baloglu, D. Schmidt, R. Ramesh, M. Lobera, M.S. Sundrud, P.Y. Tsai, Z. Xiang, J. Wang, Y. Xu, X. Lin, K. Kretschmer, P.B. Rahl, R.A. Young, Z. Zhong, D.A. Hafler, A. Regev, S. Ghosh, A. Marson, and V.K. Kuchroo. 2014. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40 (4): 477–489. https://doi.org/10.1016/j.immuni.2014.04.004.CrossRefPubMedPubMedCentral Xiao, S., N. Yosef, J. Yang, Y. Wang, L. Zhou, C. Zhu, C. Wu, E. Baloglu, D. Schmidt, R. Ramesh, M. Lobera, M.S. Sundrud, P.Y. Tsai, Z. Xiang, J. Wang, Y. Xu, X. Lin, K. Kretschmer, P.B. Rahl, R.A. Young, Z. Zhong, D.A. Hafler, A. Regev, S. Ghosh, A. Marson, and V.K. Kuchroo. 2014. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40 (4): 477–489. https://​doi.​org/​10.​1016/​j.​immuni.​2014.​04.​004.CrossRefPubMedPubMedCentral
Metadata
Title
Pharmacological Evaluation of TAK-828F, a Novel Orally Available RORγt Inverse Agonist, on Murine Colitis Model
Authors
Keiko Igaki
Yoshiki Nakamura
Yusaku Komoike
Keiko Uga
Akira Shibata
Yoshimasa Ishimura
Masashi Yamasaki
Yasuhiro Tsukimi
Noboru Tsuchimori
Publication date
01-02-2019
Publisher
Springer US
Published in
Inflammation / Issue 1/2019
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0875-7

Other articles of this Issue 1/2019

Inflammation 1/2019 Go to the issue